TY - CPAPER U1 - Konferenzveröffentlichung A1 - Stultschnik, Jörg A1 - Moser, Olivia A1 - Zikulnig-Rusch, Edith A1 - Müller, Uwe A1 - Kandelbauer, Andreas ED - Petutschnigg, Alexander ED - Barbu, Marius ED - Tudor, Eugenia T1 - Individualization of melamine-formaldehyde–based laminates in batch size one T2 - Processing Technologies for the Forest and Biobased Products Industries : Proceedings N2 - Mass-customization is a megatrend that also affects the wood industry. To obtain individually designed laminates in batch size one efficient printing and processing technologies are required. Digital printing was envisaged as it does not depend on highly costly printing cylinders (as used in rotogravure printing) and allows rapid exchange of the printing designs. In the present work, two wellestablished digital printing approaches, the multi-pass and the single-pass technique, were investigated and evaluated for their applicability in decorating engineered wood and low-pressure melamine films. Three different possibilities of implementing digital printing in the decorative laminates manufacturing process were studied: (1) digital printing on coated chipboard and subsequently applying a lacquered top-coat or melamine overlay (designated as “direct printing”, since the LPM was the printing substrate), (2) digital printing on decorative paper which was subsequently impregnated before hot pressing (designated as “indirect printing, variant A”) and (3) digital printing on decorative paper with subsequent interlamination of the paper between impregnated under- and overlay paper layers during the pressing process (designated as “indirect printing, variant B”). Due to various advantages of the resulting cured melamine resin surfaces including a much better technological performance and flexibility in surface texture design, it was decided to industrially further pursue only the indirect digital printing process comprising interlamination and the direct printing process with a melamine overlay-finishing. Basis for the successful trials on production and laboratory scales were the identification of applicable inks (in terms of compatibility with melamine resin) and of appropriate printing paper quality (in terms of impregnation and imprinting ability). After selection and fine tuning of suitable materials, the next challenge to overcome was the initially insufficient bond strength between impregnated overlay and the ink layers which led to unsatisfactory quality of the print appearance and delamination effects. However, the optimization of the pressing program and the development of a modified impregnation procedure for the underlay and overlay papers allowed the successful implementation of digital printing in the production line of our industrial partner FunderMax. Y1 - 2014 SP - 631 EP - 636 S1 - 6 ER -