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Abstract 
At higher frequencies the Triaxial cell becomes in principle a cavity 
resonator which shows different resonance frequencies depending 
on the dimensions of the cell as well as on the size of the DUT. 
Above these resonance frequencies propagation of TEM waves is 
disturbed and measurements of screening attenuation with triaxial 
test method according to IEC 62153-4-15 are limited.  
Higher order modes respectively resonance frequencies can be 
suppressed by using conductive absorber material such as ferrites, 
nanocrystalline absorbers, magnetic absorbers or foam absorbers, 
placed in the Triaxial cell. With these absorbers, the frequency 
range of the screening attenuation measured in Triaxial cell can be 
extended up to several GHz. 

Keywords: Triaxial cell; transfer impedance; screening 
attenuation; triaxial test procedure; ferrite absorber; nanocrystalline 
absorber, magnetic absorber. 

1. Introduction 
The triaxial test method according to [2] and [3] was originally 
designed for measuring the transfer impedance and the screening 
attenuation of communication cables and connectors. 
Meanwhile, also transfer impedance and screening attenuation e.g. 
on high-voltage cables (HV-cables) and assemblies for electric 
vehicles, on larger connectors and components e.g. for 
communication networks can be measured with the triaxial test 
approach by using the Triaxial cell, (Fig. 1), [4]. 

 
Figure 1 – Different designs of Triaxial Cells 

At higher frequencies the Triaxial cell becomes in principle a cavity 
resonator which exhibits resonances depending on its dimensions. 
Above these resonance frequencies, propagation of TEM waves is 
disturbed and measurements of screening attenuation with triaxial 
test method are limited. 

Higher order modes can be suppressed by using conductive material 
like ferrite tiles, magnetic absorbers, nanocrystalline absorbers or 
foam absorbers. This has been demonstrated in [5] in context with 
the TEM cell. With these absorbers placed in the Triaxial cell, the 
frequency range of the screening attenuation measured in the 
Triaxial cell can be largely expanded. 

The following work describes the expansion of the frequency 
bandwidth of the Triaxial cells using absorber materials. Different 
measurements of the screening attenuation with the improved 
Triaxial cell are presented (Section 3 to 4). At first we would like to 
point out the two main parameters dealt with to express the 
shielding effectiveness of the equipment under test (EUT), 
(Section 2).  

2. Definition and Meaning of the Transfer 
Impedance and the Screening Attenuation 

In order to obtain electromagnetic compatibility (EMC) adjacent 
electric and electronic systems require sufficient isolation. This is 
very often achieved by using electromagnetic screens. Since 
dominant coupling paths are acting between and along transmission 
lines the shielding quality of cables, connectors and also housings of 
the electric components is of special interest. To describe this 
shielding quality two parameters are used which are commonly 
known as the transfer impedance and the screening attenuation. 

The coupling mechanism caused by the transfer impedance ZT 
becomes visible when we look at its definition. ZT is defined as the 
relation between the voltage U2 and the current I1 [1], [2]. 
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This equation describes the coupling mechanism between two loops 
coupled by a common return path. As soon as a current I1 is floating 
on its way back to the source in the return path of the primary loop a 
voltage U2 is acting as a noise source disturbing the signal in loop of 
secondary side. The transfer impedance is a very important 
screening measure at low frequencies where the regarded system is 
electrically short compared to the wavelength. The totally acting 
transfer impedance in the return path of the system can be 
calculated by summing up the single transfer impedance elements of 
the screening chain built by total cable length, the connector screens 
and the screened housings. 
At higher frequencies the wavelengths gets relatively short 
compared to the elongation of system and we have the situation 
where a not homogenous current distribution is acting along the 
screen.  
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In this situation the screening attenuation aS should be used as the 
measure to describe the effectiveness of a cable screen or a screened 
component.  
It is defined as the logarithmic ratio of the feeding power P1 in the 
inner system to the maximum radiated power Pr,max in the outer 
system [3]. 
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Since voltage measurements and not power measurements are done 
in reality, the acting impedances of the source (generator) and drain 
(receiver) become important. That is why [3] offers an additional 
definition to accomplish real life conditions and comparability to 
alternative measurement methods: 
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where ZS = 150  is the normalized impedance of the environment 
(outer system) of a typical cable installation and Z1 is the 
characteristic impedance of the EUT. 

