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Abstract

Today, many industrial tasks are not automated and still require human intervention. One of these tasks is the unloading of oversea
containers. After the end of transportation to the sorting center, the containers must be unloaded manually for further sending
the parcels to the recipients. A robot-based automatic unloading of containers was therefore researched. However, the promising
results of the system developed in these projects could not be commercialized due to problems with its reliability. Mechanical,
algorithmic or other limitations are possible causes of the observed errors. To analyze errors, it is necessary to evaluate the results
of the robot’s work without complicating the existing system by adding new sensors to it. This paper presents a reference system
based on machine learning to evaluate the robotics grasps of parcels. It analyzes two states of the container: before and after picking
up one box. The states are represented as a point cloud received from a laser scanner. The proposed system evaluates the success of
transferring a box from an overseas container to the sorting line by supervised learning using convolutional neural networks (CNN)
and manual labeling of the data. The process of obtaining a working model using a hyperband model search with a maximum
classification error of 3.9 % is also described.
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1. Motivation

Today, the automation of many logistical processes is state of the art. This includes processes such as the transport
of load carriers with automated guided vehicles (AGVs), the sorting of packages in distribution centers, and the storage
of piece goods in warehouses. However, processes with only partially defined basic conditions cannot be automated
economically today. This includes the handling of varying piece goods with different properties (size, shape, weight),
that are only partially visible and accessible inside a load carrier. In particular, unloading of swap bodies and containers
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is a challenging process [4]. This problem is becoming more and more important in the context of the ever-increasing
growth of global trade and the resulting increase in global parcel volumes. But the automation of unloading processes
from containers is still unsolved nowadays. The problem of automating the process of unloading goods from shipping
containers has been an active research field for many years, as Stoyanov et al. show [25]. But despite the increasing
importance of the problem, it has still not been solved today.

Previous approaches include an attempt to develop a fully automated system for unloading parcels [21, 8]. However,
the promising results of such systems could not be commercialized due to problems with their reliability. A high error
rate while unloading goods (e.g. dropped parcels) required frequent human intervention. The cause of the errors has
not yet been determined. One or more possible causes exist, such as incorrect calculation of trajectories, mechanical
constraints such as a reduced degree of freedom, mechanical inability to correctly grasp packages, or inaccurate
package detection. An in-depth analysis of the systems is therefore necessary to determine and differentiate the causes
of the errors. To correctly analyze and fix these flaws and to distinguish between them, an evaluation of the grasps of
the unloading system is needed beforehand. The challenge of determining the success of a robotic grasping operation
can be approached in several ways. One of the possibilities is a technical modification of the system and the installation
of additional sensors. But this approach leads to increasing complexity of the unloading system and additional costs.
Another way is to create a set of static rules that evaluate the result of grasps based on the scanning data of the
container after every single grasp of the parcel unload robotics. But to write rules using human knowledge for every
possible erroneous grasp is very inefficient. The paper presents a reference implementation for an automated detection
of erroneous grasp processes of the unloading system based on laser scanner data using machine learning approach,
in particular based on convolutional neural networks (CNN). In this work, we show that with the help of machine
learning methods and the data of the laser scanner, an automated evaluation of gripping processes is possible. Because
the point cloud is the most widely used data format for representations of the ranges in 3D robotics, we focus on that
format of the input data. The machine learning model generation for the evaluation of grasps using hyperband search
method is described [11].

To evaluate the success of the unloading process, it is necessary to classify the changes that have occurred in the
sensor data before and after the grasp. The paper presents a reference implementation for an automated detection of
erroneous grasp processes of the unloading system based on laser scanner data using machine learning.

Automated robotic grasps and the state of the art for automated unloading grasps and the related machine learning
applications will be discussed in section 2. The problem statement, materials and methods are presented in section 3.
The main part consists of the presentation of the developed procedure and the evaluation of the results that are pre-
sented in subsection 4.3 and section 5. In the end, the work is concluded in section 6.

2. Previous research

Automated unloading grasps. The topic of automated robot grasps of heterogeneous objects has been researched for
many years [3]. It is still a challenging problem to extract objects with different shapes using robotics nowadays [22,
23]. Many technical difficulties are caused due to impossibility to acquire a full 3D image to come to conclusion about
an extracting strategy for a given object. Even with modern sensors such as laser scanners or RGB-D cameras only a
reconstruction of the object’s front surface can be obtained [22]. Beyond that, sensors must be suitable for industrial
use and be as inexpensive as possible. Automated container unloading of a cluttered scene is being researched by
Vaskevicius et al.[29]. But there are still no error-free systems known yet.

