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Abstract: Within the last decade, research on torrefaction has gained increasing attention due to its
ability to improve the physical properties and chemical composition of biomass residues for further
energetic utilisation. While most of the research works focused on improving the energy density of
the solid fraction to offer an ecological alternative to coal for energy applications, little attention was
paid to the valorisation of the condensable gases as platform chemicals and its ecological relevance
when compared to conventional production processes. Therefore, the present study focuses on
the ecological evaluation of an innovative biorefinery concept that includes superheated steam
drying and the torrefaction of biomass residues at ambient pressure, the recovery of volatiles and
the valorisation/separation of several valuable platform chemicals. For a reference case and an
alternative system design scenario, the ecological footprint was assessed, considering the use of
different biomass residues. The results show that the newly developed process can compete with
established bio-based and conventional production processes for furfural, 5-HMF and acetic acid in
terms of the assessed environmental performance indicators. The requirements for further research
on the synthesis of other promising platform chemicals and the necessary economic evaluation of the
process were elaborated.

Keywords: biorefinery; superheated steam torrefaction; environmental assessment; volatile recovery;
platform chemicals

1. Introduction

What would the world look like if we could realise the production of chemical prod-
ucts in a bio-based circular economy? What impact would bio-based chemistry have
on the climate and the environment? How can the torrefaction of biomass be used for
environmentally friendly chemicals production?

1.1. General Context

Sustainable biomass will play a significant role in meeting the 2030 target to reduce
greenhouse gas emissions, as well as the objective of climate neutrality by 2050 in the
European Green Deal [1,2]. Biomass can be used as a renewable energy source, a material
substitute and as a carbon sink, thus contributing towards negative emissions. A recent
study shows that the current trend in EU biomass use has to be corrected in order to
achieve a net zero economy. Traditional bioenergy applications will become less and less
competitive due to new future options based on increasing electrification and hydrogen
share. Instead, material uses of biomass must increase significantly with a special focus
on high-value applications (chemicals, textiles, etc.). The use of biomass for energy appli-
cation must be reserved for special niches (e.g., industrial heat, fuels for aviation, etc.) [3].
Therefore, innovative technologies that allow for this strategic change are strongly required.
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Bio-based products can be used in small, specialised but also large-volume markets. In
the area of fine and speciality chemicals as well as active pharmaceutical ingredients,
bio-based products are already competitive to some extent due to their functionality and
thus offer worthwhile investment targets [4]. Biddy et al. (2016) presented a study in
which 12 promising chemicals were identified that can already be produced in the near
future from renewable sources, such as sugar, lignocellulose or algae [5]. For example,
5-hydroxymethylfurfural (HMF) and furfural are two interesting platform chemicals for
a bio-based chemical production economy, and their current bio-based production has
been studied in terms of their environmental footprint [5,6]. Some industrial companies in
the chemical industry have already adapted their business model to a bio-based circular
economy [7–10].

1.2. Biomass Torrefaction

In this context, biomass torrefaction is a promising technology since it allows one to
upgrade low-quality biomass to higher quality products to be used either directly or further
processed into high-value products [11,12]. Up to now, torrefied biomass is essentially
used for energy applications, either directly for electricity generation (co-firing with coal in
power plant) or as feedstock for further conversion into high quality biofuels (pyrolysis,
gasification, catalytic synthesis, etc.). The increasing number of scientific investigations
within the last decade in this field focused mainly on improving the energy density of
biomass, the production of synthetic fuels and the integration into existing production and
industrial structures for cascaded use [13–15]. In particular, the research works focused on
application areas such as agriculture and food, the paper industry, energy suppliers, the
steel industry, but also on the production of pyrolysis products, as well as liquefaction and
gasification [4,11,15–18].

Torrefaction is a mild form of pyrolysis in which biomass is usually heated to about
200–300 ◦C. During the process, the three main constituents of woody biomass (cellulose,
hemicellulose and lignin) are thermally decomposed at different degrees, leading to the
formation of non-condensable gases (CO, CO2) and condensable volatiles [11,18,19]. Beside
water, the condensable volatile fraction contains valuable chemical substances (e.g., furfural,
acetic acid, methanol, formic acid) that can be used as platform chemicals [19]. In this
regard, the use of superheated steam as torrefaction agent is very interesting because
it allows for a fast and uniform process and an easy recovery of volatiles [20–22]. In
addition, the condensation heat can be recovered in order to make the whole process more
energy efficient.

However, the production of value-added chemicals from torrefaction condensate is
a challenging task due to the low concentrations and the resulted complex mixture of
water, aldehydes, carboxylic acids, furans, ketones and alcohols. The organic fraction
comprises innumerable substances with extensive distribution of molecular weight and
polarity, which affects the effective separation of chemicals [23]. Therefore, new concepts
are required in order to achieve an economical valorisation of these chemicals at the
market-required purity.

For the reasons mentioned above, the authors of the present paper have dealt with
the recovery and separation of valuable platform chemicals from torrefied biomass. In
the context of this work, the ecological footprint of the newly developed process is inves-
tigated, which can be used to obtain valuable platform chemicals from biomass residues
by torrefaction using superheated steam under atmospheric conditions. This analysis is
intended to provide a statement on the ecological footprint of the newly developed process
and how it compares to competing processes.

2. Superheated Steam Torrefaction
2.1. History

The core technology of the developed biorefinery concept is the superheated steam
(SHS) processing under atmospheric pressure. This technology has been originally devel-
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oped for drying purposes in the early 1990s [24], then further developed by Fraunhofer
IGB for torrefaction within the EU project SteamBio (https://www.steambio.eu/ (accessed
on 6 December 2021)). The use of SHS and thus the absence of oxygen permits an inert
processing, prevents oxidation of the product and significantly reduces the risk of explosion.

