

Optimized is Not Always Optimal
The Dilemma of Analog Design Automation

Juergen Scheible
 Electronics & Drives

 Reutlingen University
 Reutlingen, Germany

 Juergen.scheible@reutlingen-university.de

ABSTRACT
The vast majority of state-of-the-art integrated circuits are mixed-
signal chips. While the design of the digital parts of the ICs is highly
automated, the design of the analog circuitry is largely done
manually; it is very time-consuming; and prone to error. Among the
reasons generally listed for this is often the attitude of the analog
designer. The fact is that many analog designers are convinced that
human experience and intuition are needed for good analog design.
This is why they distrust the automated synthesis tools. This
observation is quite correct, but this is only a symptom of the real
problem.

This paper shows that this phenomenon is caused by very concrete
technical (and thus very rational) issues. These issues lie in the
mode of operation of the typical optimization processes employed
for the synthesizing tasks. I will show that the dilemma that arises
in analog design with these optimizers is the root cause of the low
level of automation in analog design. The paper concludes with a
short review of proposals for automating analog design.

CCS CONCEPTS
• Hardware ⟶ Electronic design automation ⟶ Methodologies for
EDA • Hardware ⟶ Very large scale integration design ⟶ Analog
and mixed-signal circuits ⟶ Analog and mixed-signal circuit
synthesis.

KEYWORDS
Analog design automation, optimization algorithms, procedural
automation, analog layout synthesis, EDA

ACM Reference format:

Juergen Scheible. 2022. Optimized is Not Always Optimal - The Dilemma of
Analog Design Automation. In Proceedings of 2022 International Symposium
on Physical Design (ISPD ’22), March 27-30, 2022, Virtual Event, Canada, ACM,
New York, NY, USA, 8 pages https://doi.org/10.1145/3505170.3511042

1 Introduction

1.1 Trends: Moore's Law and the Design Gap
Microelectronics has grown at a breathtaking pace since the first
ICs were designed over 60 years ago. It has changed our lives
beyond recognition and will continue to do so. This technological
evolution has been made possible by rapid progress in
semiconductor technology, which has enabled ever more functions
to be integrated on an IC by on-going miniaturization. The top black
line in Fig. 1 (left-hand scale) shows the exponential growth of IC
devices on a computer chip. This is known as “Moore's law”. Chips
can be designed and built nowadays with feature sizes of some few
nanometers, which can contain up to 100 billion transistors – so to
speak computer farms in thumbnail format.

Figure 1: Moore's law, design productivities and design gaps
for logic ICs in CMOS technology and SOCs and Smart Power
ICs in BCD technologies

Not only do ICs need to be fabricated, they have to be designed first.
This is why enormous efforts are made in the specialist field of
electronic design automation (EDA) to design ever more powerful
design tools for IC design engineers so that they are able to master
the extremely challenging complexity they have to face. The
success of these efforts can be seen in design productivity. In fact,
this success can be quantified by dividing the functionality
integrated on a chip (measured in the number of devices) by the
required design effort (measured in person-years).

How the design productivity for logic chips has progressed
(right-hand scale) is shown by the upper red line in Fig. 1. There is
an exponential growth rate as well. At just over 20% per year, it is

This work is licensed under a Creative Commons Attribution International 4.0 License.

ISPD ’22, March 27–30, 2022, Virtual Event, Canada.
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9210-5/22/03.
https://doi.org/10.1145/3505170.3511042

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

151

https://doi.org/10.1145/3505170.3511042
https://doi.org/10.1145/3505170.3511042

much greater than with other technical disciplines and therefore
quite respectable. This growth rate does however still lag
considerably behind Moore’s law. This is where the well-known
design gap comes from, with the result that the development costs
for a logic IC have a tenfold increase every 15 years.

1.2 The Analog Design Gap
Today’s microelectronic systems contain digital logic as well as
multiple analog subcircuits. The analog parts manage the internal
power supply and interface to the outside world to convert sensor
signals at their inputs and to control actors at their outputs. It has
long been standard practice to combine such analog parts with
digital logic on a chip. That’s why the great majority of today's chips
are mixed-signal ICs. If the power output stages are also included,
the chip is called a “System on chip” (SOC), or if the chip consists
mainly of power transistors it is called a “Smart Power” IC. The key
figures for these types of SOCs, mentioned above, which have been
produced since the 1990s in BCD mixed-signal designs, for
automobile electronics, for example, are shown in the bottom part
of Fig. 1.

The design of digital subcircuits for these ICs is highly auto-
mated, while their analog counterparts are still mainly designed
manually. It can be seen from Fig. 1 that analog design productivity
lags behind digital design productivity by multiple orders of
magnitude (see red double arrow). The result is that most of the
design effort (often > 90%) goes into the analog parts in an SOC,
although these analog parts contain only a very small portion of the
functionality (typically some few percent, see blue curve).