Machine learning for robotic grasps. Achievements in the research of machine learning allow a wide range of appli-
cations on different technical tasks, including automation of robotics grasps. There are different works that address the
automation of robotics grasps using machine learning methods. The research progress of machine learning on robotic
grasping is discussed by different research groups, in particular by Li et al. and by Caldera et al. [12, 5]. Mahler et
al. proposed datasets and algorithms to train machine learning-based methods to plan robot grasps [15]. Redmon et
al. designed a system based on a CNN to predict robotic grasps of objects in RGB-D images [20]. Liang et al. have
researched a problem of localizing robot grasp configurations directly from the point cloud for different object shapes
using YCB object and model dataset [13, 6]. This approach is based on the PointNet architecture that operates with
the point cloud data format and classifies N points in the Euclidean 3D space into k classes without voxelization of the
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is a challenging process [4]. This problem is becoming more and more important in the context of the ever-increasing
growth of global trade and the resulting increase in global parcel volumes. But the automation of unloading processes
from containers is still unsolved nowadays. The problem of automating the process of unloading goods from shipping
containers has been an active research field for many years, as Stoyanov et al. show [25]. But despite the increasing
importance of the problem, it has still not been solved today.

Previous approaches include an attempt to develop a fully automated system for unloading parcels [21, 8]. However,
the promising results of such systems could not be commercialized due to problems with their reliability. A high error
rate while unloading goods (e.g. dropped parcels) required frequent human intervention. The cause of the errors has
not yet been determined. One or more possible causes exist, such as incorrect calculation of trajectories, mechanical
constraints such as a reduced degree of freedom, mechanical inability to correctly grasp packages, or inaccurate
package detection. An in-depth analysis of the systems is therefore necessary to determine and differentiate the causes
of the errors. To correctly analyze and fix these flaws and to distinguish between them, an evaluation of the grasps of
the unloading system is needed beforehand. The challenge of determining the success of a robotic grasping operation
can be approached in several ways. One of the possibilities is a technical modification of the system and the installation
of additional sensors. But this approach leads to increasing complexity of the unloading system and additional costs.
Another way is to create a set of static rules that evaluate the result of grasps based on the scanning data of the
container after every single grasp of the parcel unload robotics. But to write rules using human knowledge for every
possible erroneous grasp is very inefficient. The paper presents a reference implementation for an automated detection
of erroneous grasp processes of the unloading system based on laser scanner data using machine learning approach,
in particular based on convolutional neural networks (CNN). In this work, we show that with the help of machine
learning methods and the data of the laser scanner, an automated evaluation of gripping processes is possible. Because
the point cloud is the most widely used data format for representations of the ranges in 3D robotics, we focus on that
format of the input data. The machine learning model generation for the evaluation of grasps using hyperband search
method is described [11].

To evaluate the success of the unloading process, it is necessary to classify the changes that have occurred in the
sensor data before and after the grasp. The paper presents a reference implementation for an automated detection of
erroneous grasp processes of the unloading system based on laser scanner data using machine learning.

Automated robotic grasps and the state of the art for automated unloading grasps and the related machine learning
applications will be discussed in section 2. The problem statement, materials and methods are presented in section 3.
The main part consists of the presentation of the developed procedure and the evaluation of the results that are pre-
sented in subsection 4.3 and section 5. In the end, the work is concluded in section 6.

2. Previous research

Automated unloading grasps. The topic of automated robot grasps of heterogeneous objects has been researched for
many years [3]. It is still a challenging problem to extract objects with different shapes using robotics nowadays [22,
23]. Many technical difficulties are caused due to impossibility to acquire a full 3D image to come to conclusion about
an extracting strategy for a given object. Even with modern sensors such as laser scanners or RGB-D cameras only a
reconstruction of the object’s front surface can be obtained [22]. Beyond that, sensors must be suitable for industrial
use and be as inexpensive as possible. Automated container unloading of a cluttered scene is being researched by
Vaskevicius et al.[29]. But there are still no error-free systems known yet.

Machine learning for robotic grasps. Achievements in the research of machine learning allow a wide range of appli-
cations on different technical tasks, including automation of robotics grasps. There are different works that address the
automation of robotics grasps using machine learning methods. The research progress of machine learning on robotic
grasping is discussed by different research groups, in particular by Li et al. and by Caldera et al. [12, 5]. Mahler et
al. proposed datasets and algorithms to train machine learning-based methods to plan robot grasps [15]. Redmon et
al. designed a system based on a CNN to predict robotic grasps of objects in RGB-D images [20]. Liang et al. have
researched a problem of localizing robot grasp configurations directly from the point cloud for different object shapes
using YCB object and model dataset [13, 6]. This approach is based on the PointNet architecture that operates with
the point cloud data format and classifies N points in the Euclidean 3D space into k classes without voxelization of the
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input space and with no use of collections of 2D images generated from 3D space [18, 34, 27]. Thus, it drastically re-
duces computational complexity of the neural networks as well as the throughput. However, there are some advances,
like adaptive sampling, which shows a better model performance [31]. Zhang et al. presented a system based on a
CNN that evaluates the success of the robotics grasps based on the RGB images of the robot arm with up to 92.8%
accuracy and the inference time of a single image of 524 ms [33]. However, this approach is based only on the RGB
data for the evaluation of the robotic grasps.