2.2. Process Principle

The process principle is based on a system, which is hermetically closed at the top and
atmospherically open at the bottom. The material to be processed is introduced to an SHS
atmosphere, which is maintained in a superheated state through the supply of heat (see
Figure 1 below). Enhanced heat transfer is achieved convectively by recirculating the SHS
in a closed loop. The vapours (moisture, volatiles) released from the material during the
thermal processing are extracted/condensed in order to maintain the system atmospheric
pressure. The energy contained in the excess vapours (at temperature above 100 ◦C) can be
recovered in other processes of the plant, which results in a high overall energy efficiency.
Energy recovery can be conducted, e.g., by means of condensation, which allows volatile
organic compounds (VOCs) to be condensed out with the excess steam. These condensable
organic substances can be further separated and valorised as value-added products.
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Figure 1. Principle design concept of the SHS drying and torrefaction process.

3. Materials and Methods

Within this paper, a new process for extracting valuable products from biomass that
have been steam dried and torrefied under ambient pressure is analysed. This study is
based on experimental results obtained within a German public-funded research project on
an innovative biorefinery concept (see funding section). The experiments were conducted
in a pilot-scale SHS-drying/torrefaction unit and laboratory-scale batch rectification and
extraction set-ups.

3.1. Developed Refinery Concept

Figure 2 shows the different steps of the developed biorefinery concept, which was
investigated in terms of its environmental impacts, as presented in this paper.

The process units with a grey background represent the reference case. In addition to
this reference case, another variant was investigated in which the torrefied biomass is fed
to an incineration plant (hatched background and dashed lines) that serves to supply heat
internally to the biorefinery process and externally to potential consumers.

https://www.steambio.eu/
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Figure 2. Biorefinery process set up.

3.2. Methods, Framework and Assumptions

Figure 3 shows the basic methodology used in this work. For each process step, the
energy and material balances were drawn up on the basis of thermodynamic and fluid
mechanics principles as well as experimental results. These balances formed the basis for
the assessment of the environmental impact. The environmental impacts were carried out
in accordance with ISO 14040 and 14044.
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Figure 3. Assessment methodology.

The system boundary is shown in Figure 2. The upstream supply chains for biomass,
energy and auxiliary materials were considered for the analysis. Table 1 lists the assump-
tions and parameters for the ecological analysis that allow for comparison with other
relevant studies, such as [6,11,25].

Table 1. Assumptions and parameter for the ecological analysis.

Designation Value Unit Description

Functional unit 1 kg Biomass input

Design input 1000 kg/h Biomass input

Allocation Mass related

Plant location Germany

Base year 2019 Before COVID-19

External energy supply Electricity and natural gas

Reference biomass type Shredded beechwood

Sensitivity analysis

20–45 % (dry basis) Moisture content biomass input

150–600 kgCO2/kWh Specific CO2-emission electricity

22–28 MJ/kg Higher heating value torrefied biomass

0 and 5 % Steam loss (referred to evaporated water)

100–300 km Biomass transportation distance

Straw / Biomass input alternative

In total, 1000 kg/h of biomass input material was chosen for the size of the plant and
one kilogram of processed biomass as the functional unit to maintain the comparability
with other studies. The allocation of the primary energy demand and CO2 emissions to the
different products was nevertheless also investigated.

The process structure with the energy and material flows was first calculated, then used
as input for the modelling in the life cycle assessment software Umberto and supplemented
with life cycle assessment inventory data obtained, e.g., from the Ecoinvent 3.7.1 database.
The environmental impact assessment was carried out using the ReCiPe midpoint (H)
w/o LT method [26]. For the reference case and the process variant, the impact categories
climate change and primary energy consumption were considered. In addition, for two
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different biomass inputs, the impact categories human toxicity, freshwater ecotoxicity and
freshwater eutrophication were identified as significant and therefore considered. Germany
was assumed as the location for the production plant. For the manual calculations and
verification of the results from the Umberto software, primary energy factors and specific
CO2 emissions values for Germany from 2019 were used because the years 2020 and 2021
are not representative due to the COVID-19 pandemic. Nevertheless, the influence of
different specific CO2 emissions of electricity generation was investigated and presented to
allow for a transfer of the results to other locations or other energy supply structures.

The incineration plant of the analysed variant was considered as a system extension
in order to be able to present environmental credits in terms of primary energy demand
and CO2 emissions. A sensitivity analysis was carried out with regard to the factors listed
in Table 1. The results obtained were compared and evaluated with available information
from competing processes.

The considerations end at the gate of the process under investigation. This means
that product transports or the onward transmission of the generated thermal energy were
not considered. The research in this paper does not include any economic considerations,
which will be evaluated in a future paper.

4. Results
4.1. Energy and Material Flows

Figure 4 shows the energy and material flows of the reference case for an assumed
steam loss of 5% (related to the evaporated mass) during SHS drying and torrefaction.
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The width of the arrows in the Sankey diagram is not scaled exactly. They are only
intended to illustrate which flows are significant. Therefore, the absolute amounts of the
flows are indicated. The thermal and electrical energy flows are shown separately. The
heat losses through the walls of the individual apparatus are not shown. Heat losses of 5%
were assumed for the calculations. The energy flows due to the chemical internal energy of
the materials fed into and removed from the system, i.e., in particular the woodchips and
the torrefied biomass, are not shown in the Sankey diagram. In the Sankey diagram, the
energy flow rates are given in kW, that is, kJ/s. All data refer to a thermal energy supply
with natural gas, a chipped beech wood input flow of 1000 kg/h and 35 weight % (dry)
water content of the biomass input for a typical production environment. In the following,
the term “energy demand” is used for ease of reading when referring to the percentage
shares of the individual energy flow rates.