Analog circuit and layout design is therefore by far the main cost
factor in today's dominant mixed-signal designs. This problem is
known as the “analog design gap” [6]. A key takeaway here is:
although the digital circuit parts (the parts that follow Moore’s law)
are growing to a greater extent than the analog parts (see blue-black
double arrow), the dominance of analog circuit and layout design as
a cost driver is so great that the analog design gap has become the
bottleneck in state-of-the-art microelectronics.

1.3 Paper Structure and Goal
The basis for successful automation in digital design are
optimization techniques. In the paper I want to show why this
powerful “all-purpose weapon” in EDA repeatedly fails in analog
design. There are very rational, technical reasons for this, which, in
my view, are the main cause of the analog design gap.

In order to understand the causes of the analog design gap, we
need to know how automation works in IC design and what the
crucial difference between analog circuit design and digital circuit
design is in this regard. I will address the second question in Sect. 2.
The first question will be dealt with in the two sub-sequent sections.
Some of the principle EDA strategies are described in Sect. 3. I will
discuss the structure and mode of operation of optimization
algorithms in Sect. 4. The experienced reader can skip these two
sections covering the EDA basics without any difficulty. Using this
knowledge, we will address a key dilemma impacting all
optimization algorithms in Sect. 5. This leads to a performance limit,
which I call the “optimization horizon” and which, in my view, is
the main cause of the analog design gap. Procedural techniques and

machine learning are other options that are available instead of
optimizers. In Sect. 6, I will give a short résumé of the ideas put
forward in the paper and add a few notes on alternative approaches
to close the analog design gap.

2 Digital vs Analog – The Crucial Difference
At a first glance, it is difficult to understand why analog circuit
design is so much less automated than digital design, as both types
of circuit are made up of the same types of devices (mainly
transistors), which are electrically connected through
interconnects. They are also located on the same semiconductor
base. Hence, they are made of exactly the same materials. Looking
at the matter from this perspective, all one sees is that the number
of devices and nets on the digital side is much greater than on the
analog side. The digital devices are therefore much more “complex”.
Logically enough, you would expect the design of the digital devices
to require much more effort? But what we find in the real world is
the exact opposite.

To understand this apparent paradox, we need to look at digital
and analog circuits from a different perspective – that is, the
functional perspective. Continuous-time and continuously valued
signals are processed by analog circuits. Digital signals are, by
contrast, both discrete-valued and discrete-time signals. This is a
fundamental difference and has serious implications.

Electronic signals are impacted by multiple unwanted, but
largely unavoidable affects. Let’s have a brief look at them. The
electrical behavior of the devices depends greatly on temperature
(temperature variations on chips are often greater than 100 kelvin);
on fabrication tolerances (typical variations are in double-digit
percentages); or on mechanical stress in the semiconductor crystal
(triggered, for example, by the expansion or contraction of different
materials or by the chip package). There are also parasitic electrical
effects caused by unwanted interactions between the circuit
elements via the substrate or between the IC wires. In addition,
there are other sources of noise from within and from outside the
system, which cause additional disturbances.

Analog as well as digital subcircuits are impacted by all these
effects. However, analog circuits are much more sensitive to such
perturbations, as every change in current or voltage due to these
effects alters the required signal and thus degrades the signal
quality. The analog designer needs to be aware of all these factors
and to take them into account by taking appropriate measures when
designing the circuit and the layout in order to achieve the required
signal quality under all circumstances. This is a formidable
challenge when faced with such a large number and variety of noise
sources, although the individual analog circuit blocks are normally
only comprised of a few dozen devices – the circuit blocks are
“small” in other words. The difficulty with analog design does not
lie in the size of the circuits, but rather in the mastering of the
variety of influences to which they are susceptible.

Digital circuits are, by contrast, much less susceptible to these
effects, as they work exclusively with discrete signals. Generally,
they are dealing with binary signals with only two different values.
(These values are typically the dual digits “0” and “1” or the logical
values “true” and “false”.) This means the electrical design requires

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

152

only two voltage levels. The only prerequisite is that the different
levels can be clearly identified. This is achieved by defining a
forbidden zone between the levels and by waiting until all signal
nodes have returned to one of their permissible logic states after an
event before triggering read processes. This is done by setting the
clock rate.

Figure 2: A comparison between analog and digital
waveforms

This rigid abstraction is shown in Fig. 2 as an example of a simple
series circuit from an NMOS and a PMOS transistor. This circuit can
be used in analog technology as an amplifier, a push-pull stage or a
half-bridge; in digital electronics it is known as an inverter. Digital
circuits can thus be practically immunized against the above noise
to assure error-free operation. Another advantage is that because
the transistors in digital circuits need only operate as simple On/Off
switches, they must not meet as many requirements as (linear)
analog circuits.

Analog designers and digital designers are right – but in
different ways – when they say their design problems are very
complex. Therefore, when talking about complexity, I prefer to
distinguish between (1) quantitative complexity, as observed in
digital designs, referring to the sheer number of design elements
(aka “More Moore”), and (2) qualitative complexity, as found in
analog designs, and rooted in the diversity of the requirements to
be considered (aka “More than Moore”).

