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Abstract: 

Condition Monitoring for mechanical systems like bearings or transmissions is often done by 

analysing frequency spectra obtained from accelerometers mounted to the components under 

observation. Although this approach gives a high amount on information about the system behaviour 

the interpretation of the resulting spectra requires expert knowledge, that is, a deep understanding 

of the effect of condition deterioration on the measured spectra. However, an increasing number of 

condition monitoring applications demands other representations of the measured signals that can 

be easily interpreted even by non-experts. 

Therefore, the objective of this paper is, to develop an approach for processing measured process 

data in order to obtain an easy to interpret measure for assessing the component condition. The 

main idea is, to evaluate the deterioration of a component condition by computing the correlation 

function of current measurements with past measurements, in order to detect a component 

condition deterioration from a change in these correlation functions. Besides the simplicity of the 

obtained measure, this approach opens the opportunity for integrating a model-based approach as 

well. 

The developed method is tested based on a condition monitoring application in a roller chain.  
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Abstract

Condition Monitoring for mechanical systems like bearings or transmissions is often done

by analysing frequency spectra obtained from accelerometers mounted to the components

under observation. Although this approach gives a high amount on information about the

system behaviour, the interpretation of the resulting spectra requires expert knowledge,

that is, a deep understanding of the effect on condition deterioration on the measured

spectra. However, an increasing number of condition monitoring applications demands

other representations of the measured signals that can be easily interpreted even by non–

experts. Therefore, the objective of this paper is to develop an approach for processing

measured process data in order to obtain an easy to interpret measure for assessing the

component condition. The main idea is to evaluate the deterioration of a component

condition by computing the correlation function of current measurements with past mea-

surements in order to detect a component condition deterioration from a change in these

correlation functions. Besides the simplicity of the obtained measure, this approach opens

the opportunity for integrating a model–based approach as well. The developed method

is tested based on a condition monitoring application in a roller chain.

1. Introduction

Components of mechanical systems are subject to wearing during their operational life-

time. Therefore, a regular maintenance or replacement is necessary to ensure an adequate

operation of these components and to prolong their available lifetime as much as possible.

Typically, maintenance or replacement intervals are regularly scheduled based on oper-

ational hours or particular information given by the manufacturer. However, these fixed

intervals may not be appropriate for a given component under particular operating condi-

tions. As a result, maintenance intervals may be shorter than required leading to higher

costs than necessary or maintenance intervals may be too long leading to a component

failure. To avoid such situations, condition monitoring and remaining lifetime estimation

methods have been developed in recent years. A common condition monitoring technique

used in industrial applications for rotating machinery is the analysis of vibration data in

time, frequency and time–frequency domain obtained from e.g. accelerometers (1). This

technique provides a large amount of data that can be used to identify the condition of the

monitored component. However, the interpretation of the resulting data requires a deep

understanding of the effect of condition deterioration on the time series or the correspond-
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ing spectra and is difficult even for experts.

Therefore, in this paper a method is proposed, that evaluates the condition of a compo-

nent with an easy to interpret result even by non–experts. The main idea is to determine

the component condition by evaluating the similarity between measurement signals in

different conditions, e.g. new and worn, based on correlation techniques using measured

process data. The developed method is tested based on a condition monitoring appli-

cation in a roller chain. Correlation based techniques have been successfully applied in

signal and image processing. For condition monitoring approaches the method proposed

in (2) uses correlation techniques to weak up or to eliminate noises of vibration data. In (3)

correlations among failure modes are considered to better predict the service life of dam

systems. A correlation analysis based approach for feature selection such as mean and

standard deviation of signals for reliability estimation or remaining lifetime prediction is

given in (4,5). Optical image correlation was used in (6) to monitor strain characteristics in

electronic systems.

The paper is organized as follows. In section 2 the measurement setup is presented and

section 3 explains the wear of roller chains. Then, the problem statement is discussed in

section 4. The main idea of this paper and some background on correlation are described

in section 5. Analysis of measurement results using the developed method are shown in

section 6. Finally, section 7 summarizes the results of this paper.

