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ABSTRACT 
The vast majority of state-of-the-art integrated circuits are mixed-
signal chips. While the design of the digital parts of the ICs is highly 
automated, the design of the analog circuitry is largely done 
manually; it is very time-consuming; and prone to error. Among the 
reasons generally listed for this is often the attitude of the analog 
designer. The fact is that many analog designers are convinced that 
human experience and intuition are needed for good analog design. 
This is why they distrust the automated synthesis tools. This 
observation is quite correct, but this is only a symptom of the real 
problem.  

This paper shows that this phenomenon is caused by very concrete 
technical (and thus very rational) issues. These issues lie in the 
mode of operation of the typical optimization processes employed 
for the synthesizing tasks. I will show that the dilemma that arises 
in analog design with these optimizers is the root cause of the low 
level of automation in analog design. The paper concludes with a 
short review of proposals for automating analog design.  
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1 Introduction 

1.1 Trends: Moore's Law and the Design Gap 
Microelectronics has grown at a breathtaking pace since the first 
ICs were designed over 60 years ago. It has changed our lives 
beyond recognition and will continue to do so. This technological 
evolution has been made possible by rapid progress in 
semiconductor technology, which has enabled ever more functions 
to be integrated on an IC by on-going miniaturization. The top black 
line in Fig. 1 (left-hand scale) shows the exponential growth of IC 
devices on a computer chip. This is known as “Moore's law”. Chips 
can be designed and built nowadays with feature sizes of some few 
nanometers, which can contain up to 100 billion transistors – so to 
speak computer farms in thumbnail format.  

Figure 1: Moore's law, design productivities and design gaps 
for logic ICs in CMOS technology and SOCs and Smart Power 
ICs in BCD technologies 

Not only do ICs need to be fabricated, they have to be designed first. 
This is why enormous efforts are made in the specialist field of 
electronic design automation (EDA) to design ever more powerful 
design tools for IC design engineers so that they are able to master 
the extremely challenging complexity they have to face. The 
success of these efforts can be seen in design productivity. In fact, 
this success can be quantified by dividing the functionality 
integrated on a chip (measured in the number of devices) by the 
required design effort (measured in person-years). 

How the design productivity for logic chips has progressed 
(right-hand scale) is shown by the upper red line in Fig. 1. There is 
an exponential growth rate as well. At just over 20% per year, it is 
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much greater than with other technical disciplines and therefore 
quite respectable. This growth rate does however still lag 
considerably behind Moore’s law. This is where the well-known 
design gap comes from, with the result that the development costs 
for a logic IC have a tenfold increase every 15 years. 

1.2 The Analog Design Gap 
Today’s microelectronic systems contain digital logic as well as 
multiple analog subcircuits. The analog parts manage the internal 
power supply and interface to the outside world to convert sensor 
signals at their inputs and to control actors at their outputs. It has 
long been standard practice to combine such analog parts with 
digital logic on a chip. That’s why the great majority of today's chips 
are mixed-signal ICs. If the power output stages are also included, 
the chip is called a “System on chip” (SOC), or if the chip consists 
mainly of power transistors it is called a “Smart Power” IC. The key 
figures for these types of SOCs, mentioned above, which have been 
produced since the 1990s in BCD mixed-signal designs, for 
automobile electronics, for example, are shown in the bottom part 
of Fig. 1.  

The design of digital subcircuits for these ICs is highly auto-
mated, while their analog counterparts are still mainly designed 
manually. It can be seen from Fig. 1 that analog design productivity 
lags behind digital design productivity by multiple orders of 
magnitude (see red double arrow). The result is that most of the 
design effort (often > 90%) goes into the analog parts in an SOC, 
although these analog parts contain only a very small portion of the 
functionality (typically some few percent, see blue curve).  

Analog circuit and layout design is therefore by far the main cost 
factor in today's dominant mixed-signal designs. This problem is 
known as the “analog design gap” [6]. A key takeaway here is: 
although the digital circuit parts (the parts that follow Moore’s law) 
are growing to a greater extent than the analog parts (see blue-black 
double arrow), the dominance of analog circuit and layout design as 
a cost driver is so great that the analog design gap has become the 
bottleneck in state-of-the-art microelectronics. 