As 3D scanner data is heavily used in robotic applications, machine learning models have to operate with such
data [1]. A common technique is to use a volumetric representation of a model using voxels which is followed by 3D
convolutions to explore the discriminative features of the objects [19, 16]. Another approach is the multi-view method,
which is based on dimension reduction, e.g. to generate 2D images of the scene from different virtual camera views
[26]. In this case, for n images, n CNN models are trained and a view-pooling is applied on the whole feature space
afterwards. Other methods are point cloud-based [18]. They try to overcome the huge computation complexity of voxel
convolution and show higher speeds in segmentation and classification tasks [32]. Another approach is geometry-
based analysis. A geometry-based method was researched by Tatarchenko et al [28]. Their approach is based on
tangent convolutions and operates directly on surface geometry [28]. Another geometry-based way with dimension
reduction was proposed by Lin et al. [14]. They introduced a convolutional operator that projects a 3D patch onto a
2D grid plane with a use of 2D convolution afterwards.

3. Objective and methodology

Objective. Through examination of 3D scanner data before and after the unloading of an object from a container, that
represent its states before and after the robotics grasp, the goal is to determine, whether the occurred grasp between
these states was successful or not.

Materials and methods. At first, the processing of the 3D scanner data is explained. It is based on a single-view
2D representation of the 3D scenes, which are captured by a laser scanner. In the next step, a gradient image is
generated, which is the difference between the projection images, see subsection 4.1. The idea behind the gradient
image generation is: The success of a grasp can be interpreted based on the gradient image, i.e. in the best case
a single region with an area, that contains high gradient values, resembles a parcel, that has to be classified as a
successful grasp (parcel moved). In the easiest case of an unsuccessful unloading grasp, two gradient areas have to
be distinguishable in the gradient image, in which one area has to be marked by mostly prevalent negative gradient
values. If that is the case, a parcel was removed from the scene, thus the distances in the area, where the parcel was,
have to increase. Another area has to be distinctive by the positive gradient values, i.e. a fallen parcel has to decrease
the distances to the measured points before the parcel appeared on the scene. The experiment is based on the data
captured from a real robotics system for automatic container unloading, which is described in section 4.2. In the last
step, a hyperband model search is conducted to obtain an optimal classification model for the described problem, see
subsection 4.3 [11].

4. Data preprocessing and machine learning model development

4.1. Single-view 2D representation of the 3D scene

In the following, we describe creation of the training set. Two given point clouds from the laser scanner represent
the states of the container before and after the unloading of one parcel. To estimate the success of the grasp process,
it is necessary to evaluate the difference between two images. The created image is called a gradient image in the
following discussion. Because the 3D scans can be captured with different scan sample rates, the number of points
in the point clouds can differ, thus, it is necessary to scale the images to a common resolution. This is achieved by
interpolating their pixel values to a static size. A human eye can capture the difference and evaluate the robotics grasp
without the need to see the the point cloud from multiple angles. A single front view on the container is enough to
make the decision about the success of the unloading process. Therefore, it has to be feasible to transform the 3D
view to a single-view 2D representation and obtain sufficient evaluation performance. In the single-view 2D image,

Fig. 1: The automatic unloading system overview. Loaded container (middle) contains parcels that have to be automatically ejected by the gripping
system. A 3D laser scanner (right bottom) acquires the distances to the scan points. The scanned points are depicted in form of the mesh grid. The
gripper (bottom middle) grabs parcels and moves them on a conveyor belt for further sorting.

each pixel represents the radial distance r to the point at a certain polar angle θ and at a certain azimuthal angle ϕ in
a spherical coordinate system, where the position of the laser scanner is defined by (0, 0, 0). To create a 2D image a
field of view grid has to be defined as:

D =



(θmin, ϕmax) (θ1, ϕmax) . . . (θmax, ϕmax)
(θmin, ϕ1) (θ1, ϕ1) . . . (θmax, ϕ1)
...

...
. . .

...
(θmin, ϕmin) (θ1, ϕmin) . . . (θmax, ϕmin)



It contains a pair of azimuthal θ and polar ϕ angles. Thus, the field of view is limited by ϕmin, ϕmax, θmin and θmax.
We define a function d(θ, ϕ), where d : R2 → R is the function returning the distance from the scanner to the reflection
point on the remote surface for the given θ and ϕ, in which θ ∈ [θmin, θmax] and ϕ ∈ [ϕmin, ϕmax

]
, otherwise r = ∅.