2. Measurement setup

The method developed in this paper is investigated based on a roller chain drive with one

driving sprocket and one driven sprocket as illustrated in figure 1. Roller chains are part

of many mechanical systems for power transmission or object transportation. Besides

the benefits of roller chains like slip–free power transmission with high efficiency, there

are also disadvantages like the polygon effect leading to wear in the chain. The rate of

wearing increases strongly depending on operating conditions including speed, stress and

lubrication of the chain. Many applications require high chain speeds whereas in other

applications only limited lubrication is possible such that the chain lifetime decreases fast.

Figure 1. Roller chain drive test bench

The single roller chain (DIN ISO 606) in the considered test bench has a total of N = 100

links and an undeformed link pitch of l = 9.525mm. Both, driving and driven sprockets
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have z = 20 teeth. Two motors are connected directly to the sprockets, where the left mo-

tor acts as driver and the right motor as load to represent the working load. These motors

are induction machines with a rated power of PR = 0.37kW, a rated torque TR = 2.56Nm

and a rated speed nR = 1380rpm. The driving motor is operated in speed controlled mode

with a constant speed of nm = 400rpm such that the chain is moving in anticlockwise

direction. For the measurements in this paper no external load torque was applied by

the second motor. The chain was operated approximately eight hours a day for a total

of 37 days.

In contrast to typical condition monitoring applications no accelerometers are used but

all information is extracted from the motor torque available as process data in the fre-

quency inverter that drives the motor. In addition, the angular position is recorded and

all measurements are synchronized to a reference position of the motor shaft, given by

the zero pulse of the motor encoder system. This synchronization is crucial for obtaining

comparable measurements during chain operation.

3. Wear of roller chains

Roller chains suffer from different effects of wear (7). The main influence of chain wearing

are modifications in the joints due to friction between pins, bushes and rollers while the

chain is operating (8–11). This wear leads to abrasion such that the whole chain extends.

Furthermore, the stiffness in the joints increases if abrasion and stain are in the joints (11) as

well as when the lubrication decreases. Figure 2 illustrates the process of chain wear (10).

Operating time

W
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tinitial tlinear

Figure 2. Process of chain wear

Within the first operating hours [0, tinitial] the so called initial wear, the wear elongation

grows strongly due to adjustments in the joints of the chain. Then, during the normal

wear interval [tinitial, tlinear], the wear increases slowly and nearly linear. This stage is

followed by the extreme wear. During this stage the wear is progressive and the chain

should be changed as soon as possible. This trajectory of chain wear was measured by

e.g. (8,9,12). Figure 2 also illustrates two different curves for different lubrication condi-

tions following (10). The dashed line represents a typical curve for a chain lubricated once

by the manufacturer without any re–lubrication during operation. In contrast the solid line
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illustrates the chain wear when the chain is frequently re–lubricated, resulting in a higher

chain lifetime.

4. Problem Statement

Figure 3 shows the measured motor torque Tm and its corresponding spectra for one chain

revolution within one day at four different timestamps; start of a day (0h), after 30 min-

utes (0.5h), after 2h and at the end of a day (8h). These data are shown for two chain

conditions from day 3 in figure 3a and 3b and day 29 in figure 3c and 3d, respectively.

0 0.2 0.4 0.6 0.8
0.25

0.3

0.35

0.4

0.45

0.5

t / s

T
m

/
N

m

0h 0.5h 2h 8h

(a) Motor torque (new chain)
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(b) Spectra (new chain)
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(c) Motor torque (chain with wear)
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(d) Spectra (chain with wear)

Figure 3. Measurements within one day for two different chain conditions

From the time series illustrated in figure 3a it is observed that the motor torque decreases

during the day. This is due to the fact that the chain temperature increases during the

daily operation resulting in a decreasing lubrication viscosity. As the signals given in

figure 3c demonstrate, this effect degrades with increasing operation hours due to loss of
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lubrication. In the spectra, the mechanical rotation frequency

fmech = nm/60 = 6.66Hz

can be seen, where nm = 400rpm is the motor operating speed. In addition, the chain

links mesh into the sprockets with the meshing frequency

fmesh = z fmech = 133.33Hz .

The spectra exhibit additional frequencies resulting from the chain dynamics, induction

machine harmonics, the bearings but also from harmonics and image frequencies due

to limited sampling rate. Although there are notable differences between the spectra in

figure 3c and figure 3d a conclusion about the condition of the chain based on these figures

is difficult without expert knowledge. Therefore, this paper introduces an approach to

determine an easy to interpret condition measure based on correlation techniques.