3. Design and Principle of the Triaxial Cell 
The Triaxial cell is a transmission line, which is designed to 
operate as a shielded 50 Ω multi-line with sides closed to prevent 
radiation of RF energy into or out of the cell’s test environment.  
It consists of a section of rectangular triaxial line of preferably 
1 m length and a side length of 150 mm to 300 mm. 
Electromagnetic fields propagate inside the cell when RF energy 
is coupled to the line from the transmitter respectively the EUT 
connected at the input port. The receiver at the other port collects 
the transmitted energy (Fig. 2). The cell is extremely broad band 
in having linear phase and amplitude response from DC to cell’s 
cut-off frequency [4]. 
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Figure 2: Principle of the triaxial test set-up to measure 
the transfer impedance and screening attenuation with 

tube in tube      
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Figure 3: Principle of the Triaxial cell with tube in tube 
and ferrite tiles as absorber 

4. Measurements 

4.1 The Test Set-up  
The test set-up consists of a vector network analyser (VNA), 
ZNB8 from R&S and a Triaxial cell as described here above. The 
two ends of the waveguide are connected to ports of the VNA. 
The device under test (DUT) which is centred in the middle of the 
waveguide, forms in combination with the transmission line a 
triaxial system (Fig. 3). The DUT plays the role of the septum, 
whereby its screen is actually the device under test.  
By using the Triaxial cell both the transfer impedance at the lower 
frequency range as well as the screening attenuation at higher 
frequencies can be measured [6], [7]. 
Measurements were performed with four different set-ups without 
and with absorber materials on the cell floor: The Triaxial tube 
CoMeT 40, the Triaxial cell CoMeT 140/140/100, the Triaxial cell 
CoMeT 1000/150/150 and the Triaxial cell CoMeT 1000/300/300. 
As absorbing materials, ferrite tiles, foam absorbers and magnetic 
flat absorbers (Fig. 4) were used. In principle, a large number of 
floor absorber materials may be used to suppress higher order 
modes. 

 
Figure 4: Different magnetic flat absorbers  

Figure 4 shows a photo of different flat magnetic absorbers with 
different substrates and thicknesses. Absorbers used for the 
measurements in figures 7 and 8 are the upper ones. 
For the intended application absorbers should suppress higher order 
modes but should not influence TEM mode. Better says, their 
influence on the principal mode should be reduced at minimum.  
In analogy to the philosophy followed when carrying measurement 
in (G)TEM cells, the electromagnetic field in a Triaxial cell can be 
considered as TEM as long as higher order modes are at least 6 dB 
below the needed principal mode [10].     
 

4.2 Measurements with Cell 140/140/100 
The cell was loaded with a rectangular box with an aperture as 
depicted in Fig. 5. The EUT was arranged double symmetrically 
with respect to its geometry and position in the cell to reduce the 
number of modes which can be excited in the waveguide (Table 1) 
[8], [9] and was terminated with a 50 Ω matching impedance to 
minimize reflexions in the inner system [6], [7].  
A double screened Rosenberger RTK 062 cable with a good 
contact to the short circuit at the near end was used as feeding 
cable. The connection to the test head was ensured using a 1 m 
long standard bedea cable.  
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Figure 5: Rectangular box with aperture in a Triaxial cell 

140/140/100 lined with floor absorber  
The size of the box under test (EUT) in the cell 140/140/100 was 
58x28x26 mm with an aperture of 4.2 mm. 
The measurement system was calibrated by the full two-port 
calibration procedure at the connector interface of the connecting 
cables to correct the system errors. The signal was fed from port 1 
of the VNA into the cell and measurement of the transmission 
coefficient S21 was carried out. The measurement frequencies 
were from 9 kHz up to 6 GHz. This frequency range was chosen 
to cover most of the higher-order modes which might be excited 
within the cell and influence the measurement results.  

 

Table 1: Cut-off frequencies of first higher order modes 
of cell 140/140/100 

fc [GHz] 
n↓ \  m→ 1 2 3 
0 1.1029* 2.2059 3.3088* 

1 1.5598 2.4663 3.4878 
2 2.4663** 3.1196 3.9767** 

  Values marked in bold are modes which may be excited by a 
double symmetrical arranged EUT. 
The cut-off frequency fc is calculated by: 
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where a=.140 m is the width of the cell and b=.140 m its length; 
m and n indicate the mode configuration, while c0 stands for the 
free space velocity.  
 *Excited TEmn modes. 
 **Excited TMmn modes. 
Fig. 6 shows the measurement of the rectangular box with aperture 
in a triaxial cell 140/140/100 without absorber. The curves show 
peak values at certain discrete frequencies as a result of the 
multimoding operation associated with the cell size. These peaks 
correspond to resonances of higher order modes propagating within 
the cell as soon as they are above their respective cutoff frequency 
(Table 2). 
The aforementioned presence of higher order modes represent the 
main drawbacks of the triaxial cell, since they limit the bandwidth 
of the cell and alter the measurement results. Indeed, the first 
resonance corresponding to first resonance of the TE10 or TE01 
mode appears at around 1400 MHz, thus limiting the used 
bandwidth of the cell.  
To suppress these modes and thereby extend the overall frequency 
range of operation of the line, the cell floor was covered with 