The value for a point at (ri, θi, ϕi) is calculated using nearest neighbor interpolation. In other words, for a given
sample of existing 3D points {p1, p2, . . . , pn} at locations {(r1, θ1, ϕ1) , (r2, θ2, ϕ2) , . . . , (rn, θn, ϕn)}, to estimate the value
pi at some new point (ri, θi, ϕi) an index j has to be found. The index j determined as j = arg min

∣∣∣p j − p
∣∣∣, the value of

p is then defined as (r j, θi, ϕi). The 2D single-view image is then calculated as follows: For pixels Ii j ∈ I of the image
I, calculate value as Ii j = d(Di j). To determine the difference between two images I1 ∈ R2 and I2 ∈ R2, a gradient
G ∈ R2 can be computed as G = grad (I1, I2) [2]. As a simplest gradient function we used an element-wise matrix
subtraction: G = I2 − I1. The gradient information is used further as the input data for the machine learning model.

4.2. Experimental setup

Automated unloading system for overseas containers. The investigated system is shown in Figure 1. This parcel
unloading system is developed for automated parcel unloading up to 70 kg from overseas containers [21]. The laser
scanner creates a 3D point cloud that depicts the physical container state. After that, decision algorithms calculate the
best object to grasp and a trajectory for the gripper. The gripper unloads a parcel from the container and puts it on the
conveyor belt for further handling.

Dataset description. The following describes the dataset that serves as the basis for this work. The dataset was
collected over 291 days of normal workload. Each state of the container was captured via a laser scanner [24]. The
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a single region with an area, that contains high gradient values, resembles a parcel, that has to be classified as a
successful grasp (parcel moved). In the easiest case of an unsuccessful unloading grasp, two gradient areas have to
be distinguishable in the gradient image, in which one area has to be marked by mostly prevalent negative gradient
values. If that is the case, a parcel was removed from the scene, thus the distances in the area, where the parcel was,
have to increase. Another area has to be distinctive by the positive gradient values, i.e. a fallen parcel has to decrease
the distances to the measured points before the parcel appeared on the scene. The experiment is based on the data
captured from a real robotics system for automatic container unloading, which is described in section 4.2. In the last
step, a hyperband model search is conducted to obtain an optimal classification model for the described problem, see
subsection 4.3 [11].

4. Data preprocessing and machine learning model development

4.1. Single-view 2D representation of the 3D scene

In the following, we describe creation of the training set. Two given point clouds from the laser scanner represent
the states of the container before and after the unloading of one parcel. To estimate the success of the grasp process,
it is necessary to evaluate the difference between two images. The created image is called a gradient image in the
following discussion. Because the 3D scans can be captured with different scan sample rates, the number of points
in the point clouds can differ, thus, it is necessary to scale the images to a common resolution. This is achieved by
interpolating their pixel values to a static size. A human eye can capture the difference and evaluate the robotics grasp
without the need to see the the point cloud from multiple angles. A single front view on the container is enough to
make the decision about the success of the unloading process. Therefore, it has to be feasible to transform the 3D
view to a single-view 2D representation and obtain sufficient evaluation performance. In the single-view 2D image,

Fig. 1: The automatic unloading system overview. Loaded container (middle) contains parcels that have to be automatically ejected by the gripping
system. A 3D laser scanner (right bottom) acquires the distances to the scan points. The scanned points are depicted in form of the mesh grid. The
gripper (bottom middle) grabs parcels and moves them on a conveyor belt for further sorting.

each pixel represents the radial distance r to the point at a certain polar angle θ and at a certain azimuthal angle ϕ in
a spherical coordinate system, where the position of the laser scanner is defined by (0, 0, 0). To create a 2D image a
field of view grid has to be defined as:

D =



(θmin, ϕmax) (θ1, ϕmax) . . . (θmax, ϕmax)
(θmin, ϕ1) (θ1, ϕ1) . . . (θmax, ϕ1)
...

...
. . .

...
(θmin, ϕmin) (θ1, ϕmin) . . . (θmax, ϕmin)



It contains a pair of azimuthal θ and polar ϕ angles. Thus, the field of view is limited by ϕmin, ϕmax, θmin and θmax.
We define a function d(θ, ϕ), where d : R2 → R is the function returning the distance from the scanner to the reflection
point on the remote surface for the given θ and ϕ, in which θ ∈ [θmin, θmax] and ϕ ∈ [ϕmin, ϕmax

]
, otherwise r = ∅.