5. Correlation–based condition monitoring

5.1 Correlation

Correlation in signal processing is used to analyse the degree of similarity of signals. The

so called cross–correlation of two real–valued signals in continuous time x(t) and y(t) is

defined as

rxy(τ) =
∫ +∞

−∞
x(t)y(t − τ)dt ,

where τ is the time lag by which y(t) is shifted with respect to x(t). The cross–correlation

rxy(τ) is a measure for the similarity between x(t) and y(t) for every time lag τ . In digital

signal processing the signals are sampled at the time instants t = nTS, where TS is the

sampling time. Thus, the discrete cross–correlation of two different real–valued signals

x(n) and y(n) in discrete time is defined as

rxy(k) =
+∞

∑
n=−∞

x(n)y(n− k) , (1)

where k is the time–discrete lag and represents the integer number of sample points by

which y(n) is shifted with respect to x(n). As there are no infinite data sets in practice,

the summation in (1) will start from n = 0 ending at n = N −1, where N is the length of

the signal buffer for x(n) and y(n). Thus, we have

rxy(k) =
N−1

∑
n=0

x(n)y(n− k) , rxx(k) =
N−1

∑
n=0

x(n)x(n− k),

for the cross–correlation rxy(k) and the autocorrelation rxx(k). For the evaluation of the

similarity between the signals x(t) and y(t) the ratio

ρxy(k) =
rxy(k)

rxx(k)
(2)
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can be used. In (13) the similarity is determined from

ρxy(k) =
rxy(k)

√

rxx(0)ryy(0)
, (3)

giving a standardized value |ρxy(k)| ≤ 1. In both cases (2) and (3) a similarity measure S

can be obtained using the value at zero lag S = ρxy(0). Furthermore, in (14) the waveform

correlation coefficient was proposed:

ρxy =
max(rxy(k))

√

max(rxx(k))max(ryy(k))
. (4)

As the maximum for any autocorrelation function raa(k) is obtained for k = 0 (13), the

denominators in (3) and (4) are equal. So the difference between the two measures is

determined by the cross–correlation function rxy(k).

5.2 Main idea

Assume that during the operation of a plant snapshots XK = [xK(0) . . . xK(N − 1)] of

the process variable x(t) as a sampled data set x(n) are recorded at certain user defined

time instants. The index K denotes the index of the snapshot. The variable x(t) must be

selected such that a deterioration of the component under consideration leads to a change

in the behaviour of x(t).
The main idea is to assess the component condition based on the similarity measure of the

first snapshot X1 with the subsequent snapshots XK , K ≥ 2. As the condition of the com-

ponent deteriorates, the similarity between the first snapshot and the subsequent snapshots

will gradually decrease resulting in a decrease of the similarity measure. Therefore, the

similarity measure SK of the Kth snapshot is determined based on (3)

SK =
rX1XK

(0)
√

rX1X1
(0)rXKXK

(0)
, (5)

where

rX1XK
(0) =

N−1

∑
n=0

X1(n)XK(n) , rX1X1
(0) =

N−1

∑
n=0

X2
1 (n) , rXKXK

(0) =
N−1

∑
n=0

X2
K(n) .

This approach will be illustrated in the following section.

6. Results

For evaluating the performance of the main idea introduced in the previous section the

roller chain described in section 2 was operated approximately eight hours a day for a

total operation time of 300 hours within 37 days. The chain was lubricated once by the

manufacturer. In order to speed up the wear rate, the outer lubrication was removed every

eight hours using paper towels which produce additional paper dust stranded in the joints

of the chain. The motor rotational speed was constant nm = 400rpm, resulting in a chain

speed of vc = 1.27m/s. With an initial chain length of L = 0.9525m, the duration of one

6

Page 8 of 14



Page 9 of 14



0 0.2 0.4 0.6 0.8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

t / s

T
m

/
N

m

(a) New chain (day 1)

0 0.2 0.4 0.6 0.8
0.6

0.8

1

1.2

1.4

1.6

1.8

t / s

T
m

/
N

m

(b) Chain after 300 hours of operation

(day 37)

Figure 6. Motor torque of the new and worn chain

overload the presentation in figure 7, only the mean values

SD =
1

ND
∑

m∈ID

Sm (6)

are given, where ND denotes the number of snapshots on day D, D = 1, . . . ,37 and ID is

the set of snapshot indices at day D. Note that day zero is used here as a reference value

only. This reference value is arbitrarily set to the value 1 and corresponds to the similarity

index computed from the very first measurement using

S0 := S1 =
rX1X1

(0)
√

rX1X1
(0)rX1X1

(0)
= 1 .

