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Analysis of Finger- and Palm-based 
interaction paradigms for Touch-Free 

Gesture-Based Control of Medical 
Devices with the Leap Motion Controller

Stanislas Mauser
Reutlingen University

stanislas_christophe_yves.mauser@ 
student.reutlingen-university.de

Abstract
There are several intra-operative use cases 
which require the surgeon to interact with 
medical devices. I used the Leap Motion 
Controller as input device for three use-cases: 
2D-Interaction (e.g. advancing EPR data), 
selection of a value (e.g. room illumination 
brightness) and an application point and click 
scenario. I evaluated the Palm Mouse as the 
most suitable gesture solution to coordinate 
the mouse and advise to use the implementa-
tion using all ngers to perform a click. This 
small case study introduces the implementa-
tions and methods that result those recommen-
dations.

Keywords
Gesture recognition, touch-less interaction, 
human machine interface, medical device 
control

CR-Categories
H.5.2 [Information Systems]: User Interfaces

1 Introduction

1.1 Goals
During a surgical intervention, a surgeon 
depends on the availability of patient informa-
tion such as risk areas of tumor margins, 
further he has to control surgical devices like 
endoscope, x-ray, drill etc. Nowadays, this 
control is either performed by using dedicated 
sterile equipment like foot pedals or by direc-
ting a surgical assistant or nurse. This impedes 
the execution of the surgery, increases the risk 
of infection for the patient and is generally 
associated with a higher expenditure of time 
(see [1], [2]).

For a subset of the use cases described above, 
a contact free, gesture based controller, which 
can be used by the surgeon himself might be 
helpful. Such a touch-less approach should be 
reachable for the surgeon while operating and 
without needing special gloves or additional 
tools.

In [1], several surgeons were interviewed 
whether they prefer to instruct other persons to 
acquire information or access requested infor-
mation themselves by using e.g. new gesture 
recognition based system technologies. Over 
80% of the surveyed surgeons preferred to 
search for information themselves and not by 
instructing another person. Using this informa-
tion and the fact that the availability of touch-
based systems (like smartphones and tablets) 
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and pose tracking systems like Kinect pave the 
way towards additional intuitive interaction 
devices, such a solution is desperately needed.

1.2 State of the art
There exist multiple examples for contact 
free input devices: In [3], a sterile solution to 
navigate the planning system MeVis with a Wii 
Remote Controller is described. This allows 
gesture recognition, but the controller needs to 
be touched. Gesture recognition can be perfor-
med based on tracked surgical instruments. In 
[4], such an approach is used to detect surgical 
gestures performed by a Polaris® navigation 
system pointer. A Microsoft Kinect is used for 
contact free interaction with the InVesalius 
program. Here the surgeon may contact-free 
interact with the program with one hand, to 
visualize 2D and 3D images [5]. 

A commercially available solution is the 
Mi-Report developed by Fraunhofer HHI 
for Karl Storz which allows the presenta-
tion of patient data with contact free gestu-
res control, speci cally for use in the sterile 
medical eld [ ]. The camera system is called 
HHI Handtracker and is based on an infrared 
camera system, which allows a fast and robust 
detection and tracking of ngers and gestures. 
The cameras are mounted to the hand ortho-
gonal to the ceiling. By using infrared-based 
cameras, the system is also less insensitive 
to unwanted light of other devices or the sun. 
Several ngers are recognized and processed 
in real time (50 Hz). The 3D coordinates are 
then passed to the application.

The available systems have several drawbacks: 
Either they require a dedicated input device 
for gesture recognition (navigation system, 
Wii controller), or the gestures recognition is 
relatively coarse. Furthermore, large gestures 
result in physical fatigue.

2 Methods & Materials
For this solution I used the new Leap Motion 
Controller: A small device, not bigger than 
two ngers, but with the capability to track 

ten ngers up to a precision of 1 100th of a 
millimeter” [7]. The tracking volume of the 
Leap Motion Controller is about 20 to 00 
mm semicircular around the device. I used 
a development kit including a Leap Motion 
Controller revision 0. .5., C  as programming 
language, and the Visual Studio 2013 IDE.