1.3 Paper Structure and Goal 
The basis for successful automation in digital design are 
optimization techniques. In the paper I want to show why this 
powerful “all-purpose weapon” in EDA repeatedly fails in analog 
design. There are very rational, technical reasons for this, which, in 
my view, are the main cause of the analog design gap. 

In order to understand the causes of the analog design gap, we 
need to know how automation works in IC design and what the 
crucial difference between analog circuit design and digital circuit 
design is in this regard. I will address the second question in Sect. 2. 
The first question will be dealt with in the two sub-sequent sections. 
Some of the principle EDA strategies are described in Sect. 3. I will 
discuss the structure and mode of operation of optimization 
algorithms in Sect. 4. The experienced reader can skip these two 
sections covering the EDA basics without any difficulty. Using this 
knowledge, we will address a key dilemma impacting all 
optimization algorithms in Sect. 5. This leads to a performance limit, 
which I call the “optimization horizon” and which, in my view, is 
the main cause of the analog design gap. Procedural techniques and 

machine learning are other options that are available instead of 
optimizers. In Sect. 6, I will give a short résumé of the ideas put 
forward in the paper and add a few notes on alternative approaches 
to close the analog design gap. 

2 Digital vs Analog – The Crucial Difference 
At a first glance, it is difficult to understand why analog circuit 
design is so much less automated than digital design, as both types 
of circuit are made up of the same types of devices (mainly 
transistors), which are electrically connected through 
interconnects. They are also located on the same semiconductor 
base. Hence, they are made of exactly the same materials. Looking 
at the matter from this perspective, all one sees is that the number 
of devices and nets on the digital side is much greater than on the 
analog side. The digital devices are therefore much more “complex”. 
Logically enough, you would expect the design of the digital devices 
to require much more effort? But what we find in the real world is 
the exact opposite.  

To understand this apparent paradox, we need to look at digital 
and analog circuits from a different perspective – that is, the 
functional perspective. Continuous-time and continuously valued 
signals are processed by analog circuits. Digital signals are, by 
contrast, both discrete-valued and discrete-time signals. This is a 
fundamental difference and has serious implications. 

Electronic signals are impacted by multiple unwanted, but 
largely unavoidable affects. Let’s have a brief look at them. The 
electrical behavior of the devices depends greatly on temperature 
(temperature variations on chips are often greater than 100 kelvin); 
on fabrication tolerances (typical variations are in double-digit 
percentages); or on mechanical stress in the semiconductor crystal 
(triggered, for example, by the expansion or contraction of different 
materials or by the chip package). There are also parasitic electrical 
effects caused by unwanted interactions between the circuit 
elements via the substrate or between the IC wires. In addition, 
there are other sources of noise from within and from outside the 
system, which cause additional disturbances. 

Analog as well as digital subcircuits are impacted by all these 
effects. However, analog circuits are much more sensitive to such 
perturbations, as every change in current or voltage due to these 
effects alters the required signal and thus degrades the signal 
quality. The analog designer needs to be aware of all these factors 
and to take them into account by taking appropriate measures when 
designing the circuit and the layout in order to achieve the required 
signal quality under all circumstances. This is a formidable 
challenge when faced with such a large number and variety of noise 
sources, although the individual analog circuit blocks are normally 
only comprised of a few dozen devices – the circuit blocks are 
“small” in other words. The difficulty with analog design does not 
lie in the size of the circuits, but rather in the mastering of the 
variety of influences to which they are susceptible. 

Digital circuits are, by contrast, much less susceptible to these 
effects, as they work exclusively with discrete signals. Generally, 
they are dealing with binary signals with only two different values. 
(These values are typically the dual digits “0” and “1” or the logical 
values “true” and “false”.) This means the electrical design requires 
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only two voltage levels. The only prerequisite is that the different 
levels can be clearly identified. This is achieved by defining a 
forbidden zone between the levels and by waiting until all signal 
nodes have returned to one of their permissible logic states after an 
event before triggering read processes. This is done by setting the 
clock rate. 

Figure 2: A comparison between analog and digital 
waveforms 

This rigid abstraction is shown in Fig. 2 as an example of a simple 
series circuit from an NMOS and a PMOS transistor. This circuit can 
be used in analog technology as an amplifier, a push-pull stage or a 
half-bridge; in digital electronics it is known as an inverter. Digital 
circuits can thus be practically immunized against the above noise 
to assure error-free operation. Another advantage is that because 
the transistors in digital circuits need only operate as simple On/Off 
switches, they must not meet as many requirements as (linear) 
analog circuits. 

