TY - JOUR U1 - Zeitschriftenartikel, wissenschaftlich - begutachtet (reviewed) A1 - Kleinhans, Claudia A1 - Vacun, Gabriele A1 - Surmenev, Roman A1 - Surmeneva, Maria A1 - Kluger, Petra T1 - Testing the in vitro performance of hydroxyapatite coated magnesium (AZ91D) and titanium concerning cell adhesion and osteogenic differentiation JF - BioNanoMaterials N2 - In the current study the in vitro outcome of a degradable magnesium alloy (AZ91D) and standard titanium modified by nanostructured-hydroxyapatite (n-HA) coatings concerning cell adhesion and osteogenic differentiation was investigated by direct cell culture. The n-HA modification was prepared via radio-frequency magnetron sputtering deposition and proven by field emission scanning electron microscopy and X-ray powder diffraction patterns revealing a homogenous surface coating. Human mesenchymal stem cell (hMSCs) adhesion was examined after one and 14 days displaying an enhanced initial cell adhesion on the n-HA modified samples. The osteogenic lineage commitment of the cells was determined by alkaline phosphatase (ALP) quantification. On day one n-HA coated AZ91D exhibited a comparable ALP expression to standard tissue culture polystyrene samples. However, after 14 days solely little DNA and ALP amounts were measurable on n-HA coated AZ91D due to the lack of adherent cells. Titanium displayed excellent cell adhesion properties and ALP was detectable after 14 days. An increased pH of the culture was measured for AZ91D as well as for n-HA coated AZ91D. We conclude that n-HA modification improves initial cell attachment on AZ91D within the first 24 h. However, the effect does not ersist for 14 days in in vitro conditions. KW - cell adhesion KW - direct cell test KW - human mesenchymal stem cells KW - in vitro testing KW - magnesium alloys KW - nanostructured-hydroxyapatite coating KW - osteoinductivity Y1 - 2015 UN - https://nbn-resolving.org/urn:nbn:de:bsz:rt2-opus4-5290 SN - 2196-0651 SS - 2196-0651 U6 - https://doi.org/10.1515/bnm-2015-0002 DO - https://doi.org/10.1515/bnm-2015-0002 VL - 16 IS - 1 SP - 41 EP - 50 S1 - 10 PB - De Gruyter CY - Berlin, Boston ER -