The thermal energy demand of the dryer, which is operated at a temperature range
between 150 and 180 ◦C, represents the largest energy demand, with 92.65% of the total
energy demand, followed by the torrefaction unit, with 6.27%. The thermal energy demand
of the rectification column is very small in comparison and can be covered internally
from the torrefaction. The discharge of the non-condensable gaseous volatile fraction
causes the most thermal losses in the torrefaction unit. The thermal output stream from
the SHS-drying plant due to the condensation of the steam expelled from the biomass
accumulates at a temperature level of approx. 95 ◦C (see Figure 1) and can be utilised for
external purposes.

The fan that circulates the steam in the SHS-drying unit has the greatest demand
for electrical energy, with 9.23% of the total energy consumption, followed by the fan of
the torrefaction unit, with 0.69%. The electrodialysis unit consumes 2.78% of the total
electrical energy. All other electrical energy consumers together require 10.90% of the total
energy consumption.

In terms of mass flow quantity, with an input of 1000 kg/h of beech wood chips, the tor-
refied biomass represents the largest recyclable material output, with almost 70%, followed
by the condensate from the dryer (approximately 18%), which can be thermally utilised.

The torrefied biomass has a higher heating value (HHV), approx. 22 MJ/kg, and can
be utilised either as a very clean fuel with coal-like characteristics, as a raw material for
further use in activated carbon production or for the production of synthesis gas. The
non-condensable volatile fraction (CO, CO2, CH4, H2) from torrefaction cannot be further
utilised and is released to the environment in the reference case. The valuable substances
5-HMF, furfural, sodium formate and sodium acetate are produced in small quantities
but high purities (>95%). The pilot tests have shown that about 20 different chemical
substances can be extracted. However, only the above-mentioned platform chemicals are
shown here, as they represent the largest share in terms of quantity. Dichloromethane is
used as extraction agent and can be recovered up to 98% in the rectification unit.

The data presented up to this point are based on a steam loss of 5%. However, in
a well-designed real plant, it can be expected that the steam loss will be close to zero.
Reducing the steam loss has a direct effect on the product yield and on the thermal losses,
especially of the dryer. The product yields, the total power demand and thermal losses at 5
and 0% steam loss are shown in Table 2.

In the reference case, the entire energy supply of the biorefinery is provided externally
via electricity and natural gas. The torrefied biomass produced is materially utilised
as output in the reference case. The resulting non-condensable volatile fraction of the
torrefaction process is not thermally utilised in the reference case and is released to the
atmosphere. Therefore, a second variant was investigated within the scope of this work,
which operates self-sufficiently in terms of thermal energy. For this purpose, an incineration
plant is added to the biorefinery, in which the entire torrefied biomass produced and the
volatile fraction are thermally utilised. The Sankey diagram of this second variant is shown
in Figure 5.
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Table 2. Product yields, thermal and electrical power demand and losses for 5 and 0% steam loss
(reference case).

Output 5% Steam Loss 0% Steam Loss

Total thermal power demand 499.61 kW 499.79 kW
Total electrical power demand 63.07 kW 64.04 kW

Thermal loss drying 7.54 kW 0 kW
Thermal loss torrefaction 80.64 kW 77.70 kW

Torrefied biomass 694.85 kg/h 694.85 kg/h
5-HMF 51.9 g/h 54.7 g/h

Furfural 830 g/h 873 g/h
Sodium formate 1.254 kg/h 1.32 kg/h
Sodium acetate 13.46 kg/h 14.17 kg/h

Methanol 1.169 kg/h 1.231 kg/h
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Figure 5. Energy and material input and output flows (incineration variant, 5% steam loss).
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By combustion of the torrefied biomass and the volatile fraction, a thermal energy flow
rate of approx. 4.3 MW can be generated assuming a calorific value of 22 MJ/kg. Since the
plant’s own thermal demand at 5% steam loss amounts to slightly less than 500 kW, approx.
3.8 MW of thermal power can be provided externally at 250 ◦C. In addition, 0.15 MW heat
at 90 ◦C can be recovered from the SHS dryer. The reference case has a thermal loss of
92 kW, whereas the process variant has a thermal loss of only 26.36 kW. The process variant
is particularly suitable for integration into existing, locally close production networks that
have a heat demand at the temperature levels mentioned above. In terms of production
volumes, the ratios at 5 and 0% steam loss in the process variant are the same as in the
reference case. The process variant, however, causes higher electrical power consumption
than the reference case, primarily due to the additional operation of a combustion fan and
an exhaust gas fan for the combustion system. This additional consumption of electrical
power totals approx. 21 kW.

4.2. Primary Energy Demand and CO2 Emissions from a Process View

The energy embodied in natural resources prior to any human-made conversion is
referred to as primary energy. The primary energy demand is the non-renewable portion
of the primary energy required by the process to produce the end products; this is also
referred to as cumulative non-renewable energy consumption.

The results presented here are based on a biomass input of 1000 kg per hour. The
units ‘kWh’ and ‘kgCO2-eq’ denote the total primary energy demand and CO2 emission for
processing 1000 kg of biomass per hour. The specific values of CO2 emission and primary
energy demand for the operation with 5% steam loss for the reference case and process
variants are shown in this section. The results are categorized into three groups: upstream,
thermal, and electrical. Upstream processes included the supply of auxiliary materials such
as NaOH and DCM, as well as the supply chain of wood chips. Table 3 displays the values
for the primary energy factor (PEF) and CO2 footprint for the materials and energy carriers
used in the process under investigation.