Analog designers and digital designers are right – but in 
different ways – when they say their design problems are very 
complex. Therefore, when talking about complexity, I prefer to 
distinguish between (1) quantitative complexity, as observed in 
digital designs, referring to the sheer number of design elements 
(aka “More Moore”), and (2) qualitative complexity, as found in 
analog designs, and rooted in the diversity of the requirements to 
be considered (aka “More than Moore”). 

3 Strategies and Techniques in Electronics 
Design 

Two strategies have proved to be very successful when faced with 
complex design challenges (not only in electronic design): the 
“divide-and-conquer” principle and the use of computer programs, 
i.e., automation. Both strategies are applied in many situations.  

3.1 Divide and Conquer 
The task of designing a microelectronic system consists of 
converting the required electrical functions (documented in a 
system specification) to the fabrication data (layout) needed to 
fabricate the masks. This task is so challenging that it cannot be 
performed in a single step. It is therefore split into multiple subtasks. 
The result is a design flow made up of design steps, which are 
executed serially. A host of different design flows comprising 
multiple design steps have evolved to suit the specific design task at 
hand (digital, analog, mixed signal) [7]. 

Multiple benefits accrue from this task sharing approach: the 
subtasks are less complex and allow members of the design team to 
specialize in individual tasks. This type of specialization also 
promotes computer support, as it simplifies the design of 
automation procedures. Another advantage is that clearly defined 
intermediate results, which can be checked for correctness, are 
obtained with the design steps. Design flaws can thus be identified 
early and fixed. 

Another type of division occurs in the structural domain. The 
system to be designed is split into smaller parts. The result is circuit 
blocks, mostly in multiple hierarchy levels, which are easier for 
humans and for algorithms to deal with. Partitioning in subcircuits 
delivers great improvement in compute time due to the growth in 
runtime complexity for algorithms [4]. The great advantage here is 
that the circuits and layouts for the system parts can be largely 
designed independently of one another and in parallel. This 
significantly shortens the design timeline. 

3.2 Basic Principles of Design Automation 

3.2.1 Synthesis and analysis 
There are differences between synthetizing techniques and 
analyzing techniques in EDA. Synthetizing techniques realize 
individual or multiple back-to-back design steps, i.e., they produce 
new design results or intermediate results. The successful 
application of a synthesis technique helps progress a design flow. 
One could also say that synthetizing techniques add value. 

Analyzing techniques, on the other hand, are deployed to verify 
the correctness of design results or intermediate results, that is, they 
are verifying techniques. They enable the decision as to whether a 
design step was successful or not. In the latter case, the design step 
must be repeated (either partially or completely). If the step was 
successful the flow can move on to the next design step. It is crucial 
that errors in the design process are detected as early as possible, as 
the costs for clearing a fault increase by about one order of 
magnitude with each design step. 

If we compare analog and digital design in connection with these 
two techniques, we find the following big difference: very powerful, 
optimization-based synthesis techniques are available for digital 
design in contrast to analog design. This is why digital design 
productivity beats analog design productivity by multiple orders of 
magnitude. But low analog design productivity does not mean that 
there is no automation in the analog circuit design. The tools for 
simulating analog circuits at the SPICE level and the techniques for 
electrical verification (LVS) and checking design rules (DRC) in 
layouts are absolutely necessary analysis tools in the analog design 
flow. Without these powerful quality requirements analog circuit 
design would long be impossible.  

Synthetizing techniques are relevant for our examination. 

