TY - CPAPER U1 - Konferenzveröffentlichung A1 - Zanger, Michael A1 - Schulz, Alexander A1 - Grodmeier, Lukas A1 - Agaj, Dion A1 - Schindler, Rafael A1 - Weiss, Lukas A1 - Möhring, Michael ED - Klein, Maike ED - Krupka, Daniel ED - Winter, Cornelia ED - Gergeleit, Martin ED - Martin, Ludger T1 - HollerithEnergyML : a prototype of a machine learning energy consumption recommender system T2 - Informatik 2024: Lock-in or log out? Wie digitale Souveränität gelingt, 24.-26. September 2024, Wiesbaden, proceedings (Lecture Notes in Informatics; vol. 352) N2 - Energy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived. KW - AI KW - energy consumption KW - ML KW - recommender Y1 - 2024 UN - https://nbn-resolving.org/urn:nbn:de:bsz:rt2-opus4-51439 SN - 1617-5468 SS - 1617-5468 SN - 978-3-88579-746-3 SB - 978-3-88579-746-3 U6 - https://doi.org/10.18420/inf2024_132 DO - https://doi.org/10.18420/inf2024_132 SP - 1519 EP - 1523 S1 - 5 PB - Gesellschaft für Informatik CY - Bonn ER -