Table 3. The primary energy factor and CO2 footprint of various materials and energy inputs.

Years Primary Energy Factor (PEF) CO2 Footprint

NaOH 1 [27] - 6.11 [27] kWhPE/kg 1.2 1 kgCO2-eq/kg

DCM 1 - 11.26 kWhPE/kg 3.42 kgCO2-eq/kg

Wood Supply chain 1 - 0.217 kWhPE/kg 0.0547 kgCO2-eq/kg

Electricity [28,29]
2018 1.71 kWhPE/kWhel 0.471 kgCO2-eq/kWh
2019 1.55 kWhPE/kWhel 0.408 kgCO2-eq/kWh
2020 1.37 kWhPE/kWhel 0.366 kgCO2-eq/kWh

Natural Gas [28,30] 2019 1.1 [30] kWhPE/kWhel 0.202 [28] kgCO2-eq/kWh
1 Umberto calculation, ecoinvent 3.7.1.

Umberto LCA models were developed to calculate the total non-renewable energy
consumption and CO2 footprint of the upstream processes. Printouts of the models can
be found as Supplementary Materials to this publication. Suitable activities were chosen
from the Ecoinvent 3.7.1 database. These activities included all upstream activities, starting
from the cradle and ending with the product’s reception at the consuming entity, as well
as the average transportation requirements. The region Europe (RER) was used for DCM,
and the DE region with ‘transport, freight, and lorry 16–32 metric ton EURO 4′ was chosen
for wood chip supply. The global region had to be chosen for NaOH, and the calculated
value was 19.33 MJ/kg. According to a report on sodium hydroxide eco-profiles, the gross
primary energy required to produce 1 kg of NaOH is 22.04 MJ/kg (6.11 kWh/kg) [27]. This
value is used in the calculations. The mass of the supplied product and the transportation
requirements determine the upstream primary energy demand and CO2 footprint. Because
the average transportation distance of 100 km is already factored into the activities and the
mass of biomass input is constant across all variants, the values of primary energy demand
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(0.217 kWh/kg) and CO2 emissions (0.0547 kgCO2-eq/kg) are also constant. The required
supply of auxiliary materials is determined by the percentage of steam/volatile loss during
the process; the lower the volatile loss, the greater the mass supply, and thus the greater
the primary energy demand and CO2 footprint from these auxiliary materials.

Figures 6 and 7 depict the distribution of primary energy demand and CO2 emis-
sions to the individual processes, where ‘others’ refers to the sum of pH adjustment,
liquid–liquid extraction, rectification, and electrodialysis processes. DCM and NaOH are
separately indicated.
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Figure 6. VALORKON primary energy demand with 5% steam loss: (a) reference case; (b) process
variant.
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The thermal primary energy demand and CO2 emissions were calculated by multi-
plying the PEF and CO2 footprint of natural gas by the total amount of thermal energy
required. Because the PEF of natural gas is constant (PEF = 1.1, where it includes the
energy required for processing and distribution, i.e., 10%), as is the CO2 footprint, there
is no deviation in the bar charts for thermal primary energy demand and CO2 emission.
The electrical primary energy demand, on the other hand, is determined by the country’s
electricity mix. The German electricity mix for 2019 (prior to COVID-19) is considered
here. The deviation shown in the black bar is derived from different PEF and CO2 footprint
values for the years 2018 and 2020, as shown in Table 3.

If the primary energy consumptions for processing 1000 kg of biomass per hour
for both variants are added up counting 5% steam loss, the result is 913.07 kWh for the
reference case and 384.84 kWh for the process variant. The significant difference in primary
energy demand is due to the fact that in the process variant the required thermal energy
is provided internally by a biomass incinerator. Figure 6 also shows the distribution of
primary energy demand for both variants when varying the primary energy demand for the
individual process steps according to Table 3. The SHS-drying process consumes the most
primary energy in the reference case, followed by the biomass supply chain, whereas the
biomass supply chain consumes the most primary energy in the process variant, followed
by the SHS drying. The process variant includes an additional electrical energy consumer,
a biomass incinerator with a primary energy demand of 21.34 kWh per hour.

Figure 7 illustrates the CO2 emissions and their distribution due to the variation
of the primary energy factors for electric power according to Table 3 for the different
process stages and the supply chain. During the torrefaction process, the non-condensable
gaseous volatile fraction, which also contains methane, is released into the environment
in the reference case and fed to a biomass incinerator in the process variant case. Since
methane is released into the environment, the corresponding downstream CO2 equivalents
in the torrefaction process must be added for the reference case. For this purpose, a CO2
equivalence factor of 25 was applied according to [31]. Total CO2 emissions are 214.21
kgCO2-eq per ton of biomass input for the reference case and 96.78 kgCO2-eq per ton of
biomass input for the process variant. The calculation with Umberto resulted in CO2
emissions of 218.55 kgCO2-eq per ton of biomass input for the reference case, thus verifying
the calculations. Since the biomass incinerator provides the necessary thermal energy for
the process, an emission of 123.04 kgCO2-eq per hour is avoided, which also includes the
avoided CO2 emission from the combustion of non-condensable gaseous volatile fraction.
The negative side of the bar chart represents avoided CO2 emissions, while the positive
side represents caused CO2 emissions in the process variant. The avoided CO2 emissions
are calculated under the assumption that the combustion of natural gas is replaced in the
biorefinery. For the reference case, the SHS-drying process emits the most CO2, followed by
the wood supply chain, and for the process variant, drying has the second highest caused
CO2 emission but avoids most CO2 emission through the internal heat supply.