3 Strategies and Techniques in Electronics
Design

Two strategies have proved to be very successful when faced with
complex design challenges (not only in electronic design): the
“divide-and-conquer” principle and the use of computer programs,
i.e., automation. Both strategies are applied in many situations.

3.1 Divide and Conquer
The task of designing a microelectronic system consists of
converting the required electrical functions (documented in a
system specification) to the fabrication data (layout) needed to
fabricate the masks. This task is so challenging that it cannot be
performed in a single step. It is therefore split into multiple subtasks.
The result is a design flow made up of design steps, which are
executed serially. A host of different design flows comprising
multiple design steps have evolved to suit the specific design task at
hand (digital, analog, mixed signal) [7].

Multiple benefits accrue from this task sharing approach: the
subtasks are less complex and allow members of the design team to
specialize in individual tasks. This type of specialization also
promotes computer support, as it simplifies the design of
automation procedures. Another advantage is that clearly defined
intermediate results, which can be checked for correctness, are
obtained with the design steps. Design flaws can thus be identified
early and fixed.

Another type of division occurs in the structural domain. The
system to be designed is split into smaller parts. The result is circuit
blocks, mostly in multiple hierarchy levels, which are easier for
humans and for algorithms to deal with. Partitioning in subcircuits
delivers great improvement in compute time due to the growth in
runtime complexity for algorithms [4]. The great advantage here is
that the circuits and layouts for the system parts can be largely
designed independently of one another and in parallel. This
significantly shortens the design timeline.

3.2 Basic Principles of Design Automation

3.2.1 Synthesis and analysis
There are differences between synthetizing techniques and
analyzing techniques in EDA. Synthetizing techniques realize
individual or multiple back-to-back design steps, i.e., they produce
new design results or intermediate results. The successful
application of a synthesis technique helps progress a design flow.
One could also say that synthetizing techniques add value.

Analyzing techniques, on the other hand, are deployed to verify
the correctness of design results or intermediate results, that is, they
are verifying techniques. They enable the decision as to whether a
design step was successful or not. In the latter case, the design step
must be repeated (either partially or completely). If the step was
successful the flow can move on to the next design step. It is crucial
that errors in the design process are detected as early as possible, as
the costs for clearing a fault increase by about one order of
magnitude with each design step.

If we compare analog and digital design in connection with these
two techniques, we find the following big difference: very powerful,
optimization-based synthesis techniques are available for digital
design in contrast to analog design. This is why digital design
productivity beats analog design productivity by multiple orders of
magnitude. But low analog design productivity does not mean that
there is no automation in the analog circuit design. The tools for
simulating analog circuits at the SPICE level and the techniques for
electrical verification (LVS) and checking design rules (DRC) in
layouts are absolutely necessary analysis tools in the analog design
flow. Without these powerful quality requirements analog circuit
design would long be impossible.

Synthetizing techniques are relevant for our examination.

3.2.2 Synthesis techniques

3.2.2.1 Optimizers. Synthetizing techniques in design automation
are based on the principle of optimization. Optimization algorithms,
also called “optimizers”, are “all-purpose weapons” in EDA.
Optimizers search for a solution to a specific problem based on a
defined objective function, which describes the quality of a solution.
Its eponymous property is that it finds the best solution for which a

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

153

good value will be assigned to the defined objective function. It
normally examines multiple possible solutions. Depending on the
method the number of solution options can be small or very large
(e.g., a stochastic search algorithm such as simulated annealing).
Some optimizers calculate a guaranteed optimum mathematically
(e.g., quadratic placement [5]). We shall discuss characteristic
properties of optimizers in Sect. 4.
3.2.2.2 Generators. Procedural techniques are another tool
category. Procedural techniques do not perform optimization, but
run scripts containing actions predefined by experts in the field.
They are also known as generators. A generator produces a
predefined design result while an optimizer searches for a new
solution for a design problem at runtime. Generators are therefore
knowledge based.
3.2.2.3 Neural Networks. In recent times, we have witnessed
increased use of machine learning and deep learning techniques for
synthesizing tasks in EDA. Neural networks are first trained and
then a set of output data is produced from a set of input parameters.
For example, there are attempts to obtain the dimensioning
parameters for an operational amplifier at the output of a trained
neural network by inputting the desired performance parameters of
the amplifier to the network. The neural network contains expert
design knowledge of the required widths and lengths of the
transistors. Many more applications have been described in recent
years, which are often used to supplement optimization-based or
procedural techniques. These approaches need to mature further
before they find their way into industrial application. But this
transition will definitely take place.

4 Some Theory Behind Optimization Methods

4.1 The Purpose of Optimizers
Optimization provides a solution to a so-called optimization
problem. There are a set of possible solutions for an optimization
problem and an objective function that grades the solutions. The
optimization aims to find a solution from the set of solutions for
which the objective function assumes a value that is as large (or
small) as possible.