The value for a point at (ri, θi, ϕi) is calculated using nearest neighbor interpolation. In other words, for a given
sample of existing 3D points {p1, p2, . . . , pn} at locations {(r1, θ1, ϕ1) , (r2, θ2, ϕ2) , . . . , (rn, θn, ϕn)}, to estimate the value
pi at some new point (ri, θi, ϕi) an index j has to be found. The index j determined as j = arg min

∣∣∣p j − p
∣∣∣, the value of

p is then defined as (r j, θi, ϕi). The 2D single-view image is then calculated as follows: For pixels Ii j ∈ I of the image
I, calculate value as Ii j = d(Di j). To determine the difference between two images I1 ∈ R2 and I2 ∈ R2, a gradient
G ∈ R2 can be computed as G = grad (I1, I2) [2]. As a simplest gradient function we used an element-wise matrix
subtraction: G = I2 − I1. The gradient information is used further as the input data for the machine learning model.

4.2. Experimental setup

Automated unloading system for overseas containers. The investigated system is shown in Figure 1. This parcel
unloading system is developed for automated parcel unloading up to 70 kg from overseas containers [21]. The laser
scanner creates a 3D point cloud that depicts the physical container state. After that, decision algorithms calculate the
best object to grasp and a trajectory for the gripper. The gripper unloads a parcel from the container and puts it on the
conveyor belt for further handling.

Dataset description. The following describes the dataset that serves as the basis for this work. The dataset was
collected over 291 days of normal workload. Each state of the container was captured via a laser scanner [24]. The
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seq num n rows distances/mm yaws/° pitches/°
85 98 [1770.0, 1751.0....] [109.0, 108.0..., 30] [-9.992795, -9.992795...]
86 112 [1775.0, 1747.0....] [109.0, 108.0..., 30] [-9.996149, -9.996149...]
... ... ... ... ...
79 123 [1414.0, 1876.0....] [109.0, 108.0..., 30] [-17.99441, -17.99441...]

Table 1: Dataset snippet. Each sequence represents a container state. The sequence number seq num incrementally increases by one to distinguish
the consecutive distribution of data. Number of rows n rows defines how many point lines were acquired in a given sequence. Distances to points
are saved as an array in a column. The number of elements inside the array of distances is defined as

(
max
{
yaws

} −min
{
yaws

}
+ 1
) · n rowsi.

(a) 3D view of measuring points of a loaded container. (b) View of a loaded container after surface creation using meshing

Fig. 2: Container view visualized using laser scanner.

used laser scanner is a SICK LMS 200 from the manufacturer SICK AG. Each container scan was saved into a separate
text file. A total of 193,971 files were collected. Each text file contains meta-information about field of view of the
sensor, number of scanned rows and measured distances to the reflection points in a spherical coordinate system
(r, θ, ϕ - radial distance, polar angle and azimuthal angle accordingly) and also their representation in an Euclidean
coordinate system (x, y, z - coordinates). A sample of a text file using the acquired points is depicted on Figure 2a. A
representation of the laser scanner and a container after surface creation for better visualization is shown on Figure 2b.
Example data is shown in Table 1.

4.3. Development of the deep learning model

The development process of the DNN is depicted on Figure 3. The first step is to collect container images captured
by the sensors for some period of time. Those will be used for the model training via machine learning techniques.

Data filtering. A dataset collected for many unloading sequences can contain damaged data, images captured for
sensor calibration, distorted images, etc.. Thus, data filtering is necessary to get a better classification performance
of the end model. Unusable images should be removed from the dataset or be repaired. For example, images that are
taken in uncommon situations, like during the maintenance works or during the calibration, should be removed.

Training and test dataset creation. Our approach is based on supervised learning, which means, that the model will
be trained with the ground truth information (label) that will be used during the training process. In other words, for
every given input xi, a label yi should be provided, so that the trained function f will output f (xi) = yi. In our case,
the output of the function is a discrete value, so the following is valid:

f (xi) =


0, if the grasp process i was successful
1, otherwise

(1)
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Fig. 3: ML model development

Criteria for labeling. To evaluate the grasp of the robot, criteria have to be de-
fined to distinguish between unsuccessful and successful unloading processes. It
is labeled as successful, if all criteria are fulfilled. They are relative to S i (con-
tainer state before) and to S i+1 (container state after the single unload event).
The following criteria describe a successful grasp process.

• S i has one or more packets optically visible in the field of view,
• it can be optically interpreted that one or more packets in S i+1, are out of

the field of view.

If it was visually evident that only the robotics have changed their position, e.g.
moved inside the container, but didn’t grasp any parcel, then the pair of states is
not considered to be a subject of evaluation and, therefore, was not labeled. In
all other cases, the grasp of the robot is interpreted as unsuccessful.

To label the input data, a random unloading sequence from a total of 555 was
chosen and the image pairs in the chosen sequence were labeled. From about
74,000 available images, around 4,000 pairs of the images were manually la-
beled and used for training and test of the model. After that, a gradient was
computed between the pair of images by applying the gradient function G. The
resulting sets of gradient images containing labels were divided into a train-
ing set and a test set. The training set contains 70 % of the manually labelled
gradient images, while the test set contains the remaining 30 %.

