TY - JOUR U1 - Wissenschaftlicher Artikel A1 - Zeineldin, Ramy A1 - Karar, Mohamed A1 - Elshaer, Ziad A1 - Coburger, Jan A1 - Wirtz, Christian A1 - Burgert, Oliver A1 - Mathis-Ullrich, Franziska T1 - Explainable hybrid vision transformers and convolutional network for multimodal glioma segmentation in brain MRI JF - Scientific reports N2 - Accurate localization of gliomas, the most common malignant primary brain cancer, and its different sub-region from multimodal magnetic resonance imaging (MRI) volumes are highly important for interventional procedures. Recently, deep learning models have been applied widely to assist automatic lesion segmentation tasks for neurosurgical interventions. However, these models are often complex and represented as “black box” models which limit their applicability in clinical practice. This article introduces new hybrid vision Transformers and convolutional neural networks for accurate and robust glioma segmentation in Brain MRI scans. Our proposed method, TransXAI, provides surgeon-understandable heatmaps to make the neural networks transparent. TransXAI employs a post-hoc explanation technique that provides visual interpretation after the brain tumor localization is made without any network architecture modifications or accuracy tradeoffs. Our experimental findings showed that TransXAI achieves competitive performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about the tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Thus, it enables the physicians’ trust in such deep learning systems towards applying them clinically. KW - biomedical engineering KW - cancer KW - medical imaging Y1 - 2024 UN - https://nbn-resolving.org/urn:nbn:de:bsz:rt2-opus4-49079 SN - 2045-2322 SS - 2045-2322 U6 - https://doi.org/10.1038/s41598-024-54186-7 DO - https://doi.org/10.1038/s41598-024-54186-7 VL - 14 SP - 1 EP - 14 S1 - 14 PB - Springer CY - London ER -