3.2.2 Synthesis techniques 

3.2.2.1 Optimizers. Synthetizing techniques in design automation 
are based on the principle of optimization. Optimization algorithms, 
also called “optimizers”, are “all-purpose weapons” in EDA. 
Optimizers search for a solution to a specific problem based on a 
defined objective function, which describes the quality of a solution. 
Its eponymous property is that it finds the best solution for which a 
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good value will be assigned to the defined objective function. It 
normally examines multiple possible solutions. Depending on the 
method the number of solution options can be small or very large 
(e.g., a stochastic search algorithm such as simulated annealing). 
Some optimizers calculate a guaranteed optimum mathematically 
(e.g., quadratic placement [5]). We shall discuss characteristic 
properties of optimizers in Sect. 4. 
3.2.2.2 Generators. Procedural techniques are another tool 
category. Procedural techniques do not perform optimization, but 
run scripts containing actions predefined by experts in the field. 
They are also known as generators. A generator produces a 
predefined design result while an optimizer searches for a new 
solution for a design problem at runtime. Generators are therefore 
knowledge based. 
3.2.2.3 Neural Networks. In recent times, we have witnessed 
increased use of machine learning and deep learning techniques for 
synthesizing tasks in EDA. Neural networks are first trained and 
then a set of output data is produced from a set of input parameters. 
For example, there are attempts to obtain the dimensioning 
parameters for an operational amplifier at the output of a trained 
neural network by inputting the desired performance parameters of 
the amplifier to the network. The neural network contains expert 
design knowledge of the required widths and lengths of the 
transistors. Many more applications have been described in recent 
years, which are often used to supplement optimization-based or 
procedural techniques. These approaches need to mature further 
before they find their way into industrial application. But this 
transition will definitely take place. 

4 Some Theory Behind Optimization Methods 

4.1 The Purpose of Optimizers 
Optimization provides a solution to a so-called optimization 
problem. There are a set of possible solutions for an optimization 
problem and an objective function that grades the solutions. The 
optimization aims to find a solution from the set of solutions for 
which the objective function assumes a value that is as large (or 
small) as possible. 

To solve an electronic design task by optimization, we first need 
to define the optimization goal. This goal must be quantifiable so 
that the quality of different solution options can be assessed and 
compared. Take for example a placement problem where one might 
want to minimize the chip area A or the sum L of all (estimated) 
wire lengths (aka total wire length). It is often the case that multiple 
optimization goals are aimed for simultaneously. These goals are 
then bundled in a compound objective function Qmod = f (A, L) in 
this example case. A popular simple approach is to build the 
objective function from the weighted sum of individual objective 
goals [5]. For the above example, this would be 

 𝑄𝑚𝑜𝑑 =  𝑤𝐴 ∙ 𝐴 +  𝑤𝐿 ∙ 𝐿 (1) 

The weighting of the two sub-goals is then easily set with the 
weights wA und wL. The index “mod” signifies that the quality refers 
to a model here. This will be explained in the next section. 

4.2 Model Generation and Solution Space 
Before an optimization can be run on a computer, a mathematical 
model of the real design problem hast to be created (Fig. 3 on top). 
The result of this model generation is the optimization problem, 
consisting of the objective function Qmod and a data structure. An 
algorithm is required as well that will process the data structure and 
execute the optimization. These elements need to be accurately 
matched in the model. 

Figure 3: The model generation procedure and the structure 
and mode of operation of an optimizer. (1) in accordance with 
[12] 

Let us look at the data structure first. It should contain all relevant 
characteristics of the design problem needed for finding a solution. 
The data structure should also be constructed in such a way that the 
objective function can be efficiently calculated and that solution 
options can be effectively generated.  

Relevant properties of a design problem include the parameters 
that describe the solution. I will call these the solution parameters 
si. In our placement problem this would be the pairs of coordinates 
(xj, yj) we are looking for. This means that j = 1, …, n for n devices 
to be placed and hence i = 1, …, 2n (two solution parameters per 
device).  

In addition, all information needed to calculate the objective 
function is required. For our example, this means that information 
on the electrical nets is needed for the objective function (1) so that 
the estimated total wire length can be calculated. Other properties 
may be of relevance for the search for solutions depending on how 
the optimization method works. This means that these properties 
would have to be modeled as well. We will come back to this later. 

The model produces a virtual solution space S spanned by the 
solution parameters si. Each si defines an axis of S. Solution spaces 
are typically extremely high dimensional. Every point in S repre-
sents a potential solution. The solution space in our exemplary 
placement problem has 2n dimensions. Two dimensions of such a 
solution space are visualized in Fig. 4.  
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Figure 4: Two-dimensional sections of a solution space. The 
objective function has constant values along the broken lines 
(a). Constraints define a valid solution space (b) 

In our example, axes s1 and s2 could be the possible x- and y-
coordinates for a device we wish to place or one coordinate for each 
of two devices to be placed. 

