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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Artificial intelligence is a field of research that is seen as a means of realization regarding digitalization and industry 4.0. It is 
considered as the critical technology needed to drive the future evolution of manufacturing systems. At the same time, autonomous 
guided vehicles (AGV) developed as an essential part due to the flexibility they contribute to the whole manufacturing process 
within manufacturing systems. However, there are still open challenges in the intelligent control of these vehicles on the factory 
floor. Especially when considering dynamic environments where resources should be controlled in such a way, that they can be 
adjusted to turbulences efficiently. Therefore, this paper aimed to develop a conceptual framework for addressing a catalog of 
criteria that considers several machine learning algorithms to find the optimal algorithm for the intelligent control of AGVs. By 
applying the developed framework, an algorithm is automatically selected that is most suitable for the current operation of the 
AGV in order to enable efficient control within the factory environment. In future work, this decision-making framework can be 
transferred to even more scenarios with multiple AGV systems, including internal communication along with AGV fleets. With 
this study, the automatic selection of the optimal machine learning algorithm for the AGV improves the performance in such a 
way, that computational power is distributed within a hybrid system linking the AGV and cloud storage in an efficient manner. 
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1. Introduction 

The growing development from static to dynamic 
production systems significantly increases the demands on 
intralogistics. This concerns both the demands on the flexibility 
of the systems, for example, with regard to fluctuating time and 
quantity requirements and the internal control of the systems. 
Therefore, neither orientation to fixed paths with predefined 
points for route determination nor exclusively centralized 
control is sufficient [1]. To cope with the new complexity that 
has arisen, besides classical analytical methods [2, 3] and 
simulative methods such as digital twins [4], artificial 

intelligence (AI) methods [5-8] are increasingly used. The 
dynamic selection of the appropriate artificial intelligence 
approaches for specific problem solving is a new challenge, 
especially in the case of changing framework conditions. In this 
context, the previous approaches [9-12] for algorithm selection 
mainly focus on the analytical derivation of the selection 
without sufficient inclusion of the empirical basis. In the 
presented approach, a framework is developed that considers 
both the analytical approaches and feedback with empirical 
data (‘Data in the loop’).  

To this end, the functional requirements for AGVs are first 
briefly presented in section 2 and then assigned to the possible 
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3.2 Application of machine learning to AGV planning and 
control tasks 

 
Diverse machine learning algorithms have an application in 

AGV planning and control. The most commonly used 
algorithms for those problem instances were neural networks, 
deep learning, including deep neural networks, reinforcement 
learning, and decision trees. To be able to evaluate current ML 
applications used for AGV planning and control, we conducted 
a literature analysis that investigated journals, conference 
papers, and scientific books. The sources are in English 
language, except they contributed substantially to defining the 
research gap, in this case German literature was taken into 
account as well. We searched the online databases Science 
Direct, Web of Science and Google Scholar and used a search 
term with the keywords “Automated guided vehicle”, 
“Machine learning”, “Artificial intelligence”, “Planning”, 
“Control”, “Path planning”, “Scheduling” to cover all areas of 
interest. Furthermore, the inclusion criteria for selected 
literature was to deal with a selection model for machine 
learning algorithms, AGV planning, control or scheduling, or 
machine learning algorithms applied to any of those application 
areas of AGVs.  The following table illustrates an overview 
created from the literature analysis considering ML 
applications for AGVs, which explains the individual use cases 
of ML algorithms for certain AGV tasks more specifically. The 
algorithms are assigned to tasks related to one of the three 
categories: Selection of AGVs, timing, and routing. There are 
subcategories for the selection of AGVs, such as the prediction 
of future tasks and task selection. For timing, it is scheduling 
and dispatching and in the field of routing, algorithms can be 
applied for optimal path finding and path planning.  

 
Table 1. Analysis of applied machine learning algorithms for AGV tasks 

 Neural 
Networks 

Reinforcement 
Learning 

Deep 
Learning  

Decision 
Trees  

Selection      
Prediction of 
future tasks 

  [26]  

Task 
selection 

[27] [27]   

Timing      
Scheduling [26] [16]   
Dispatching  [23]   
Routing     
Optimal path 
finding 

[13, 14] [5]  [13] 

Path 
planning 

 [16]  [16] 

 
 

3.3 Existing algorithm selection approaches 
 
Building on the previous points, the selection of the best 

suitable machine learning algorithm for AGV planning and 
control tasks has the potential to improve the performance of 
AGVs on the shopfloor significantly. Algorithm selection 
refers to the problem of selecting the best algorithm for a 
specific instance of problems from a portfolio of algorithms 

[28]. [28] introduced four abstract models for considering the 
situations accordingly to requirements: The basic model, the 
model with selection based on features, alternate definitions of 
best for the models, and the model with variable performance 
criteria. Several researchers build on his approaches and 
develop algorithm selection models. Different approaches are 
available regarding the development of optimal algorithm 
selection models for multi-agent path finding [10, 27], but 
regarding AGV planning and control in general, there is still 
room for development in terms of automatic algorithm 
selection. The following illustration, figure 1, summarizes 
different algorithm selection approaches in the context of 
AGVs and provides a more detailed explanation of the 
individual, available approaches.  