To solve an electronic design task by optimization, we first need
to define the optimization goal. This goal must be quantifiable so
that the quality of different solution options can be assessed and
compared. Take for example a placement problem where one might
want to minimize the chip area A or the sum L of all (estimated)
wire lengths (aka total wire length). It is often the case that multiple
optimization goals are aimed for simultaneously. These goals are
then bundled in a compound objective function Qmod = f (A, L) in
this example case. A popular simple approach is to build the
objective function from the weighted sum of individual objective
goals [5]. For the above example, this would be

 𝑄𝑚𝑜𝑑 = 𝑤𝐴 ∙ 𝐴 + 𝑤𝐿 ∙ 𝐿 (1)

The weighting of the two sub-goals is then easily set with the
weights wA und wL. The index “mod” signifies that the quality refers
to a model here. This will be explained in the next section.

4.2 Model Generation and Solution Space
Before an optimization can be run on a computer, a mathematical
model of the real design problem hast to be created (Fig. 3 on top).
The result of this model generation is the optimization problem,
consisting of the objective function Qmod and a data structure. An
algorithm is required as well that will process the data structure and
execute the optimization. These elements need to be accurately
matched in the model.

Figure 3: The model generation procedure and the structure
and mode of operation of an optimizer. (1) in accordance with
[12]

Let us look at the data structure first. It should contain all relevant
characteristics of the design problem needed for finding a solution.
The data structure should also be constructed in such a way that the
objective function can be efficiently calculated and that solution
options can be effectively generated.

Relevant properties of a design problem include the parameters
that describe the solution. I will call these the solution parameters
si. In our placement problem this would be the pairs of coordinates
(xj, yj) we are looking for. This means that j = 1, …, n for n devices
to be placed and hence i = 1, …, 2n (two solution parameters per
device).

In addition, all information needed to calculate the objective
function is required. For our example, this means that information
on the electrical nets is needed for the objective function (1) so that
the estimated total wire length can be calculated. Other properties
may be of relevance for the search for solutions depending on how
the optimization method works. This means that these properties
would have to be modeled as well. We will come back to this later.

The model produces a virtual solution space S spanned by the
solution parameters si. Each si defines an axis of S. Solution spaces
are typically extremely high dimensional. Every point in S repre-
sents a potential solution. The solution space in our exemplary
placement problem has 2n dimensions. Two dimensions of such a
solution space are visualized in Fig. 4.

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

154

Figure 4: Two-dimensional sections of a solution space. The
objective function has constant values along the broken lines
(a). Constraints define a valid solution space (b)

In our example, axes s1 and s2 could be the possible x- and y-
coordinates for a device we wish to place or one coordinate for each
of two devices to be placed.

4.3 Structure of an Optimization Algorithm
The optimization algorithm searches the solution space S for the

best solution with regard to the quality, that is, the solution with the
best Qmod value. This point is also called the global optimum for an
optimization problem. One can visualize the values Qmod (s1, …, s2n)
as a “mountain range” across S, where the quality of a particular
solution is represented by the height value. Some contour lines for
this mountain range are indicated in Fig. 4a. We search for a point
in the mountain range that is either as high or as low as possible,
depending on the definition of Qmod.

The structure and the mode of operation of an optimizer are
shown in the beige box in Fig. 3. It consists of an exploration engine
and an evaluation engine. The exploration engine explores the
solution space S and selects (or generates) candidate solutions,
which are assessed by the evaluation engine in accordance with the
objective function. Based on this assessment, the exploration engine
decides which solution option should be evaluated next. This
procedure is executed iteratively resulting in a directed search for
increasingly “better” solutions in S.

Iterations are performed until a termination criterion is reached.
This is typically a runtime limit or a minimum solution quality. This
is an algorithmically found solution, which I call the “model
solution”. The devices in our example would be placed at the
locations in the layout that are defined by the solution parameters
in the model solution. The “real-world solution” is only found with
this operation. This transfer operation may appear trivial. We will
see later that it is very important to distinguish between the model
solution (i.e., the solution in the mathematically modeled solution
space) and the real-world solution for a design task (this is the result
of a design step).

4.4 Constraints
Typically, specific boundary values have to be adhered to in every
design step. These are called constraints. Constraints can arise from
the chip fabrication process, from the specified electronic circuit
function or from the design methodology [7]. Constraints define
whether a point in the solution space S represents a valid solution
or not. Constraints often appear as boundary surfaces that divide S

into a “valid” and an “invalid” (i.e., forbidden) space. The valid area
of S is also called a search space.

We will illustrate these procedures now with a practical example
– a routing task. A set of straight interconnect segments needs to be
determined for every wiring net in this task. We define the
following solution parameters for interconnect segments:
coordinate of a segment end, segment length, orientation (angle),
segment width and routing layer. A section of the solution space for
this type of interconnect segment i with the two solution
parameters segment width wi and segment length li is shown in Fig.
4b. Forbidden parts of the space are colored gray. The technological
constraint specifying a minimum width is shown as C1. A maximum
IR drop could be requested for the segment in order for the circuit
to function properly. This yields a maximum track resistance, which
is converted to a maximum permissible value for the ratio li/wi by
means of the sheet resistance. This yields the constraint C2. If one
wanted to constrain the parasitic capacitance for operational
reasons, the segment area would need to constrained accordingly
and the result would be a constraint of the form C3. Design-
methodology constraints are also possible. You could, for example,
constrain the solution parameter “orientation” (not shown in Fig.
4b) so that only horizontal, vertical and diagonal segments are
allowed.