4.3 Structure of an Optimization Algorithm 
The optimization algorithm searches the solution space S for the 

best solution with regard to the quality, that is, the solution with the 
best Qmod value. This point is also called the global optimum for an 
optimization problem. One can visualize the values Qmod (s1, …, s2n) 
as a “mountain range” across S, where the quality of a particular 
solution is represented by the height value. Some contour lines for 
this mountain range are indicated in Fig. 4a. We search for a point 
in the mountain range that is either as high or as low as possible, 
depending on the definition of Qmod. 

The structure and the mode of operation of an optimizer are 
shown in the beige box in Fig. 3. It consists of an exploration engine 
and an evaluation engine. The exploration engine explores the 
solution space S and selects (or generates) candidate solutions, 
which are assessed by the evaluation engine in accordance with the 
objective function. Based on this assessment, the exploration engine 
decides which solution option should be evaluated next. This 
procedure is executed iteratively resulting in a directed search for 
increasingly “better” solutions in S. 

Iterations are performed until a termination criterion is reached. 
This is typically a runtime limit or a minimum solution quality. This 
is an algorithmically found solution, which I call the “model 
solution”. The devices in our example would be placed at the 
locations in the layout that are defined by the solution parameters 
in the model solution. The “real-world solution” is only found with 
this operation. This transfer operation may appear trivial. We will 
see later that it is very important to distinguish between the model 
solution (i.e., the solution in the mathematically modeled solution 
space) and the real-world solution for a design task (this is the result 
of a design step).  

4.4 Constraints 
Typically, specific boundary values have to be adhered to in every 
design step. These are called constraints. Constraints can arise from 
the chip fabrication process, from the specified electronic circuit 
function or from the design methodology [7]. Constraints define 
whether a point in the solution space S represents a valid solution 
or not. Constraints often appear as boundary surfaces that divide S 

into a “valid” and an “invalid” (i.e., forbidden) space. The valid area 
of S is also called a search space. 

We will illustrate these procedures now with a practical example 
– a routing task. A set of straight interconnect segments needs to be 
determined for every wiring net in this task. We define the 
following solution parameters for interconnect segments: 
coordinate of a segment end, segment length, orientation (angle), 
segment width and routing layer. A section of the solution space for 
this type of interconnect segment i with the two solution 
parameters segment width wi and segment length li is shown in Fig. 
4b. Forbidden parts of the space are colored gray. The technological 
constraint specifying a minimum width is shown as C1. A maximum 
IR drop could be requested for the segment in order for the circuit 
to function properly. This yields a maximum track resistance, which 
is converted to a maximum permissible value for the ratio li/wi by 
means of the sheet resistance. This yields the constraint C2. If one 
wanted to constrain the parasitic capacitance for operational 
reasons, the segment area would need to constrained accordingly 
and the result would be a constraint of the form C3. Design-
methodology constraints are also possible. You could, for example, 
constrain the solution parameter “orientation” (not shown in Fig. 
4b) so that only horizontal, vertical and diagonal segments are 
allowed. 

5 The Limits of Optimization  

5.1 Computational Efficiency 
The computational efficiency of an optimizer is determined by how 
well the evaluation engine and the exploration engine cooperate. 
The following have a direct bearing on this efficiency: (1) for how 
many points in the solution space can the evaluation engine 
calculate the objective function per unit of time and (2) how 
successful the exploration engine is at searching the solution space 
– in other words, how many trials does it need to approach a good 
solution.  

The first factor is easy to quantify. The second factor is a 
qualitative aspect of the search algorithm, which can also be 
estimated by means of tests on benchmark examples. “Good” – or 
globally optimal model solutions in the best case – can be generated 
with high computational efficiency.  

The contribution of the exploration engine to the computational 
efficiency is clearly a function of the size of the solution space (i.e., 
the cardinal number of set S); it is also impacted by the composition 
of the “quality mountains”. The global optimum can definitely be 
found quickly with a simple gradient technique if there is only one 
peak in the mountain range, for example. This is also the case if the 
number of peaks is so small that enough attempts can be made at a 
successful search for a solution. Solution spaces are usually so 
complex in practice, however, that such simple approaches using 
“greedy” algorithms fail for real-world tasks. There are a whole host 
of smart algorithms in EDA that attempt to get over this problem. 
Many of them address very specific design problems. There are 
other general approaches, like simulated annealing, which is 
compute intensive because it is stochastics based. 
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The constraints play a very important role here as well. Fig. 4b 
shows how they bound the search space. This has a beneficial effect 
on computational efficiency. Design-methodology constraints are a 
case in point here: they have led to very unique design styles. I 
would like to mention two of them. The number of possible cell 
locations is reduced to a simple grid in gate arrays. The placement 
problem is thus reduced to an assignment problem, whose solution 
space is smaller by some orders of magnitude than with an 
unconstrained placement. The designer is constrained to HV 
routing with uniform wire widths and pin positions at only two 
channel edges in standard cell design. This is despite the fact that 
the solution space from the point of view of the available 
technology options offers much more degrees of freedom for the 
design and could be larger. Adherence to these constraints has 
meant, however, that very efficient custom channel routers for this 
design style could be designed and built. 