Development hardware included a Apple Mac 
Pro running two Intel Xeon Westmere CPUs, 
24GB RAM, two ATI 5700 HD graphic cards 
and Windows 8 in a virtual machine. For 
evaluation and presentation, a Lenovo W520 
running a Intel i7 CPU, 8GB RAM and a 
nVidia Quadro 2000M graphic card was used.

2.1 Contact-free, gesture-
solution prototype for 
medical devices
The high precision of the Leap Motion offers 
much more possibilities then similar devices 
like the Microsoft Kinect. But basically, the 
problem of nding a gesture which is easy to 
learn and intuitively to use, is the same as with 
other devices. There are no commonly accep-
ted gestures for 3D contact-free input devices, 
yet. Best practices gestures from touch-based 
systems, like Apple iPhone or similar Point-
Gestures can be implemented with the Leap 
Motion, but must be seen as starting point for 
the development of truly intuitive 3D input 
gestures.

In the medical context, I identi ed different 
classes of interaction: binary interaction (e.g. a 
simulated mouse click), simple 2D interaction, 
like advancing to the next picture or patient 
record entry, entering a value (e.g. adjusting 
OR table height or control a light source), point 
and click for selection of objects, and complex 
3D-interaction, e.g. rotating a volumetric 
patient reconstruction. For the rst prototype, 
I implemented the “simple 2D interaction” and 
“entering a value” use cases, in a second step, 
a point and click scenario was realized.
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2.2 Contact-free approaches 
to control a mouse pointer
There are no studies which evaluate best 
practices in contact-free mouse control, yet. 
Therefore, I developed a prototype which 
offers the possibility to switch between diffe-
rent implementations to control a mouse 
pointer using the Leap Motion Controller and 
to test multiple concepts to emit a left or right 
click event. 

The current version of the prototype has two 
different implementations: The rst uses one 

nger as mouse with two different methods to 
perform a left click event. The second concept 
controls the mouse by palm orientation. For 
the Palm-Mouse I implemented two different 
click methods.

2.2.1 Mouse navigation 
using one nger
This implementation uses one nger to map 
the mouse movement to the position the user 
points to. If the Leap Motion Controller API 
recognizes more than one nger, the foremost 
one is chosen as reference. The Leap Motion 
API represents a nger as directional vector. 
The position in xyz-space of the Leap Motion 
Coordinate System is mapped linearly to the 
screens xy-coordinates. 

One of the implemented click approaches uses 
the so called Touch Zone provided by the Leap 
Motion SDK. This is a de ned plane in front 
of the controller. The SDK can “report whether 
that pointable object is close-to or touching 
this imaginary surface” [8]. Whenever a touch 
event is detected, a mouse click is triggered.

The second click approach uses a simple 
tap-gesture, which is one of the four default 
gestures of the Leap SDK: While navigating 
the mouse with the frontmost nger, the thumb 
is used to perform a tap-gesture creating a 
click event.

For the study described in 1.3, I implemented 
a rule allowing to apply a click even though 
it is slightly next to a button, if this button is 
slipped over within the next 00ms.

One problem with this implementation is 
the precision of the Leap Motion control-
ler. Because the precision of the controller 
is very high, every trembling of the nger is 
also detected, which may result in an unstable 
behavior of the mouse pointer.

2.2.2 Mouse navigation 
with a single nger and 
optional precision mode
Reason for implementing this mouse solution 
was the problem described in the section 
above. In order to work more precisely, I 
implemented a so called precision mode.

The general mouse movement using the front-
most nger is identical to the implementa-
tion described above. In addition, the mouse 
movement velocity is reduced to a hundredth 
of the actual movement by lifting the thumb 
additionally to the frontmost nger.