4.3. Primary Energy Demand and CO2 Emissions from a Product View (Allocation)

To know how much primary energy is required or how much CO2 is emitted to
produce one kilogram of the respective end product, the total primary energy demand
and CO2 emission must be allocated to the end product. To begin, the end products are
set mass based in relation to the total output of a respective sub-process. The primary
energy demand/CO2 emissions of the individual processes can then be allocated to the
corresponding end products. The total primary energy requirement/CO2 emissions to
produce the respective end product can then be calculated by adding the individual
values. This can be divided by the respective product output to obtain the primary energy
demand/CO2 emission per kg of end product.

Figure 8a represents a comparative representation of the primary energy demand
required to produce one kilogram of the respective end product for both variants. It clearly
shows for the reference case that the products 5-HMF and furfural have the highest primary
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energy requirement per kilogram, with 9.6 kWh each, followed by sodium formate and
sodium acetate, with 4.5 kWh each. It can be seen that the primary energy demand for the
process variant is significantly lower because the required thermal energy is covered by
the incinerator; the same is true for CO2 emission. Figure 8b represents for both variants
the CO2 emissions that occur when producing one kilogram of end product. The highest
emission per kilogram occurs when producing 5-HMF and furfural for the reference case,
and when producing sodium acetate and sodium formate for the process variant. The
effect of the process variant is more significant on 5-HMF and furfural, because the thermal
energy requirement during rectification has a significant weight on 5-HMF and furfural,
and because this can be supplied internally in the process variant, the value of primary
energy demand and CO2-emission is further reduced. The higher CO2 emission and
primary energy demand of furfural, 5-HMF, sodium acetate, and sodium formate can be
explained by the small amount of product produced and the number of steps required to
obtain these products. Torrefied beech wood, on the other hand, emits the least amount
of CO2 per kilogram. This is due to the small amount of beech wood input required to
produce one kilogram of torrefied beech wood.
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Figure 8. Comparison from product perspective with 5% steam loss: (a) primary energy demand
for the reference case and the process variant; (b) CO2 emission for the reference case and the
process variant.

When the steam loss is reduced to 0%, it has a minor effect on the reference case and
almost no effect on the process variant’s primary energy demand and CO2 emissions. The
primary energy demand and CO2 emissions for the reference case with 0% steam loss
are shown in the Table 4 below, where the value of primary energy demand for furfural
and 5-HMF has been reduced to 9.55 kWh/kg, while the values for other products have
remained the same as with 5% steam loss. The CO2 emissions, on the other hand, have
been slightly reduced for all products.
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Table 4. Primary energy demand and CO2 emission for the reference case with 0% steam loss.

Products Primary Energy Demand CO2 Emission

kWh/kg kgCO2-eq/kg

Torrefied biomass 1.20 0.25

Methanol 1.20 0.25

Sodium acetate 4.51 0.99

Sodium formate 4.51 0.99

Furfural 9.55 1.90

5-HMF 9.55 1.90

4.4. Further Environmental Impacts due to Changes in the Biomass Feedstock

As outlined in the methodology chapter, it was investigated for the reference case how
the conversion of the biomass input from beech wood chips to straw residues affects the en-
vironmental impacts. For this purpose, the Umberto model on the reference case was used
to investigate which other environmental indicators change significantly when switching
to a biomass residue originating from intensive agriculture. Only the supply chain for the
biomass was altered, but not the product streams obtained, as their concentrations had so
far only been investigated experimentally using beech wood. This analysis showed that
the following categories in particular are changing strongly:

• Climate change, GWP 100 a in kgCO2-eq

• Human toxicity w/o LT, HTPinf w/o LT in kg 1,4-DCB-eq
• Freshwater eutrophication w/o LT, FEP w/o LT in kg P-eq
• Freshwater ecotoxicity w/o LT, FETPinf w/o LT in kg 1,4-DCB-eq

The results represented here are based on 1000 kg of biomass input of the two biomass
residues considered. Figure 9a shows the global warming potential. The methodology
used for the impact assessment was IPCC 2013, which takes the impacts of emissions
over a period of 100 years into account. The total emission for the beechwood biomass is
218.55 kgCO2-eq. When using straw residues, the total emission is 254.73 kgCO2-eq. The
additional 36.18 kgCO2-eq is caused by the straw supply chain, which has a CO2 foot-
print of 0.0908 kgCO2-eq/kg of straw, whereas the beechwood has a CO2 footprint of
0.0547 kgCO2-eq/kg of beechwood.

Figure 9b depicts human toxicity, freshwater ecotoxicity and freshwater eutrophica-
tion potential for the two investigated biomass types. For the impact estimation method,
ReCiPe Midpoint (H) w/o LT [26] has been used. All substances which are considered
to be toxic are standardized at 1,4-dichlorobenzene (DCB). Total emissions from sub-
stances toxic to humans from the reference case are 7.729 kg 1,4-DCB-eq for beechwood and
23.599 kg 1,4-DCB-eq for straw, while total emissions having an ecotoxic impact on fresh-
water ecosystems are 0.079 kg 1,4-DCB-eq for beechwood and 3.103 kg 1,4-DCB-eq for straw.
All eutrophication-potential substances are converted to the same amount of phosphorous
(P) with the same eutrophication impact. The total accumulation of excess nutrients in a
body of water is 0.010 kg P-eq for beechwood and 0.014 kg P-eq for straw residues.