Data scaling. Data scaling can be useful to avoid exploding and vanishing gra-
dients during the training. In our case, the minimal distance rmin was around 80
mm and the maximal distance in the image was rmax = 8191 mm. This shows
a high variance of the input data. Thereby, a normalization or standardization
can be applied to increase model stability during the training and to increase its
sensitivity. Standardization was applied to scale the input data. This step has improved the overall performance of the
classifier by around 5 %. The standardized value rs is calculated using the formula rs =

ri−r
σ

, where ri is the original
value, r is the mean value ∀r and σ is the standard deviation of the dataset.

Model search. There is a great variety of machine learning model architectures that can be chosen. Searching for the
optimal model architecture can be very time consuming. To automate the searching process of the best performing
model, a hyperband search was carried out using the Keras Tuner library [17]. Because CNNs architecture performs
highly accurate for image classification problems, an application of this kind of machine learning model architecture
was a reasonable choice [9, 10, 30]. For the feature extraction, convolution layers were used. The number of layers
was defined to be between 2 and 5. Kernel size was statically defined to be 3 × 3 with padding to the input size. The
number of filters varied between 32 and 256 with a step of 32. Following each convolution, a batch normalization and
Rectified Linear Unit (ReLU) activation function were applied. After every convolutional layer, either the maximum,
the average or no pooling layers were tested for applicability. The last layer was flattened and attached to one fully
connected layer. The number of neurons varied between 10 and 1000 with a step of 10. The activation function was
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used laser scanner is a SICK LMS 200 from the manufacturer SICK AG. Each container scan was saved into a separate
text file. A total of 193,971 files were collected. Each text file contains meta-information about field of view of the
sensor, number of scanned rows and measured distances to the reflection points in a spherical coordinate system
(r, θ, ϕ - radial distance, polar angle and azimuthal angle accordingly) and also their representation in an Euclidean
coordinate system (x, y, z - coordinates). A sample of a text file using the acquired points is depicted on Figure 2a. A
representation of the laser scanner and a container after surface creation for better visualization is shown on Figure 2b.
Example data is shown in Table 1.

4.3. Development of the deep learning model

The development process of the DNN is depicted on Figure 3. The first step is to collect container images captured
by the sensors for some period of time. Those will be used for the model training via machine learning techniques.

Data filtering. A dataset collected for many unloading sequences can contain damaged data, images captured for
sensor calibration, distorted images, etc.. Thus, data filtering is necessary to get a better classification performance
of the end model. Unusable images should be removed from the dataset or be repaired. For example, images that are
taken in uncommon situations, like during the maintenance works or during the calibration, should be removed.

Training and test dataset creation. Our approach is based on supervised learning, which means, that the model will
be trained with the ground truth information (label) that will be used during the training process. In other words, for
every given input xi, a label yi should be provided, so that the trained function f will output f (xi) = yi. In our case,
the output of the function is a discrete value, so the following is valid:
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Criteria for labeling. To evaluate the grasp of the robot, criteria have to be de-
fined to distinguish between unsuccessful and successful unloading processes. It
is labeled as successful, if all criteria are fulfilled. They are relative to S i (con-
tainer state before) and to S i+1 (container state after the single unload event).
The following criteria describe a successful grasp process.

• S i has one or more packets optically visible in the field of view,
• it can be optically interpreted that one or more packets in S i+1, are out of

the field of view.

If it was visually evident that only the robotics have changed their position, e.g.
moved inside the container, but didn’t grasp any parcel, then the pair of states is
not considered to be a subject of evaluation and, therefore, was not labeled. In
all other cases, the grasp of the robot is interpreted as unsuccessful.

To label the input data, a random unloading sequence from a total of 555 was
chosen and the image pairs in the chosen sequence were labeled. From about
74,000 available images, around 4,000 pairs of the images were manually la-
beled and used for training and test of the model. After that, a gradient was
computed between the pair of images by applying the gradient function G. The
resulting sets of gradient images containing labels were divided into a train-
ing set and a test set. The training set contains 70 % of the manually labelled
gradient images, while the test set contains the remaining 30 %.

Data scaling. Data scaling can be useful to avoid exploding and vanishing gra-
dients during the training. In our case, the minimal distance rmin was around 80
mm and the maximal distance in the image was rmax = 8191 mm. This shows
a high variance of the input data. Thereby, a normalization or standardization
can be applied to increase model stability during the training and to increase its
sensitivity. Standardization was applied to scale the input data. This step has improved the overall performance of the
classifier by around 5 %. The standardized value rs is calculated using the formula rs =

ri−r
σ

, where ri is the original
value, r is the mean value ∀r and σ is the standard deviation of the dataset.