The options to perform a click event remain 
the same.

2.2.3 Palm-Mouse implementation
The navigation with the palm has been used 
in the Light Control application (see [9]) and 
is known from gaming applications using the 
Leap Motion. The tilt of the palm is used to 
navigate the mouse: The steeper the tilt, the 
faster the mouse movements. The mouse 
position does not change if the palm is fully 
orthogonal to the controller. With e.g. 5° varia-
tion from the orthogonal position, the mouse 
position changes are nearly zero.

This implementation eases the stabilization 
of the mouse position at a desired position, 
compared to the nger mouse implementation 
where the user needs more cognitive concentra-
tion to ensure the nger doesn t vary its position 
heavily. Moreover, all ngers can be used for a 

nger tap-gesture to perform a left click.
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To perform mouse click events I implemen-
ted two approaches. One approach uses the 
simulated touch area from the SDK. If this 
click method is activated, it is important to 
interact with the hand in front of the control-
ler. When the mouse pointer is over a desired 
object, a user res a click event by moving 
the palm to the direction of the controller and 
staying meanwhile orthogonal to the controller.

The second approach uses the built-in 
tap-gesture of the SDK. With this method it is 
not important where the palm is, as long as it is 
in the range of the Leap Motion tracking area. 
With a tap gesture performed by one arbitrarily 
selected nger, a left click event is red. 

2.3 Application for a click-
case study of the Leap-Mouse 
implementations
To evaluate the usability, performance and 
acceptance of each of the implementations, I 
performed a rst case study.

For this study, I developed an application 
which can use all mouse implementations. I 
de ned ve different button sizes, each size is 
shown six times on the evaluations software 
GUI. To detect the possible minimal button 
size the study includes buttons of 10x10 pixel, 
15x15 pixel, 30x30 pixel, 50x50 pixel and 
80x80 pixel size. While testing the mouse 
interaction, successively one of the possible 
30 buttons is shown to the user. After clicking 
on a button, another button in a different 
size appears on another spot of the GUI. The 
buttons are arranged randomly on the screen, 
but the same order and position is guaranteed 
for each implementation and test person. If the 
user fails to click a button for ve times, the 
current button is skipped. 

The application logs the following information:

 Test person ID
 Distance between the button 

and the mouse pointer at the 
time the button appears;

 Sum of time the mouse 
was over the button;

 Sum of failed clicks;
 Sum of time until a button 

was clicked or skipped;
 And the information whether 

this button was skipped.
This data is automatically exported at the end 
of a test run into an Excel le.

Every implementation test followed a same 
procedure: Before the study begins, I intro-
duced all mouse implementations to the test 
persons and allowed unlimited time to try 
each implementation, until they felt ready to 
start the study. During this warm-up phase, all 
30 buttons are visible and clickable. All ve 
implementations described above are part of 
the study; their order is hard-coded but can 
be tested also in reversed order. I distinguis-
hed the sequence of the implementations for 
each test by giving each test person having an 
even personal ID the reversed order of the ve 
implementations. The personal ID is equal to 
the number of test persons, in their temporal 
order.

2.4 2D Interaction
2D interaction is realized by performing a 
swipe gesture to the right or to the left, orthogo-
nal over the Leap Motion Controller. To detect 
a swipe I implemented a two-staged process: 
At the beginning, I used the build in Leap SDK 
swipe detection. On top of that, I de ned three 
threshold states. The rst threshold starts the 
swipe process and de nes whether it is a left 
or right swipe. The next two thresholds and 
the speed of the nger or hand ensures that the 
gesture was really intended. The gesture detec-
ted can be mapped to a key-press event (e.g. 
cursor left, cursor right). This allows control 
of applications which were not developed with 
contact-free interaction in mind. I implemen-
ted a mock-up of an electronic patient record 
viewer to show the feasibility of the approach.