5 The Limits of Optimization

5.1 Computational Efficiency
The computational efficiency of an optimizer is determined by how
well the evaluation engine and the exploration engine cooperate.
The following have a direct bearing on this efficiency: (1) for how
many points in the solution space can the evaluation engine
calculate the objective function per unit of time and (2) how
successful the exploration engine is at searching the solution space
– in other words, how many trials does it need to approach a good
solution.

The first factor is easy to quantify. The second factor is a
qualitative aspect of the search algorithm, which can also be
estimated by means of tests on benchmark examples. “Good” – or
globally optimal model solutions in the best case – can be generated
with high computational efficiency.

The contribution of the exploration engine to the computational
efficiency is clearly a function of the size of the solution space (i.e.,
the cardinal number of set S); it is also impacted by the composition
of the “quality mountains”. The global optimum can definitely be
found quickly with a simple gradient technique if there is only one
peak in the mountain range, for example. This is also the case if the
number of peaks is so small that enough attempts can be made at a
successful search for a solution. Solution spaces are usually so
complex in practice, however, that such simple approaches using
“greedy” algorithms fail for real-world tasks. There are a whole host
of smart algorithms in EDA that attempt to get over this problem.
Many of them address very specific design problems. There are
other general approaches, like simulated annealing, which is
compute intensive because it is stochastics based.

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

155

The constraints play a very important role here as well. Fig. 4b
shows how they bound the search space. This has a beneficial effect
on computational efficiency. Design-methodology constraints are a
case in point here: they have led to very unique design styles. I
would like to mention two of them. The number of possible cell
locations is reduced to a simple grid in gate arrays. The placement
problem is thus reduced to an assignment problem, whose solution
space is smaller by some orders of magnitude than with an
unconstrained placement. The designer is constrained to HV
routing with uniform wire widths and pin positions at only two
channel edges in standard cell design. This is despite the fact that
the solution space from the point of view of the available
technology options offers much more degrees of freedom for the
design and could be larger. Adherence to these constraints has
meant, however, that very efficient custom channel routers for this
design style could be designed and built.

Now you might think that the more constraints there are the
better computational efficiency is. You might be right in many cases
– as shown in the examples – but unfortunately things are not that
simple. Constraints can have a very negative impact on
computational efficiency (i.e., on the time required to find a
solution). This will become clear in the following cases and
examples.

The mathematical model in the case of design-methodology
constraints is designed so that the exploration engine “automa-
tically” remains in the search space. This is not the case with
functional constraints. In this case, the exploration engine normally
checks in every iteration whether the solution option violates a
constraint or not, i.e., whether it is in the valid search space. Take
the example in Fig. 4b. The quotient and the product of width and
length are calculated for every interconnect wire under
investigation to test the given constraints. This requires extra
compute time, which can be quite significant and which increases
with every additional constraint.

I mentioned in Sect. 4.2 that other properties may need to be
included in the model along with the design problem properties
explained there. This is always the case when there are constraints
that cannot be described as a function of the solution parameters (as
in the example we just outlined above). If we take into account the
overlaps between devices in the placement problem in Sect. 4.2, we
would have to model the surface areas or the exact dimensions of
the devices as well. To prevent overlaps, we can then exclude right
from the start solution options with overlapping devices from the
algorithm so that only valid placement solutions are generated. This
would be an additional set of constraints, for which we would need
this additional information. Another strategy would be to allow
overlaps, but to include them in the objective function so that the
optimizer would try to minimize the sum of overlaps. No new
constraints would then be created, but the computational overhead
of the evaluation engine would be greater. (In the latter case, a
solution may then have to be followed up with a so-called
"legalization” step to eliminate any residual overlaps).

Here is another example of how additional constraints are
generated: if we wish to include the resulting power losses and their
effects on the electronic circuit in a layout optimization when
designing an SOC, the necessary calculation bases would have to be

included in the problem model. Further parameters would be
needed to add extra dimensions to the solution space so that the
new boundary values can be modeled. This would increase the size
of the solution space as well as the computational overhead needed
for checking the new constraints.

In addition to these technical issues, there are functional
constraints, which are not necessarily known and that need to be
defined separately. And normally they cannot be automatically
passed to the optimizers. This type of “constraining” work typically
has to be done manually and is very time-consuming. This is often
the reason why analog designers shy away from using optimizers:
it is not worth the work involved.

5.2 Modeling Accuracy and Model Complexity
I would like to point out at this stage that the (modeled)
optimization problem is not the same as the (real-world) design
problem. The mathematical modeling procedure, whereby a design
problem is represented as an optimization problem, is to certain
extent always an abstraction of the design problem (see top part of
Fig. 3). Therefore, information is always lost when building a model,
and thus also when using an optimizer (see bottom part of Fig. 3).
The result is that not all aspects of the real-world design problem
go into the optimization. A designer could be very disappointed
when the model solution is transformed back from the optimization
result, even if Qmod has a very high value or if it is the global
optimum even.