Now you might think that the more constraints there are the 
better computational efficiency is. You might be right in many cases 
– as shown in the examples – but unfortunately things are not that 
simple. Constraints can have a very negative impact on 
computational efficiency (i.e., on the time required to find a 
solution). This will become clear in the following cases and 
examples. 

The mathematical model in the case of design-methodology 
constraints is designed so that the exploration engine “automa-
tically” remains in the search space. This is not the case with 
functional constraints. In this case, the exploration engine normally 
checks in every iteration whether the solution option violates a 
constraint or not, i.e., whether it is in the valid search space. Take 
the example in Fig. 4b. The quotient and the product of width and 
length are calculated for every interconnect wire under 
investigation to test the given constraints. This requires extra 
compute time, which can be quite significant and which increases 
with every additional constraint.  

I mentioned in Sect. 4.2 that other properties may need to be 
included in the model along with the design problem properties 
explained there. This is always the case when there are constraints 
that cannot be described as a function of the solution parameters (as 
in the example we just outlined above). If we take into account the 
overlaps between devices in the placement problem in Sect. 4.2, we 
would have to model the surface areas or the exact dimensions of 
the devices as well. To prevent overlaps, we can then exclude right 
from the start solution options with overlapping devices from the 
algorithm so that only valid placement solutions are generated. This 
would be an additional set of constraints, for which we would need 
this additional information. Another strategy would be to allow 
overlaps, but to include them in the objective function so that the 
optimizer would try to minimize the sum of overlaps. No new 
constraints would then be created, but the computational overhead 
of the evaluation engine would be greater. (In the latter case, a 
solution may then have to be followed up with a so-called 
"legalization” step to eliminate any residual overlaps). 

Here is another example of how additional constraints are 
generated: if we wish to include the resulting power losses and their 
effects on the electronic circuit in a layout optimization when 
designing an SOC, the necessary calculation bases would have to be 

included in the problem model. Further parameters would be 
needed to add extra dimensions to the solution space so that the 
new boundary values can be modeled. This would increase the size 
of the solution space as well as the computational overhead needed 
for checking the new constraints. 

In addition to these technical issues, there are functional 
constraints, which are not necessarily known and that need to be 
defined separately. And normally they cannot be automatically 
passed to the optimizers. This type of “constraining” work typically 
has to be done manually and is very time-consuming. This is often 
the reason why analog designers shy away from using optimizers: 
it is not worth the work involved.  

5.2 Modeling Accuracy and Model Complexity 
I would like to point out at this stage that the (modeled) 
optimization problem is not the same as the (real-world) design 
problem. The mathematical modeling procedure, whereby a design 
problem is represented as an optimization problem, is to certain 
extent always an abstraction of the design problem (see top part of 
Fig. 3). Therefore, information is always lost when building a model, 
and thus also when using an optimizer (see bottom part of Fig. 3). 
The result is that not all aspects of the real-world design problem 
go into the optimization. A designer could be very disappointed 
when the model solution is transformed back from the optimization 
result, even if Qmod has a very high value or if it is the global 
optimum even.  

I would now like to present two examples for that. Let’s look at 
two simple solutions for a placement problem. If we model the nets 
using spring forces (quadratic placement, force placement [5]), the 
net structure is represented globally. However, the devices are 
typically very tightly placed with multiple overlaps. If no other 
measures are taken (e.g., fixed cells at the periphery of the 
placement area), all cells will be placed at the same point. And that 
represents the global optimum! The layouter would not be happy 
with this result – to say the least. The principle issue with this 
approach is that devices are only modeled as mass points. If devices 
are placed with the Mincut technique [5], they are spread very well 
across the placement area due to partitioning and assignment of the 
devices to sections of the surface space. The downside here is that 
Mincut progressively looses the global view of the nets as iterations 
progress. So we see: “Optimized is not always optimal (from the 
designer’s perspective)”. 