Evaluation of the detection capabilities and 
error rate was performed by controlling the 
PowerPoint presentation of a 90 minutes 
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lecture on computer science (Informatik II) 
at Reutlingen University. The contact-free 2D 
interaction was the only input device for slide 
advancement. The long duration of 90 minutes 
and the real lecture situation ensured that the 
teacher was not concentrating on using the 
interaction device correctly but on the teaching 
situation. The professor had no training on 
the device and started after a 20 seconds test. 
Afterwards, a video recording of 0 minutes of 
the lecture was analyzed to verify how many 
unwanted gestures were performed and how 
many gestures failed.

2.5 Entering a value
Since there is no commonly accepted inter-
action scenario for entering a value, yet, I 
implemented a control interface which allows 
for mapping different types of gestures to a 
method which nally passes the calculated 
value to the target application. 

The gestures for entering a value take the 
best practice gestures from touch devices into 
account. I used the built-in gestures of the 
Leap Motion and additional values like pitch, 
yawl or the y-position of the hand, which can 
be read out from the Leap Motion. Gestures 
like “drag and swipe” seem to be intuitive, but 
detection of start and stop position is dif cult. 
Along with this, the problem of how the given 
minimum, maximum and current value shall 
be represented occurs. 

2.5.1 Counting ngers
From a technical and logical viewpoint, this 
is the simplest gesture. Analog to the sign 
language, the surgeon can modify the value by 
showing up to ve ngers orthogonal over the 
leap motion Controller. This can be mapped to 
the values 0-5 or to a percentage of the value 
range. E.g. for setting of 20% of the maximum 
value, a surgeon shows only one nger, etc. 
The problem of this solution is the limitation 
on only ve levels. The termination of the 
gesture must be de ned properly to prevent 
misinterpretations: After the desired value has 
been set and the hand is removed from the 

detection area, the ngers successively disap-
pear and the value would decrease to one or 
zero.

2.5.2 Mapping the palm orientation
A rolling gesture of the palm, analogue to an 
airplane‘s wing that rolls down to the right or to 
the left for navigation, was implemented as an 
alternative. The vertical palm position, relates 
to 50% of the maximum value. By rolling the 
palm to the right, the value increases and when 
rolling to the left, the value decreases.

Like in the counting ngers scenario, 
unwanted values sometimes occurred when 
removing the hand out of the tracking area. 
This effect happened much less frequently 
than in the number of ngers gesture, but often 
enough that it hinders productivity. Therefore, 
the number of detected ngers on the hand 
that performs the roll gesture was added as 
an additional condition. For example, if two 

ngers are set as the restriction modi cation, 
the values will only change when at least two 

ngers are recognized by the controller. So 
if the surgeon has set the desired value, he 
can simply make a st and remove the hand 
without concerns out of the detection area.

2.5.3 Mapping the 
vertical hand position
The third gesture approach is based on the 
vertical movement of the palm position. In this 
scenario, the distance between the location 
of the controller and the measured center of 
the palm will modify the value. In the proto-
type, 250 sampling stages were implemented, 
starting from about 15 cm above the controller 
and ending at about 40 cm. In the graphical 
prototype this gesture is mapped to a vertical 
slider.

In most cases the values rest untouched, when 
the hand is removed slowly to the side out of 
the detection area. But in few cases, errors 
still occurred and moreover, for the use case 
during the OR course, it can´t be a requirement 
to remove the hand slowly. To compensate 
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Figure 1: Time until button was pressed

this, the technique of restriction by a certain 
number of ngers, as described above, was 
introduced.

2.5.4 Lock and unlock gesture
In analogy to the Mi-Report [ ], a lock-unlock 
gesture was implemented for this gesture 
concept. To reduce the possibility of uninten-
ded gesture input during the intervention, a 
de ned gesture for locking and unlocking the 
detection of gestures was implemented. For 
unlocking the gesture detection, the surgeon 
has to hold his palm orthogonal over the 
controller with all ngers extended and as 
straight as possible for a de ned duration. In 
the prototype these conditions can be adjus-
ted at run time, since it s not entirely clear 
how precise the check of the gesture must be. 
Adjustable variables can be for example the 
length of time, the gesture has to be executed 
without interruption, the minimum number of 

ngers it has to recognize, and the maximum 
pitch and roll valued of the palm. 