magnetic absorbers (Fig. 5) and measurements were carried out 
again. 
Table 2 show resonances of excited modes and frequencies of 
peaks of cell 140/140/100. The resonance frequencies fr are 
calculated by: 
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where a, b, c are the dimensions of the cell,  m, n, p are number of 
modes (even, 2 of 3 > 0) and c0 is the velocity of light in free 
space. 
Table 2: Resonances of excited modes and frequencies 

of peaks of Cell 140/140/100. 

Wave Type Resonance 
Number 

Frequency fr 
[GHz] 

Peak at fp 
[GHz]  

TE10  1st  1.842 1.430 
2nd  3.183  
3rd  4.622  
4th  6.090  
5th 7.570  

TE20 1st  3.684 3.685 
2nd  4.393 4.421 

TE30 1st  3.544  
2nd  4.393 4.421 
3rd  5.526 5.567 

TM11 1th  2.137 2.130 
2th  3.358 3.391 

TM12 1st  2.824 2.934 
2nd  3.836 3.833 
3rd  5.094 5.040 
4th  6.885  

TM32 1st  4.141  
2nd  4.887 4.847 
3rd  5.926 5.878 
4th  7.131  
5th  8.430  

Screening attenuation results obtained from measurements in the 
modified cell are depicted in figures 7 and 8. As can be seen, 
resonances are strongly suppressed and the operation bandwidth 
of the cell is largely expanded up to several GHz. 

 
Figure 6: Screening attenuation of the rectangular box 

with an aperture in the triaxial cell 140 without absorber. 
A comparison result corroborating the statement is graphed in  
Fig. 9, shown above.  
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Figure 7: Screening attenuation of the rectangular box 

with aperture in a Triaxial cell 140 with magnetic 
absorbers of 0.5 mm thickness. 

 
Figure 8: Screening attenuation of rectangular box with 
aperture in a Triaxial cell 140 with magnetic absorber 

with silicone carrier of 1.5 mm thickness. 

 
Figure 9: Comparison of the screening attenuation of the 

rectangular box with aperture in a Triaxial cell without 
and with magnetic absorber of 0.5 mm thickness.  

4.3 Measurements with Cell 1000/150/150 
Besides the measurement of the return loss as shortly presented at 
the end of the preceding section, the 150/150/1000 cell was also 
used to investigate the screening attenuation of coaxial cables. The 
aim was to compare obtained results with that of the reference 
measurements in a cylindrical triaxial tube.   
Screening attenuation curves of cables with single or double braid 
show typical behavior when measured with the triaxial tube due to 
the reflections at the short circuit of the tube at the generator side as 
can be seen in figure 10 where the screening attenuation of a  
RG 214 cable is depicted. The curve shows maximum peak values 
of -81.5 dB as expected [3]. 
For comparison purposes, the screening attenuation of the same 
cable measured in a 1000/150/150 Triaxial cell is graphed in figures 
11 and 12 with and without absorbers respectively.  

 
Figure 10: Screening attenuation of RG 214 in Tube 

CoMeT 40  
  

 
Figure 11: Screening attenuation of RG 214 in the Triaxial 

cell 1000/150/150 without absorber.  
 

 
Figure 12: Screening attenuation of RG 214 in the Triaxial 

cell 1000/150/150 with magnetic absorber of 0.5 mm 
thickness.  

Clearly, high frequency resonances can be observed in the results 
gained in the cell without absorbers, as soon as higher order modes 
propagate within the cell; while the curve obtained from 
measurement in the cell lined with microwave floor absorbers 
shows the same behavior as the reference curve (Fig.10). The 
deviation of the max. values at about 1600 MHz and at about 2200 
MHz is due to the influence of the absorbers. 

4.4 Measurements with Cell 1000/300/300 
The cell 1000/300/300 was loaded with a box of 11.5 x 8.5 x 6 mm 
with an aperture of 14 mm in the cover of the box. The box was 
connected with bedea RG 214 cables with screening attenuation of 
about 82 dB, (Fig. 13). Measurements of screening attenuation were 
performed with and without absorbers, (Figures 14 to 16). The 
envelope curve of the measurements shows the principle behavior 
of a hole in a screened device; a decrease of screening attenuation to 
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higher frequencies up to a max. value continued with an increase of 
the screening attenuation.  