Naturally, we could get rid of these drawbacks by including the 
missing aspects in the model of the design problem, in other words, 
by increasing the modeling accuracy. This is exactly what is 
happening in EDA research and in the EDA industry. In case of the 
two very primitive basic algorithms shown above, there is a vast 
array of extensions and upgrades to them out there. Multiple 
authors have also profitably combined them and have produced 
powerful practical placement tools for digital layouts for the 
industry. Model complexity has increased with these on-going 
upgrades. 
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5.3 Real Optimization Quality  
I want to introduce the term “real optimization quality” Qreal. The 
intention is that the term Qreal is a measure of how “good” a real-
world solution produced by an optimizer for a design problem is. 
How could this be measured? One could examine how well a real-
world solution achieves the performance parameters in the system 
spec (e.g., by post-layout simulation) in order to obtain a value for 
Qreal. However, this could only be done for the final result of a 
design process. For intermediate results of individual design steps, 
probably only a subjective appraisal of the designer would be 
possible. But I’m not interested in such an evaluation, instead I want 
to show that the quantities “computational efficiency” and “model 
complexity” described in the prior sections and which I label E and 
M respectively are closely related. 

Experience shows that a high Qreal can only be achieved with a 
very detailed model, that is, with a high M. In other words, Qreal 
increases as M increases. That said, an optimizer must have 
sufficient E (i.e., it must be able to assess a sufficient number of 
promising solution options), otherwise a high M would be useless. 
We can express this relationship as follows: 

 𝑄𝑟𝑒𝑎𝑙 = 𝐸 ∙ 𝑀 (2) 

This formula is not to be understood as a mathematically exact 
expression, as I have only explained E and M verbally and have also 
refrained from defining units. It shows the basic relationship 
between the two quantities: the more complex (and therefore the 
more precise) a real-world design problem is modeled and the more 
efficient the search algorithm, the greater Qreal will be – i.e., the 
better the quality of the real-world design result in the eyes of the 
designer. 

5.4 The Optimizer Dilemma: The Optimization 
Horizon  
There is another relationship between E and M. We have seen how 
the compute requirements of an optimizer grows if we introduce 
further characteristics of a design problem into the model of the 
optimization problem. This means that as M increases E is 
weakened. Put mathematically: E and M are negatively correlated. 
If we show the EDA optimizers as points on a diagram with the axes 
M and E, we get a cloud as depicted in Fig. 5. 

From this it follows that you always face a dilemma when 
designing or choosing an optimizer to solve a design problem. If M 
is low (that is, the level of abstraction is high), there is a good 
probability of finding a global optimum in the solution space or to 
find a solution that is nearly optimum (i.e., high Qmod), as E is high 
(a simple algorithm with a fast evaluation engine and a “benign” 
solution space). The downside is that despite a high Qmod, a low Qreal 
is expected because of the loss of information due to the high degree 
of abstraction of the optimizer’s model. If, on the other hand, you 
choose a technique with high M (low abstraction, i.e., an accurate 
model of the problem), E will be low. Consequently, there is less 
probability of the optimizer finding a solution with high Qmod 
(although in this case a high Qmod would mean a good Qreal due to 
the high M). The metric Qreal is bounded here as well. 

The takeaway is that the real-world optimization quality Qreal 
cannot be increased at will. The quality of the real-world design 
result that can be achieved by optimization has a definite limit. This 
calls to mind the “event horizon” beyond which we cannot see (from 
the general theory of relativity). This inspired me to call this 
optimization boundary the “optimization horizon” (Fig. 5). 

Figure 5: Relationship between the model complexity and 
computational efficiency of optimizers, and the limits of 
optimization 

The optimization horizon is clearly not a fixed quantity, given that 
Eq. (2) is not a formal, mathematical equation. This boundary will 
definitely be pushed back by new IT techniques and new computer 
generations. It will never disappear though. 

5.5 The Productivity Gap Between Analog and 
Digital Design 
The enormous design productivity gap between analog and digital 
design can be explained in the light of the above observations. 