This gesture toggles the locking and unlocking 
condition, so that the same gesture can be used 
for both. But additionally the gesture detection 
is automatically locked after a de ned amount 
of time, when no changes to the light value 
occur. The current default value in the proto-
type is three seconds.

3 Results

3.1 2D Interaction study results
During 0 minutes, 99 gestures were perfor-
med: 78 intentional gestures and 21 unwanted 
gestures. Unwanted gestures resulted from arm 
movement, putting down chalk, etc. 37 of the 
intentional gestures were performed to correct 
unwanted gestures. 58 of the 78 intentional 
gestures were recognized correctly and trigge-
red a slide change. Thus, ~25% of the intended 
gestures were not fully recognized because 
they were not performed in the working space 
or the gesture was not performed properly.

In an interview, the performing teacher stated 
that the interaction was simple and fun, but the 
false positive rate was too high for routine use. 

3.2 Click-Prototype study results
Following charts describe the results of the 
case study for the mouse click prototype. 
Those results are representing the ndings of 
the study, which has been ful lled and analy-
zed with 12 participants (  female,  male, 
average age is 23.5).

Figure 1 shows the relation between the 
time until a button was pressed compared to 
the different button sizes. Recognizable is 
that with an increasing button size the click 
appeared earlier. The slowest implementation 
is the line (C), the fastest is the line (B).
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This gure 2 above shows the relation between 
the sum of focus lost and the different button 
sizes. Focus lost represents the amount how 
often the mouse was over a button but lost 
its focus again before the button was nally 
clicked. The gure also displays, that there 
are no signi cant differences comparing both 
Palm Mouse Implementations. Generally it is 
recognizable that the two Palm Mouse imple-
mentations achieve the best overall rate of 
minimum lost focuses compared to all other 
implementations.

Figure 3 illustrates the relation between the 
amount of failed clicks and the button size. 
Failed clicks are mouse clicks beside a button 
and not direct on a button.

The implementation (E) shows a signi cant 
better result to all the other four implementa-
tions. As well it shows that the average number 
of failed clicks of the Palm Mouse Implemen-
tation received already with the 15x15 pixel 
button size a constantly low value of less than 

ve fail clicks per person.

Figure 2: Relation of lost focus on a button to button size

Figure 3: Relation failed clicks beside a button to button size
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This graph shows that the three nger mouse 
implementations had similar results.

Figure 4 visualizes the amount how many 
buttons per person were skipped. It is consi-

derable to mention the extreme high value 
of skipped buttons using the Single Finger 
Mouse with Thumb Click Implementation for 
the smallest button size. This is due to a slight 

nger movement when the thumb is moved to 
trigger a click. 

The line (A) shows the best results over all 
button sizes. 

Figure 5 outlines the usability of the button 
size comparing it for all implementations. 
The usability is rated through the relation of 

the following data: the amount of skipped 
buttons, the amount of failed clicks and the 
average click time per person with an additio-
nal priority value to scale the importance of an 
argument. The faster a person clicked an icon, 
the better are the results. Therefore this graph 
shows the best results within the lowest bar.

Figure 4: Relation Skipped Buttons to button size

Figure 5: Comparison of usability of all implementations per button size
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Goal is to evaluate the test person s favorite 
button size and implementation. Figure 5 
shows that the 30x30 up to 80x80 button sizes 
have are rated equally. Secondly, I can identify 
that the line (E) archived better results to all 
other implementations. Mostly it is twice as 
good compared to the line (A).