Agricultural cultivation is associated with considerable environmental burdens due to
the use of pesticides, fertilisers, machinery and increased water consumption, among other
things. Since agricultural cultivation is responsible for most of the impact, beech wood as a
biomass residue input has a lower environmental impact than straw residues.



Sustainability 2022, 14, 1212 14 of 21

Sustainability 2022, 13, x FOR PEER REVIEW 13 of 21 
 

Table 4. Primary energy demand and CO2 emission for the reference case with 0% steam loss. 

Products Primary Energy Demand CO2 Emission 
 kWh/kg kgCO2-eq/kg 

Torrefied biomass 1.20 0.25 
Methanol 1.20 0.25 

Sodium acetate 4.51 0.99 
Sodium formate 4.51 0.99 

Furfural 9.55 1.90 
5-HMF 9.55 1.90 

4.4. Further Environmental Impacts due to Changes in the Biomass Feedstock 
As outlined in the methodology chapter, it was investigated for the reference case 

how the conversion of the biomass input from beech wood chips to straw residues affects 
the environmental impacts. For this purpose, the Umberto model on the reference case 
was used to investigate which other environmental indicators change significantly when 
switching to a biomass residue originating from intensive agriculture. Only the supply 
chain for the biomass was altered, but not the product streams obtained, as their 
concentrations had so far only been investigated experimentally using beech wood. This 
analysis showed that the following categories in particular are changing strongly: 
• Climate change, GWP 100 a in kg CO2-eq 
• Human toxicity w/o LT, HTPinf w/o LT in kg 1,4-DCB-eq 
• Freshwater eutrophication w/o LT, FEP w/o LT in kg P-eq 
• Freshwater ecotoxicity w/o LT, FETPinf w/o LT in kg 1,4-DCB-eq 

The results represented here are based on 1000 kg of biomass input of the two 
biomass residues considered. Figure 9a shows the global warming potential. The 
methodology used for the impact assessment was IPCC 2013, which takes the impacts of 
emissions over a period of 100 years into account. The total emission for the beechwood 
biomass is 218.55 kg CO2-eq. When using straw residues, the total emission is 254.73 kg 
CO2-eq. The additional 36.18 kg CO2-eq is caused by the straw supply chain, which has a 
CO2 footprint of 0.0908 kg CO2-eq/kg of straw, whereas the beechwood has a CO2 footprint 
of 0.0547 kg CO2-eq/kg of beechwood. 

  
(a) (b) 

218.55

254.73

0

40

80

120

160

200

240

280

Beechwood Straw

C
O

2-
em

is
si

on
 in

 k
g 

C
O

2-
eq

Global warming potential (GWP) for the reference 
case

Climate change, GWP 100a in kg CO2-eqClimate change, GWP in kgCO2-eq

C
O

2 e
m

is
si

on
 in

 k
gC

O
2-

eq

7.729

23.599

0.079

3.103

0.010

0.014

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0

5

10

15

20

25

Beechwood Straw

kg
 P

-e
q

kg
 1

,4
-D

C
B-

eq

Other environmental releases for the reference case

Human toxicity w/o LT, HTPinf w/o LT in kg 1,4-DCB-eq

Freshwater ecotoxicity w/o LT, FETPinf w/o LT in kg 1,4-DCB-eq

Freshwater eutrophication w/o LT, FEP w/o LT in kg P-eq

Figure 9. Life cycle impact assessment of the reference case for different biomass inputs: (a) global
warming potential (GWP); (b) other environmental releases.

4.5. Sensitivity Analysis

According to reference [32], the HHV of torrefied biomass ranges from 22 to 28 MJ/kg
due to an increase in carbon content. The heat generated during biomass incineration
and the thermal power available to external customers vary depending on the HHV of
torrefied biomass. Figure 10a shows a sensitivity analysis concerning the HHV of torrefied
biomass. The blue line represents the excess thermal power that could be sold to an external
customer, and the green line represents the avoided CO2 emissions from supplying excess
thermal energy in the process variant, assuming that it replaces natural gas consumption.
Within the scope of this study, an HHV of 22 MJ/kg was considered. This value can be
used as a reference value in the diagram, and all process variant calculations are based on
it. At this value, the excess thermal power and avoided CO2 emissions are 3.81 MW and
769 kgCO2. From this reference point, an elevation of 2 MJ/kg of HHV increases thermal
power and CO2 emissions by 10.12%.

Another important factor that must be considered is the moisture content of the input
biomass. The moisture content of biomass varies depending on the type of biomass and
amount of time it has been stored. The SHS dryer contributes to the majority of the overall
biorefinery’s primary energy demand. The latter is highly sensitive to the moisture content
of biomass, as shown in Figure 10b, where the moisture content, based on dry matter
ranges from 20 to 45%. These changes would have an impact on the total energy demand
as well as the CO2 emissions. As shown in the diagram, the effect of this parameter on both
variants is different. In the reference case, the SHS dryer’s total primary energy demand
includes both electrical and thermal primary energy demand. The SHS heater is the main
energy consumer, and as the moisture content decreases, it requires less superheated steam
supply to dry the biomass input, resulting in a decrease in energy consumed by the SHS
heater. In the case of a process variant, however, the total primary energy demand consists
solely of the electrical primary energy demand. The steam fan is the largest electrical
energy consumer, accounting for 96% of the total electrical primary energy demand. As the
amount of steam decreases with decreasing moisture content, so does the energy required
by the fan to recirculate the steam. The basic calculation was carried out for a moisture
content of 35%.
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Figure 10. Sensitivity analysis: (a) heat value of torrefied biomass; (b) moisture content of biomass
(dry basis).