Model search. There is a great variety of machine learning model architectures that can be chosen. Searching for the
optimal model architecture can be very time consuming. To automate the searching process of the best performing
model, a hyperband search was carried out using the Keras Tuner library [17]. Because CNNs architecture performs
highly accurate for image classification problems, an application of this kind of machine learning model architecture
was a reasonable choice [9, 10, 30]. For the feature extraction, convolution layers were used. The number of layers
was defined to be between 2 and 5. Kernel size was statically defined to be 3 × 3 with padding to the input size. The
number of filters varied between 32 and 256 with a step of 32. Following each convolution, a batch normalization and
Rectified Linear Unit (ReLU) activation function were applied. After every convolutional layer, either the maximum,
the average or no pooling layers were tested for applicability. The last layer was flattened and attached to one fully
connected layer. The number of neurons varied between 10 and 1000 with a step of 10. The activation function was
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statically defined to be ReLU. The dropout layer is applied with a rate between 0 and 0.5 with a step of 0.1. The last
layer contains one output neuron that uses the sigmoid activation function. The optimizer of the model was set to
Adam with default parameters. The loss function binary crossentropy was used for the model.

Train and evaluate model. After finding the best performing model, it was trained with the prepared training dataset
and tested with the test dataset. The training and test were carried out using the Keras framework [7].

Performance check. To make a decision about usability of the model, metrics are necessary to be defined. The criteria
for the model performance were chosen based on a tolerable failure rate of false negatives under 5 % and false positives
under 1 %. This means, than the detection of the successful unloading operations is more important that the detection
of the unsuccessful ones.

(a) Container view before a successful un-
loading event

(b) Container view after a successful un-
loading event

(c) Difference between the states before
and after the unloading event

(d) Container view before an unsuccessful
unloading event

(e) Container view after an unsuccessful
unloading event

(f) Difference between the states before
and after the unloading event

Fig. 4: Container range view visualized using laser scanner. A successful grasp of a box is represented on 4a, 4b and 4c. On the image 4d, a packet
was grasped and moved towards the conveyor belt, but it fell down after being moved by the gripper. At the next captured container state, which
is depicted in 4e, the parcel appears on the image randomly stacked on top another box. The difference between two images contains the original
box position colored yellow and its new position colored dark blue. On the difference image represented in 4f, the original and the new position
of the grasped box are partially superimposed. By looking at the difference image with human eye, it is difficult to say, whether the unloading was
successful or not. The trained deep learning model was able to recognize such cases and evaluate the grasp correctly.
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Fig. 6: Achieved performance of the classifier

5. Results and discussion

During the hyperparameter search, 11,155 different models were trained. The structure of the model with the best
performance is shown in Figure 5. It consists of around 2.1 million parameters. The performance of the proposed
classification approach has achieved an accuracy of 99.2% for unloading operations, that have been successfully
carried out. The classification of the failed grasps was achieved with 96.1%, see Figure 6a. The area under the receiver
operating characteristics curve (ROC AUC) for the classifier is 0.99, which is shown in Figure 6b.

A single inference time for one difference image was about 250 milliseconds, carried out on a Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz. This is a negligible amount of time, compared to the time of several seconds of a single
grasp. This means, that the proposed algorithm is applicable for a real-time use during the machine operation, without
a significant increase of the unloading time of a container. As shown by the metrics, classification of the successful
grasps is an easier task than the classification of the unsuccessful grasps, because fewer artifacts are present on the
difference images, see Figure 4c, which results in a better convergence of the loss function. Classification of the
unsuccessful grasps is a harder task, because the difference image contains a much higher amount of different shapes
of objects, such as moved neighbor parcels and fallen boxes. The trained model shows a false negative error rate of
3.9 %, which defines, how many unsuccessful grasps were incorrectly classified, in contrast to 0.8 % of the false
positive error rate, that is related to incorrect classification of the successful grasps.

As the analysis of the error rate shows, most of the false negatives (around 41 %) were produced by incorrect
classification of the cases, where the robot couldn’t grasp the parcel correctly, slightly shifted it and has moved back.
About 14 % of all false negatives occurred after the robotic arm was captured on one of both images of the container
states. From the total of false positive cases, i.e. if the model classifies the image as a failure grasp, but it was a good
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statically defined to be ReLU. The dropout layer is applied with a rate between 0 and 0.5 with a step of 0.1. The last
layer contains one output neuron that uses the sigmoid activation function. The optimizer of the model was set to
Adam with default parameters. The loss function binary crossentropy was used for the model.

Train and evaluate model. After finding the best performing model, it was trained with the prepared training dataset
and tested with the test dataset. The training and test were carried out using the Keras framework [7].