Digital design, as explained, benefits from the restriction to 
discrete-valued and discrete-time signals. This rigid standardiza-
tion means a massive reduction of the degrees of freedom in 
electronic design and simplifies the mathematical modelling. The 
key point here is that this abstraction does not take place during 
modeling, but before that in the real world. The real-world design 
problem is already abstracted! (see Fig. 2 on the right). The real-
world design problem is so massively simplified that all relevant 
properties can be successfully included in an optimization model. 
Another way of putting it: a low M is tolerable. The parameter E can 
thus be high. This is precisely what is needed to be able to handle 
the extreme quantitative complexity in digital design.  

This brings us to the fundamental difference to analog design. 
The high qualitative complexity practically prohibits the design 
problem from being “simplified” with standardizations. By contrast 
here, all disturbances need to be included in the design process to 
effectively suppress their effects with special measures in the circuit 
design (especially with the use of differential circuits) and in the 
physical design (especially by matching [8]). The aspiration of the 
analog designers is to proactively use all degrees of freedom in order 
to come as close as possible to this objective. Their expertise lies in 
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their practical experience and is essentially knowledge of the 
specific design problem constraints. This specialist knowledge is 
implicitly brought to bear in manual design. The key advantage here 
is that as there is no need to formalize the work, and there is no risk 
of losing information through modeling. 

This points us to the root cause of the design productivity gap: 
the strength of optimization methods, which arises in digital design 
from the abstraction procedure, becomes a weakness in analog 
design. This explains, in my opinion, why optimization techniques 
are ill-suited for analog design – in fact, I would almost go so far as 
to say that they resist a (good enough) solution by optimization. To 
put it another way: practical analog design problems require a Qreal 
that is beyond the optimization horizon. 

Optimization-based automation is anathema to many practical 
analog designers. There are good reasons for this. The only excep-
tion worth mentioning is the use of optimization for design center-
ing. The compute power involved is huge, as the evaluation engine 
must utilize simulations (“simulation in the loop”). Although these 
tools can also be used for circuit design to determine “optimal” 
nominal values, they are rarely used for this purpose. Most analog 
designers prefer to draw on their intuition and experience instead. 

Other experts for analog EDA are of the opinion that optimizers 
theoretically are able to synthesize analog circuits. But they feel the 
necessary modeling is practically impossible [4]. This could be 
called the “modeling threshold”, which I have drawn in Fig. 5 as 
well. In the end its effect is the same as for the optimization horizon.  

6 Conclusion and Alternative Approaches 
This treatise should not give the impression that optimizers are 
absolutely unsuited for analog design problems. There are certainly 
individual cases where it works, but these are too rare for industrial 
acceptance There will be also a shift in the optimization horizon as 
a result of advances in computing technology. However, the 
challenges in analog design will also continue to increase in 
semiconductor processes going forward. I'm afraid optimization 
will always pull the short straw in this race. Furthermore, I'm 
convinced that we will never see the day when the analog parts of 
chips are designed solely by means of an optimization-based design 
flow with a degree of automation that is comparable to a digital 
flow. 

An automated analog flow can be achieved by taking a look at 
further automation techniques. Procedural techniques are parti-
cularly promising here. They have received increased attention in 
recent years as well. One such approach is BAG [2] and further 
developments of it [1], which is a hot research topic in multiple 
European EDA-research laboratories at the moment. Template-
based layout-generators are presented in [11]. We ourselves have 
developed the EDP tool (Expert Design Plan), a procedural approach 
for dimensioning analog circuits that has already found its way into 
industrial application [14]. 

Combining procedural and optimization techniques is a 
formidable challenge, as they work with contrarian automation 
paradigms. A very good analysis on this subject is to be found in 
[9]. This work also introduces an attempt at a solution to the 

problem called SWARM, where smart layout generators cooperate 
as agents, resulting in a self-organizing layout (refer to [10] for a 
compact description). In [13] and [7], I outline how the different 
automation paradigms could be merged in a top-down-meets-
bottom-up design flow. 

Basically, I agree with those authors, who say that a smart 
combination of multiple automation approaches is the best way to 
go. MAGICAL [15] and ALIGN [3] are impressive recent examples 
of such approaches. They both offer a fully automated analog 
physical design, incorporating human expert knowledge, as well as 
analytical, heuristic and machine learning techniques. 
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