Within the 37 days of operation, the chain was re–tensed twice at day 30 and 36. As a

result the chain dynamics changes as well, resulting in changes in the motor torque Tm,

illustrated in figure 8. Figure 8a displays the motor torque in the last snapshot before the

chain was re–tensed and figure 8b immediately after re–tension at day 30.

The trajectories show that vibrations are reduced after re–tensioning while the motor

torque increases. This modification of the trajectory of course changes the degree of

similarity SK as well. As this change is not caused by chain wear, it is reasonable to adapt

SK in an appropriate way. This is done by determining the difference

∆S = SK2
−SK1

, (7)

where SK1
and SK2

are the degrees of similarity before and after re–tensioning, respectively

with K1 = 1126 and K2 = 1168. As illustrated in figure 9, SK2
corresponds to the degree

of similarity of the first snapshot of day 30.

The degree of similarity before re–tensioning SK1
will not be defined as the value of the

last snapshot of day 29 due to the effect of heated lubrication, as described in section 4.

Instead, SK1
will be defined as the value of the first snapshot of day 29 as shown in figure 9.
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Figure 7. Mean of similarity measure per day without adaptations
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Figure 8. Motor torque when re–tensioning the chain

By taking the first snapshots for each day, the conditions of operation with respect to the

temperature are almost the same. In addition, the chain wear within day 29 is small. Then,

∆S calculated with (7) needs to be subtracted from every following day:

SK,new = SK,old −∆S ,

where SK,old represents the degree of similarity of every following snapshot and SK,new

is the corresponding adapted value. This procedure was repeated for day 36 as well.

However, as the chain wear dominates at the previous day 35, SK1
is specified as the

value of the last snapshot of day 35. Figure 10 shows the adapted graph of figure 7 with

9

Page 11 of 14



1100 1125 1150 1175 1200 1225
0.9875

0.99

0.9925

0.995

0.9975

1

SK1

SK2

first

snapshot

day 29

first

snapshot

day 30

∆S

snapshot

d
eg

re
e

o
f

si
m

il
ar

it
y

S
K

day 29 day 30 day 30 adjusted

Figure 9. Adaptation due to re–tensioning

additional errorbars, illustrating how much the degree of similarity SK varies within each

day. In addition, a simple trend line was fitted to the data. It consists of two second order

polynomials between the day 1 and 5 and day 25 and 37, respectively and a straight line

connecting S5 and S25. This trend line illustrates the overall decrease of the degree of

similarity during the operating lifetime of the chain indicating the increased chain wear.

It resembles the curve illustrated in figure 2 such that in this trend line the stages initial

wear, normal wear and extreme wear can be retrieved. In future works, these results will

be verified by further chain tests with different chain conditions such as chain speed and

chain tension.

7. Conclusion

In this contribution a new approach for evaluating the condition of mechanical systems

is proposed. The method is based on the evaluation of the correlation function between

measured process data of a new component and of process data acquired during the opera-

tional lifetime of the considered component. The result is a similarity index that indicates

the deterioration of the component condition.

The method was investigated based on a roller chain system. The process data used in the

computations was the motor torque of the motor driving the chain, so that no additional

sensors were used. The main result is that the similarity index computed for regularly

recorded snapshots of process data decreases with growing operation time. Moreover, the

trajectory of the similarity measure resembles the wear curves of roller chains given in

the literature and from roller chain manufacturers.

In future work this method will be applied to additional roller chains running under dif-
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Figure 10. Mean of similarity measure per day with adaptations

ferent operating conditions in order to generalize and enhance the method. Model based

approaches will be investigated as well. Similarly, the method will be applied to other

mechanical transmission systems like linear and belt units to enhance the condition mon-

itoring and potentially the residual lifetime prediction capabilities for mechanical compo-

nents.
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