The composition of electricity generation, the so-called electricity mix, was related to
Germany in the basic calculations (see also Table 3). The electricity mix is not a constant
factor. The electricity mix depends on the deployment of renewable energy sources and
thus is country and time dependent. Figure 11a shows the CO2 emissions for both variants
with different electricity mixes. This graph can be used to estimate total CO2 emissions for
various countries, as well as in the future when the electricity mix changes.

The biomass supply chain is divided into two parts: wood harvesting/sawmill and
transport. An LCA model was created to calculate the cumulative non-renewable energy
demand or primary energy demand and CO2 emissions of the biomass supply chain, which
included the transportation activity “transport, freight, lorry 16–32 metric ton EURO 4
[RER]”. The primary energy demand and CO2 emission due to harvesting and sawmilling
are constant, as the study is based on 1000 kg of biomass processing, and the values are
143.61 kWh and 38.17 kgCO2-eq, respectively. Hence, the total primary energy demand and
CO2 emission of the biomass supply chain are primarily determined by the supply distance.
Figure 11b shows the variation in primary energy demand and CO2 emissions based on the
supply distances ranging from 100 to 300 km. The reference distance is 100 km, resulting
in a primary energy demand of 217.13 kWh and CO2 emission of 54.7 kgCO2-eq for the
reference case. From the reference point, an increase of 50 km increases the primary energy
demand by 17.16% and CO2 emission by 15.07%.
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Figure 11. Sensitivity analysis: (a) CO2-emission for the reference case and process variant with
different electricity mix; (b) biomass supply distance.

5. Discussion

As part of the research project to develop the biorefinery presented here, competing
processes for the production of 5-HMF and furfural were also investigated. In reference [6],
the results of a first investigation of the process of reference [33] for the production of
5-HMF were presented. The process under investigation was at the laboratory stage. The
total CO2 emissions determined ranged from 326 to 1160 kgCO2/kgHMF, with the main
contributor being the use of dichloromethane [6]. In the meantime, AvaBiochem, in close
cooperation with the Karlsruhe Institute of Technology, has brought another process for the
production of 5-HMF to market maturity [34,35]. For this process, CO2 emissions between
approx. 9 and 49 kgCO2/kgHMF (depending on the degree of energy recovery and the
energy source used) were determined in this project. The newly developed biorefinery
presented in this publication is ecologically advantageous compared to the competing
processes with 1.945 kgCO2/kgHMF for the reference case and 0.80 kgCO2/kgHMF for the
variant with biomass combustion. The supply chains are considered in all studies.

For furfural, investigations by reference [6] identified a range of approx. 13 to
14 kgCO2/kgfurfural for the Huaxia-Westpro process. Here, all input chains were included
except for the biomass raw material. The main CO2 driver here is the provision of heat for
the production process, accounting for approx. 90%. Further investigations in this research
project concerning that process showed that the CO2 emissions of the Huaxia-Westpro pro-
cess can be reduced to 1.6 to 3.7 kgCO2/kgfurfural by heat recovery and switching to energy
sources with lower CO2 emissions. The upper value refers to production in China. These
values include all input supply chains and transports, including those of the biomass raw
material maize. The allocated CO2 emission values for the new biorefinery presented here
are at the same level as the values mentioned above for 5-HMF, because the same process
steps have to be passed through for the production of both platform chemicals. In the
reference case, the CO2 emissions of the investigated biorefinery (1.945 kgCO2/kgfurfural)
are slightly above the best value of the Huaxia-Westpro process. In the process variant
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with its own thermal energy supply, the new biorefinery causes less than 50% of the CO2
emissions of the competing process. Here, too, all preceding supply chains are considered.

Sodium acetate and sodium formate are follow-on products from the reaction of
acetic acid with sodium hydroxide. For conventional fossil-based acetic acid production,
the authors of reference [36] give a value of 1.846 kgCO2/kgacetic acid. The authors’ own
examination of the upstream chains of methanol and carbon monoxide with natural gas as
raw material results in 0.89 kgCO2/kgacetic acid for methanol ([36]: 0.36 kgCO2/kgacetic acid)
and 0.994 kgCO2/kgacetic acid for carbon monoxide ([36]: 1.065 kgCO2/kgacetic acid). For
classical acetic acid production, e.g., by the Celanese company in Texas, CO2 emissions
of approx. 2.3 kgCO2/kgacetic acid can therefore be assumed. For sodium acetate and
sodium formate combined, the biorefinery investigated in this study produces a total of
2.048 kgCO2/kg for the reference case and 1.7 kgCO2/kg for the process variant with
thermal auto-supply. The deduction of the CO2 proportion of the sodium hydroxide
solution used for comparison with acetic acid is omitted here because the new biorefinery
does not cause higher specific CO2 emissions than the classic competing process based on
natural gas.

This comparison applies to operation with beech wood chips with a humidity content
of 35% (dry). If the moisture content can be further reduced through natural solar drying
and storage without using non-renewable energy carriers, the CO2 emissions of the new
biorefinery will decrease further. The above comparisons do not include CO2 credits from
the sale of excess thermal energy and thus the external substitution of fossil energy sources,
such as natural gas.

The CO2 emissions determined are mainly based on the use of fossil non-renewable
raw materials (except limestone) and thus also give a reflection of the energy demand of
the processes considered. The newly developed biorefinery is thus competitive from an
ecological and energetic point of view compared to the bio-based competing processes for
the production of 5-HMF and furfural and the classic natural gas-based process for the
production of acetic acid.