I would now like to present two examples for that. Let’s look at
two simple solutions for a placement problem. If we model the nets
using spring forces (quadratic placement, force placement [5]), the
net structure is represented globally. However, the devices are
typically very tightly placed with multiple overlaps. If no other
measures are taken (e.g., fixed cells at the periphery of the
placement area), all cells will be placed at the same point. And that
represents the global optimum! The layouter would not be happy
with this result – to say the least. The principle issue with this
approach is that devices are only modeled as mass points. If devices
are placed with the Mincut technique [5], they are spread very well
across the placement area due to partitioning and assignment of the
devices to sections of the surface space. The downside here is that
Mincut progressively looses the global view of the nets as iterations
progress. So we see: “Optimized is not always optimal (from the
designer’s perspective)”.

Naturally, we could get rid of these drawbacks by including the
missing aspects in the model of the design problem, in other words,
by increasing the modeling accuracy. This is exactly what is
happening in EDA research and in the EDA industry. In case of the
two very primitive basic algorithms shown above, there is a vast
array of extensions and upgrades to them out there. Multiple
authors have also profitably combined them and have produced
powerful practical placement tools for digital layouts for the
industry. Model complexity has increased with these on-going
upgrades.

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

156

5.3 Real Optimization Quality
I want to introduce the term “real optimization quality” Qreal. The
intention is that the term Qreal is a measure of how “good” a real-
world solution produced by an optimizer for a design problem is.
How could this be measured? One could examine how well a real-
world solution achieves the performance parameters in the system
spec (e.g., by post-layout simulation) in order to obtain a value for
Qreal. However, this could only be done for the final result of a
design process. For intermediate results of individual design steps,
probably only a subjective appraisal of the designer would be
possible. But I’m not interested in such an evaluation, instead I want
to show that the quantities “computational efficiency” and “model
complexity” described in the prior sections and which I label E and
M respectively are closely related.

Experience shows that a high Qreal can only be achieved with a
very detailed model, that is, with a high M. In other words, Qreal
increases as M increases. That said, an optimizer must have
sufficient E (i.e., it must be able to assess a sufficient number of
promising solution options), otherwise a high M would be useless.
We can express this relationship as follows:

 𝑄𝑟𝑒𝑎𝑙 = 𝐸 ∙ 𝑀 (2)

This formula is not to be understood as a mathematically exact
expression, as I have only explained E and M verbally and have also
refrained from defining units. It shows the basic relationship
between the two quantities: the more complex (and therefore the
more precise) a real-world design problem is modeled and the more
efficient the search algorithm, the greater Qreal will be – i.e., the
better the quality of the real-world design result in the eyes of the
designer.

5.4 The Optimizer Dilemma: The Optimization
Horizon
There is another relationship between E and M. We have seen how
the compute requirements of an optimizer grows if we introduce
further characteristics of a design problem into the model of the
optimization problem. This means that as M increases E is
weakened. Put mathematically: E and M are negatively correlated.
If we show the EDA optimizers as points on a diagram with the axes
M and E, we get a cloud as depicted in Fig. 5.

From this it follows that you always face a dilemma when
designing or choosing an optimizer to solve a design problem. If M
is low (that is, the level of abstraction is high), there is a good
probability of finding a global optimum in the solution space or to
find a solution that is nearly optimum (i.e., high Qmod), as E is high
(a simple algorithm with a fast evaluation engine and a “benign”
solution space). The downside is that despite a high Qmod, a low Qreal
is expected because of the loss of information due to the high degree
of abstraction of the optimizer’s model. If, on the other hand, you
choose a technique with high M (low abstraction, i.e., an accurate
model of the problem), E will be low. Consequently, there is less
probability of the optimizer finding a solution with high Qmod
(although in this case a high Qmod would mean a good Qreal due to
the high M). The metric Qreal is bounded here as well.

The takeaway is that the real-world optimization quality Qreal
cannot be increased at will. The quality of the real-world design
result that can be achieved by optimization has a definite limit. This
calls to mind the “event horizon” beyond which we cannot see (from
the general theory of relativity). This inspired me to call this
optimization boundary the “optimization horizon” (Fig. 5).

Figure 5: Relationship between the model complexity and
computational efficiency of optimizers, and the limits of
optimization

The optimization horizon is clearly not a fixed quantity, given that
Eq. (2) is not a formal, mathematical equation. This boundary will
definitely be pushed back by new IT techniques and new computer
generations. It will never disappear though.

5.5 The Productivity Gap Between Analog and
Digital Design
The enormous design productivity gap between analog and digital
design can be explained in the light of the above observations.