Performance check. To make a decision about usability of the model, metrics are necessary to be defined. The criteria
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Fig. 4: Container range view visualized using laser scanner. A successful grasp of a box is represented on 4a, 4b and 4c. On the image 4d, a packet
was grasped and moved towards the conveyor belt, but it fell down after being moved by the gripper. At the next captured container state, which
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of the grasped box are partially superimposed. By looking at the difference image with human eye, it is difficult to say, whether the unloading was
successful or not. The trained deep learning model was able to recognize such cases and evaluate the grasp correctly.
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5. Results and discussion

During the hyperparameter search, 11,155 different models were trained. The structure of the model with the best
performance is shown in Figure 5. It consists of around 2.1 million parameters. The performance of the proposed
classification approach has achieved an accuracy of 99.2% for unloading operations, that have been successfully
carried out. The classification of the failed grasps was achieved with 96.1%, see Figure 6a. The area under the receiver
operating characteristics curve (ROC AUC) for the classifier is 0.99, which is shown in Figure 6b.

A single inference time for one difference image was about 250 milliseconds, carried out on a Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz. This is a negligible amount of time, compared to the time of several seconds of a single
grasp. This means, that the proposed algorithm is applicable for a real-time use during the machine operation, without
a significant increase of the unloading time of a container. As shown by the metrics, classification of the successful
grasps is an easier task than the classification of the unsuccessful grasps, because fewer artifacts are present on the
difference images, see Figure 4c, which results in a better convergence of the loss function. Classification of the
unsuccessful grasps is a harder task, because the difference image contains a much higher amount of different shapes
of objects, such as moved neighbor parcels and fallen boxes. The trained model shows a false negative error rate of
3.9 %, which defines, how many unsuccessful grasps were incorrectly classified, in contrast to 0.8 % of the false
positive error rate, that is related to incorrect classification of the successful grasps.

As the analysis of the error rate shows, most of the false negatives (around 41 %) were produced by incorrect
classification of the cases, where the robot couldn’t grasp the parcel correctly, slightly shifted it and has moved back.
About 14 % of all false negatives occurred after the robotic arm was captured on one of both images of the container
states. From the total of false positive cases, i.e. if the model classifies the image as a failure grasp, but it was a good
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carried out grasp, ca. 26 % of the states had a shifted neighboring parcel. Around 37 % of the false positives had
strong artifacts in the image, which were caused due to re-reflections from metallic constructions in the field of view
of the scanner.

Suggestions for improvements in future works. In the current work, an approach using model search was researched.
One of the possible approaches is to use transfer learning of existing DNNs. This could show an improved performance
of the model and better convergence. To reduce the error rate, improved data preprocessing may be required, e.g.
elimination of the artifacts, that occurred due to re-reflections. Another approach may be successful by using a region-
based classification. This method does not use the whole image, but compares only a region of interest in some
surrounding area of the highest gradient areas in the image. It may produce higher efficiency and a more compact
model due to reduction of the input data and, therefore, produces smaller amount of weights needed for the model and
less computational complexity.

6. Conclusion

The proposed method based on sequence difference analysis between the images of the overseas container states
using a CNN has shown its applicability for the evaluation of grasp processes during the automated unloading. This
approach uses data from already built-in laser scanners and doesn’t require additional sensors that have to be retrofitted
in the existing system. In addition to that, this is an important step towards automated analysis of grasps algorithms,
evaluation of mechanical actions, object detection and a movement towards self-learning robotics for automated con-
tainer unloading. Based on this work, a reinforcement learning approach could be developed, where the robot control
system and its algorithms have to learn from mistakes, that were made in the past, via received feedback from the
proposed evaluation system.
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carried out grasp, ca. 26 % of the states had a shifted neighboring parcel. Around 37 % of the false positives had
strong artifacts in the image, which were caused due to re-reflections from metallic constructions in the field of view
of the scanner.

Suggestions for improvements in future works. In the current work, an approach using model search was researched.
One of the possible approaches is to use transfer learning of existing DNNs. This could show an improved performance
of the model and better convergence. To reduce the error rate, improved data preprocessing may be required, e.g.
elimination of the artifacts, that occurred due to re-reflections. Another approach may be successful by using a region-
based classification. This method does not use the whole image, but compares only a region of interest in some
surrounding area of the highest gradient areas in the image. It may produce higher efficiency and a more compact
model due to reduction of the input data and, therefore, produces smaller amount of weights needed for the model and
less computational complexity.

6. Conclusion

The proposed method based on sequence difference analysis between the images of the overseas container states
using a CNN has shown its applicability for the evaluation of grasp processes during the automated unloading. This
approach uses data from already built-in laser scanners and doesn’t require additional sensors that have to be retrofitted
in the existing system. In addition to that, this is an important step towards automated analysis of grasps algorithms,
evaluation of mechanical actions, object detection and a movement towards self-learning robotics for automated con-
tainer unloading. Based on this work, a reinforcement learning approach could be developed, where the robot control
system and its algorithms have to learn from mistakes, that were made in the past, via received feedback from the
proposed evaluation system.
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