The laboratory tests with the batch-rectification column have shown a loss of
dichloromethane of approx. 1% or less. However, a loss of 2% was conservatively as-
sumed for the calculations. Accounting for 2.71 kgCO2-eq/h, dichloromethane causes 1.27%
of the total CO2 emissions in the reference case and 2.8% in the process variant with thermal
self-supply. If the dichloromethane losses in a commercial plant were similar to those in the
laboratory tests, the CO2 emissions caused by the consumption of dichloromethane would
be cut in half.

The biorefinery’s steam loss has almost no impact on total energy consumption and
total CO2 emissions. However, the steam loss affects the product yield and thus also the
consumption of sodium hydroxide solution and dichloromethane. The steam loss was
assumed to be 5%, but given the design conditions and the associated phase separation, it
should be between 0 and 1% for a well-designed system. The increased product yield and
the additional consumption of auxiliary materials can be extrapolated straightforwardly
from the values shown in Figures 4 and 5. The product-related, allocated CO2 emission
values are reduced accordingly. Reducing the steam losses only marginally changes the
overall picture presented so far.

Thus, the moisture content of the biomass represents the greatest lever for reducing
energy demand and CO2 emissions if the reduction of the humidity level is achieved in
a natural way, e.g., by dry storage for several months or as described above. A reduced
moisture content reduces the demand for thermal energy but also for electrical energy to
drive the fan to circulate the superheated steam.

However, the transport distance for the biomass raw material also has a significant
influence on the primary energy demand and CO2 emissions. The baseline calculations
were carried out for a distance of 100 km. Distances up to 300 km were considered in the
sensitivity analysis. Since the plant concept under consideration is based on relatively small
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input quantities, the objective should be, from an environmental point of view, to obtain
the biomass residue as locally as possible, with a distance of well under 100 km.

The nature and the quantity of the expected compounds in the condensable volatile
fraction depend mainly on the composition (cellulose, hemicellulose and lignin) of the
biomass [11]. Examples of promising feedstock are: hay, straw, wood chips, digestate,
manure or other bio-based residues. Orive et al. (2020) showed that olive residues are a
promising feedstock for the extraction of high-value chemicals [37].

The process parameters (temperature, residence time and flow velocity) and the
particle size of the used feedstock have a great influence on the process liquid and solid
fraction outputs [19,38]. The process parameters (temperature and residence time) have
been selected based on experimental data in order to guarantee a good compromise between
obtained liquid and solid fractions.

A mass-based allocation of the primary energy demand and the CO2 emissions to the
generated products was shown as an example. A value-based allocation would be possible
in principle. However, since the monetary values of the products can change dynamically
depending on demand, availability and product quality, and the biorefinery can extract
further valuable materials, a value-based allocation was not carried out in the context of
this work.

Apart from the possibility of supplying thermal energy via the combustion of torrefied
biomass, no other process integration scenarios were considered within the scope of this
work. The biorefinery could, for example, be integrated into an industrial symbiosis in
which electrical power is generated in an environmentally friendly manner in addition to
thermal energy. The pulp and paper industry, the chemical industry, the pharmaceutical
industry and the steel producing industry, for example, would be suitable for such a
symbiosis. It would also be conceivable to further process the torrefied biomass into
activated carbon or to generate syngas.

Commercially, torrefaction is at an early stage of development. Several technology
companies are aiming for a commercial launch, but are struggling with technical problems
in demonstration plants. Non-oxidative torrefaction has higher commercialization potential
compared to other developed methods because the yield is higher and the process operation
is safer. The information currently available on the practical applications of biomass
torrefaction in industry is still insufficient [11].

The transition to a bioeconomy is increasingly being demanded and supported po-
litically. In 2018, the EU Commission presented an action plan for the development of a
sustainable and cycle-oriented bioeconomy which, among other factors, provides consid-
erable financial resources for the establishment of biorefineries in Europe [39]. In their
strategy development, companies should analyse potential conflicts of objectives with re-
gard to ecological, economic and social sustainability at an early stage. Ecological conflicts
of interest should be discussed here first, because ecological sustainability is the primary
claim with which bio-based products and the bio-economy as an economic system are
promoted [4]. The paper presented here clearly demonstrates that the newly developed
biorefinery can make a positive contribution on the way to climate neutrality from an
ecological point of view.

6. Conclusions and Outlook

In the context of this work, the energy demand, CO2 footprint and other environmental
parameters were analysed for a newly developed biorefinery, which works on the principle
of torrefaction with superheated steam. The whole supply chain of biomass and auxiliary
materials were included in the assessment. The results show that the biorefinery can com-
pete with established bio-based and conventional production processes for furfural, 5-HMF
and acetic acid in terms of its environmental performance indicators. The biorefinery is
versatile enough to produce various high-quality platform chemicals and torrefied biomass
from biomass residues.
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The main drivers for further optimisation were identified. In this context, the plant
is particularly interesting for an industrial symbiosis with actors from several different
sectors. The biorefinery particularly supports the EU’s 2050 goal of climate neutrality
by using biomass residues in an environmentally friendly way to produce high-quality
platform chemicals.

The research has shown that it is very time consuming to collect reliable data for the
environmental analysis, especially for the competing processes. Wherever possible, the
results were verified by means of the authors’ own experiments, calculations and estimates.

In the second part of this publication series, the economic performance and possible
commercialisation strategies are presented. Further works will focus on the continuous
separation of chemicals, the flexible extraction of different valorisation products and the
upscaling of the SHS-based drying/torrefaction with different biomass residues.
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