3.3 MDeviceControl 
gesture prototype
In the prototype, the gestures approaches were 
all mapped to horizontal or vertical sliders to 
show potential testers the effect of their gesture 
movements. Both gestures, the palm roll 
gesture and the vertical movement gestures 
are implemented and visualized in the proto-
type with and without the additional condition 
of n  ngers, for restriction of unwanted value 
modi  cation during the gesture process.

In the prototype, as can be seen in  gure , 
the lock- and unlock gesture conditions can 
be adjusted in the 3rd box. In the second box 
the detected gesture is visualized in values. 
These both boxes are just for the prototype 
and not for the productive working solution 

implemented. On the bottom left, the pitch and 
roll state of the hand is visualized by arrows, 
which is more intuitive as plain numbers. 

First tests with untrained subjects showed that 
with four or more  ngers for three seconds 
and a maximum pitch roll-deviation of 15° it 
is quite sure that this gesture is not unwan-
ted performed during the OR, but can still be 
carried out quickly and easily. 

4 Conclusion & Discussion
This section points out the main consolida-
ted  ndings I achieved based on this work. 
The point-and-click study clearly favors the 
palm-based control method with thumb click 
over the  nger based methods. Further studies 
which are having a setting closer to the inten-
ded clinical use cases can be designed based 
on this  nding and may lead to even better 
interaction methods. Those studies must be 
performed with the intended end users of 
such systems, such as surgeons, interventional 
radiologists or other clinical staff. 

Figure 2 shows that both Palm Mouse Imple-
mentations reached the best results in not 
losing the focus regardless of the button size. 

Figure 6: Screenshot of MDeviceControl 
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Moreover, the Palm Mouse with Thumb-Click 
got the best results. The Single Finger Mouse 
with Touch-Zone was the implementation, 
that allowed to press a button the quickest, 
the Palm Mouse Implementation reached the 
second place (see gure 1). Both gures show 
that with increasingly button size the results 
are getting proportionally better.

An important measure to evaluate the usability 
of a contact-free mouse control is the compa-
rison of failed clicks and the button size. The 
Palm Mouse Implementation received the best 
score, and for the largest button size of 80x80 
all test persons had no failed clicks at all (see 

gure 3). This is an important aspect for surge-
ons, who can t spend much cognitive effort for 

nding the right button.

This interaction paradigm is also the one with 
the fewest number of skipped buttons (see 

gure 4). Furthermore, it is constantly low 
from a button size of 15x15 on whilst other 
options reach a constant level at a size of 
30x30 or even at 50x50. 

Figure 5 shows that it gives the best results for 
all button sizes. The possible minimal button 
size can be 15x15, for the other implementa-
tions it generally starts from a size of 30x30.

Therefore, I expect the Palm Mouse with 
Thumb-Click interaction to be the most 
precise and least stressful interaction method 
for realizing a point-and-click scenario.

Additionally to this technical analysis the 
results of the questionnaires showed same 
results: 75% of all test persons prefer the 
Palm Mouse Implementation. 50% of all test 
persons favour a 30x30 button and the other 
50% decided that a 50x50 button was nally 
the preferred one size. Besides the analysis 
results it is important to assess the Leap Motion 
Controller. This is a stable 3D gesture input 
device which has potential applications in 
intra-operative situations. The use-cases have 
to be carefully selected and the best gestures 
for each application have to be detected and 

implemented. The developed MDeviceControl 
prototype is a valuable tool for user testing and 
rapid development.

Based on the studies and tests performed, 
it is clear, that a lock- and unlock gesture is 
mandatory, especially if precise and intuitive 
tool control is crucial. 

Still not evaluated are the optimal light condi-
tions for the Leap Motion Controller, since 
unwanted light and the impairment of its 
emitted IR light could result in reduced recog-
nition rate. I did not detect interferences with 
surgical navigation systems using IR light, 
yet. The next step will be to simulate lighting 
conditions found in operating theaters with or 
without daylight access and OR illumination.
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