 
Figure 13: EUT 11.5x8.5x6 mm with Triaxial cell 

1000/300/300 with magnetic absorber 0.5 mm (3x30x30)  

 

Figure 14: box 11.5 x 8.5 x 6 mm with Triaxial cell 
1000/300/300 without absorber  

 
Figure 15: Box 11.5 x 8.5 x 6 mm with Triaxial cell 

1000/300/300 with 16 ferrite tiles 
Fig. 14 show the screening attenuation of a box 11.5 x 8.5 x 6 mm 
with Triaxial cell 1000/300/300 without absorber. Resonances of 
higher order modes can be observed from about 600 MHz.   

 
Figure 16: Box 11.5 x 8.5 x 6 mm with Triaxial cell 

1000/300/300 with magnetic absorber 0.5 mm (5x30x30) 

After covering the bottom of the cell with absorbing material, 
resonances are suppressed. 
The comparison of the measurement of the same box 11.5x8.5x6 
mm with absorbing clamp MDS 22 according to IEC 62153-4-5 in 
the range of 500 MHz to 2500 MHz shows good correlation.  
Absorbing clamp measurement was performed at near and far end. 
The worse value of both measurements is the value of the 
screening attenuation.  
It should be noted that only the envelope curves respectively the 
max. values of clamp measurement and triaxial measurement can 
be taken for comparison.  

 

Figure 17: Triaxial cell 1000/300/300 with box 11.5 x 8.5 
x 6 mm with magnetic absorber 0,5mm (4x15x30). 

 
Figure 18: Box 11.5 x 8.5 x 6 mm measured with 

absorbing clamp MDS 22 
 

4.5 Influence of the Absorbing Material on the 
TEM Mode 
Besides the fact that resonances of higher order modes are 
strongly suppressed, Figs. 9 and 12 give valuable insight on the 
effect of the used absorbers on the TEM mode. In fact the 
absorbers do not have an adverse influence on the TEM mode as 
long as it is the only mode present within the cell.  
 

generator 
short 
circuit 

receiver 

tube in 
tube  test head   

housing resp. Triaxial cell 

Figure 19: Principle depiction of the return loss 
measurement with Triaxial cell 
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It can be observed that, below the cut-off frequency the first 
higher order mode, i.e. at frequencies where only the TEM mode 
propagates within the cell, the two curves in Fig. 9 match well 
together. However at higher frequencies where the cell is in 
multimode operation, part of the energy of the principal mode is 
indirectly dampened as a result of high frequency resonance’s and 
multimode’s suppression (Fig. 21).  
In a multimode operation, energy conversion between modes 
occurs as a consequence of mode coupling within the cell. When 
higher order modes are suppressed, the part of TEM energy 
converted into the higher order modes is also dampen.  
This effect is fortunately minimal as can be seen from comparison 
of the return loss in a 1000/150/150 cell with and without 
absorber (Figs. 20 and 21).  

 
Figure 20: Return loss of the Triaxial cell 1000/150/150 

without absorber 
After covering the cell bottom with microwave absorbers 
resonances are suppressed, see figure 19. 

 
Figure 21: Return loss of the Triaxial cell 1000/150/150 

with magnetic absorber 0.5 mm 
 

5. Concluding Remarks 
The Triaxial cell commonly used to determine transfer impedance 
and screening attenuation for cables and connectors shows some 
drawbacks which are inherently due to its geometry. Among others 
is the bandwidth limitation due to the existence of higher order 
modes propagating within the cell as from certain frequencies.  
The present work proposes an approach to circumvent the main 
limitation of the cell and thereby improve its overall performance.  
 
 
 
 

It is shown that by lining the cell floor with microwave absorbers, 
higher order mode resonances are strongly dampen.  
Thus, expanding the overall bandwidth of the cell by several GHz. 
The influence that the absorbers can have on the TEM mode is 
indirect and minimal.  
First comparison measurements between Triaxial tube and Triaxial 
“Absorber” cell and between Triaxial “Absorber” cell and 
absorbing clamps are promising. Further comparison measurements 
of different EUTs are in progress.  
The results of the present work will be discussed at the next meeting 
of working group IEC TC 46/WG 5, Screening effectiveness in 
order to amend IEC 62153-4-15 [4]. 
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