Digital design, as explained, benefits from the restriction to
discrete-valued and discrete-time signals. This rigid standardiza-
tion means a massive reduction of the degrees of freedom in
electronic design and simplifies the mathematical modelling. The
key point here is that this abstraction does not take place during
modeling, but before that in the real world. The real-world design
problem is already abstracted! (see Fig. 2 on the right). The real-
world design problem is so massively simplified that all relevant
properties can be successfully included in an optimization model.
Another way of putting it: a low M is tolerable. The parameter E can
thus be high. This is precisely what is needed to be able to handle
the extreme quantitative complexity in digital design.

This brings us to the fundamental difference to analog design.
The high qualitative complexity practically prohibits the design
problem from being “simplified” with standardizations. By contrast
here, all disturbances need to be included in the design process to
effectively suppress their effects with special measures in the circuit
design (especially with the use of differential circuits) and in the
physical design (especially by matching [8]). The aspiration of the
analog designers is to proactively use all degrees of freedom in order
to come as close as possible to this objective. Their expertise lies in

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

157

their practical experience and is essentially knowledge of the
specific design problem constraints. This specialist knowledge is
implicitly brought to bear in manual design. The key advantage here
is that as there is no need to formalize the work, and there is no risk
of losing information through modeling.

This points us to the root cause of the design productivity gap:
the strength of optimization methods, which arises in digital design
from the abstraction procedure, becomes a weakness in analog
design. This explains, in my opinion, why optimization techniques
are ill-suited for analog design – in fact, I would almost go so far as
to say that they resist a (good enough) solution by optimization. To
put it another way: practical analog design problems require a Qreal
that is beyond the optimization horizon.

Optimization-based automation is anathema to many practical
analog designers. There are good reasons for this. The only excep-
tion worth mentioning is the use of optimization for design center-
ing. The compute power involved is huge, as the evaluation engine
must utilize simulations (“simulation in the loop”). Although these
tools can also be used for circuit design to determine “optimal”
nominal values, they are rarely used for this purpose. Most analog
designers prefer to draw on their intuition and experience instead.

Other experts for analog EDA are of the opinion that optimizers
theoretically are able to synthesize analog circuits. But they feel the
necessary modeling is practically impossible [4]. This could be
called the “modeling threshold”, which I have drawn in Fig. 5 as
well. In the end its effect is the same as for the optimization horizon.

6 Conclusion and Alternative Approaches
This treatise should not give the impression that optimizers are
absolutely unsuited for analog design problems. There are certainly
individual cases where it works, but these are too rare for industrial
acceptance There will be also a shift in the optimization horizon as
a result of advances in computing technology. However, the
challenges in analog design will also continue to increase in
semiconductor processes going forward. I'm afraid optimization
will always pull the short straw in this race. Furthermore, I'm
convinced that we will never see the day when the analog parts of
chips are designed solely by means of an optimization-based design
flow with a degree of automation that is comparable to a digital
flow.

An automated analog flow can be achieved by taking a look at
further automation techniques. Procedural techniques are parti-
cularly promising here. They have received increased attention in
recent years as well. One such approach is BAG [2] and further
developments of it [1], which is a hot research topic in multiple
European EDA-research laboratories at the moment. Template-
based layout-generators are presented in [11]. We ourselves have
developed the EDP tool (Expert Design Plan), a procedural approach
for dimensioning analog circuits that has already found its way into
industrial application [14].

Combining procedural and optimization techniques is a
formidable challenge, as they work with contrarian automation
paradigms. A very good analysis on this subject is to be found in
[9]. This work also introduces an attempt at a solution to the

problem called SWARM, where smart layout generators cooperate
as agents, resulting in a self-organizing layout (refer to [10] for a
compact description). In [13] and [7], I outline how the different
automation paradigms could be merged in a top-down-meets-
bottom-up design flow.

Basically, I agree with those authors, who say that a smart
combination of multiple automation approaches is the best way to
go. MAGICAL [15] and ALIGN [3] are impressive recent examples
of such approaches. They both offer a fully automated analog
physical design, incorporating human expert knowledge, as well as
analytical, heuristic and machine learning techniques.

REFERENCES
[1] Eric Chang, Jaeduk Han, Woorham Bae, Zhongkai Wang, Nathan Narevsky,

Borivoje Nikolić, Elad Alon. 2018. BAG2: A Process-Portable Framework for
Generator-Based AMS Circuit Design. In Proc. of IEEE Custom Integrated Circuits
Conference (CICC), April 8-11, 2018, San Diego, CA, USA.
https://doi.org/10.1109/CICC.2018.8357061.

[2] J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas, K. Jung, L. Kong, N.
Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-Vincentelli, and E. Alon.
2013. BAG: A designer-oriented integrated framework for the development of
AMS circuit generators. In Proc. of 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), April 18-21, 2013, San Jose, CA, USA, 74–81.
https://doi.org/10.1109/ICCAD.2013.6691100.

[3] Tonmoy Dhar, Kishor Kunal, Yaguang Li, Meghna Madhusudan, Jitesh Poojary,
Arvind K. Sharma, Wenbin Xu, Steven M. Burns, Ramesh Harjani, Jiang Hu,
Desmond A. Kirkpatrick, Parijat Mukherjee, Soner Yaldiz, Sachin S. Sapatnekar.
2021. ALIGN: A System for Automating Analog Layout.
In IEEE Design & Test, Vol. 38 (2), April 2021, 8-18.
https://doi.org/10.1109/MDAT.2020.3042177.

[4] Helmut E. Graeb, personal communication.
[5] Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu. 2011. VLSI Physical Design:

From Graph Partitioning to Timing Closure. (1st. ed.), Springer, Dordrecht.
https://doi.org/10.1007/978-90-481-9591-6.

[6] Jens Lienig and Juergen Scheible. 2020. Fundamentals of Layout Design for Elec-
tronic Circuits. Springer, Cham, 1-29. https://doi.org/10.1007/978-3-030-39284-0.

[7] Jens Lienig and Juergen Scheible. 2020. Methodologies for Physical Design:
Models, Styles, Tasks, and Flows. In Fundamentals of Layout Design for Electronic
Circuits. Springer, Cham, 127–164. https://doi.org/10.1007/978-3-030-39284-0_4.

[8] Jens Lienig and Juergen Scheible. 2020. Special Layout Techniques for Analog IC
Design. In Fundamentals of Layout Design for Electronic Circuits. Springer, Cham,
213–255. https://doi.org/10.1007/978-3-030-39284-0_6.

[9] Daniel Marolt. 2018. Layout Automation in Analog IC Design with Formalized and
Nonformalized Expert Knowledge. Ph.D. Dissertation, University of Stuttgart,
Germany. http://dx.doi.org/10.18419/opus-10231.

[10] Daniel Marolt, Juergen Scheible, Goeran Jerke, Vinko Marolt. 2016. SWARM: A
Self-organization Approach for Layout Automation in Analog IC Design. In Int.
Journal of Electronics and Electrical Engineering (IJEEE), 2016, Vol. 4 (5), 374-385.
https://doi.org/10.18178/ijeee.4.5.374-385.

[11] Benjamin Prautsch, Uwe Hatnik, Uwe Eichler, Jens Lienig. 2021. Template-Driven
Analog Layout Generators for Improved Technology Independence. In Proc. of
16th GMM/ITG-Symposium ANALOG 2018. Sep. 13-14, 2018. Munich, Germany, 1–
6. https://ieeexplore.ieee.org/document/8576850.

[12] Rob A. Rutenbar. 2006. Design Automation for Analog: The Next Generation of
Tool Challenges. 2006. 1st IBM Academy Conference on Analog Design, Technology,
Modeling and Tools. IBM T.J. Watson Research Labs, Sep. 2006,
http://users.ece.cmu.edu/~rutenbar/pdf/rutenbar-iccad06tut.pdf.

[13] Juergen Scheible, Jens Lienig. 2015. Automation of Analog IC Layout – Challenges
and Solutions. In Proc. of Int. Symp. on Physical Design (ISPD'15), Mar 29 – Apr 1,
2015, Monterey, CA, USA, 33-40, http://dx.doi.org/10.1145/2717764.2717781.

[14] Matthias Schweikardt, Yannick Uhlmann, Florian Leber, Juergen Scheible, Husni
Habal. 2019. A Generic Procedural Generator for Sizing of Analog Integrated
Circuits. In Proc. of the 15th Conf. on Ph.D. Research in Microelectronics and
Electronics (PRIME 2019), July 15-18, 2019, Lausanne, Switzerland, 17-20.
http://dx.doi.org/10.1109/PRIME.2019.8787743.

[15] Biying Xu, Keren Zhu, Mingjie Liu, Yibo Lin, Shaolan Li, Xiyuan Tang, Nan Sun,
David Z. Pan. 2019. MAGICAL: Toward Fully Automated Analog IC Layout
Leveraging Human and Machine Intelligence: Invited Paper. In Proc. of 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov. 4-7,
2019, Westminster, CO, USA, 1-8.
https://doi.org/10.1109/ICCAD45719.2019.8942060.

Session 13: Advances in Analog and Full Custom Design Automation ISPD ’22, March 27–30, 2022, Virtual Event, Canada

158

https://doi.org/10.1109/CICC.2018.8357061
https://doi.org/10.1109/ICCAD.2013.6691100
https://doi.org/10.1109/MDAT.2020.3042177
https://doi.org/10.1007/978-90-481-9591-6
https://doi.org/10.1007/978-3-030-39284-0
https://doi.org/10.1007/978-3-030-39284-0_4
https://doi.org/10.1007/978-3-030-39284-0_6
http://dx.doi.org/10.18419/opus-10231
https://doi.org/10.18178/ijeee.4.5.374-385
https://ieeexplore.ieee.org/document/8576850
http://users.ece.cmu.edu/~rutenbar/pdf/rutenbar-iccad06tut.pdf
http://dx.doi.org/10.1145/2717764.2717781
http://dx.doi.org/10.1109/PRIME.2019.8787743
https://doi.org/10.1109/ICCAD45719.2019.8942060