Referring to the conducted literature review, there were not 
many sources available that dealt with algorithm selection 
models applied on AGV scheduling or controlling. Figure 1 
serves to illustrate what current researchers worked on and 
where the research is standing at the moment. The columns 
represent the main papers that developed an algorithm selection 
model, and the rows represent four categories that help to 
compare the approaches in terms of what the model is in 
general about, which algorithms are in the portfolio from which 
the model selects the most appropriate one, how the decision 
for a chosen algorithm takes place and if there are any 
validation procedures available. The selection of the evaluated 
papers is due to their data foundation and problem they intend 
to solve. They covered challenges from classification tasks, 
project scheduling, optimal path finding and dynamic vehicle 
routing. As they deal with different algorithm portfolios and 
algorithm selectors, they build a suitable foundation for further 
approaches on algorithm selection models for other data 
sources.  

 
Within the presented models, the selection of algorithms in 

the portfolio was often in an ad hoc manner and arbitrary, but 
to be efficient, the algorithms should be competitive on the 
considered instance set [12]. Furthermore, the empirical 
evaluation of the models and validation has often been 
neglected. Therefore, this paper proposes an algorithm 
selection framework, which includes an empirical base to 
ensure validity. 

4. Algorithm selection framework 

The presentation of the algorithm selection framework is on 
two levels: The conceptual model and the implementation 
model. The conceptual model describes the structural design of 
the framework, and the implementation model describes the 
implementation architecture.  

 
4.1 Conceptual model 
 
The conceptual structure (Figure 2) builds on the following 

components: 
• Problem classification 
• Algorithm evaluation and 
• Algorithm decision 
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AI methods in section 3. Based on this, the framework for 
assigning the methods is derived in section 4. Finally, section 
5 presents a summary and a brief outlook on further 
development. 

2. Planning and control tasks for AGVs 

According to [1], the tasks for AGVs can be divided into the 
following areas: 
• Strategic tasks 
• Tactical tasks and 
• Operational tasks 

 
2.1 Strategic tasks 
 
For the strategic area occurs the determination of the guide path 
design [13, 14]. Within this design, the layout is defined over 
which the supply by the AGVs should take place. Besides the 
layout definition, other strategic decisions about the supply 
strategy (On-demand, milk run) can also be summarized in this 
area.  
The supply of AGVs is closely connected to the routing and 
therefore, waiting times due to shortage or accumulation of 
materials can often be accounted to the AGV system. This is 
why a well-designed layout for the supply by AGVs is of 
utmost importance. [15] propose an approach that deals with 
the solution of the vehicle assignment problem, which relies on 
adaptive workstation clustering considering both the main 
characteristics of the material flow and the complex 
environment layout. Furthermore, [16] developed a cyber-
physical system using multiagent system technology where 
AGVs and traffic commanders cooperate autonomously with 
each other to address the challenges of an efficient guide path 
design. Decision trees and reinforcement learning allow AGVs 
to choose the optimal rule-based strategy out of a pool of 
existing optional strategies in order to increase self-adaptive 
capability. This already illustrates the benefits of applied 
machine learning algorithms, which this paper takes closer into 
consideration in the next section.  
 
2.2 Tactical tasks  
 
Within the tactical field, the summarized tasks cover the 
determination of the number of vehicles, battery management, 
scheduling, dispatching, and vehicle positioning. 
Referring to AGVs, a central unit is responsible for taking 
control of scheduling, routing, and dispatching decisions [1]. 
Therefore, AGVs are less flexible in terms of decision-making, 
which results in a more static reaction to changes within a 
system and its corresponding environment instead of a dynamic 
adaption to the circumstances. There are diverse approaches to 
address this challenge. Considering multi-AGV scheduling 
systems, [17] established such a system by using the 
unidirectional directed graph method and combining the A* 
algorithm, which effectively solved conflict and collision 
problems. Furthermore, [18] present a smart AGV management 
system, which combines real-time data analysis and digital 
twin models to predict and optimize the schedule for material 
delivery. In comparison, [19] proposes a physical context-

aware communication control method in order to ensure a 
collision-free and smooth AGV operation. They predict the 
time to intersections for all AGVs in communication with the 
central server. [15] provide a solution for vehicle assignment 
with modularity-based clustering that detects strong 
dependencies within AGV stations. Besides the described 
methods, [20] combine different algorithms in a super-
algorithm that performs better than any of the components 
individually to improve the problem of project scheduling.  
 
2.3 Operational tasks 
 
In the operational area, the timely determination of the route 
and a deadlock resolution take place.  
[21] classify path planning into offline and online path 
planning, static environmental path planning, dynamic 
environmental path planning as well as global and local path 
planning. Several algorithms are available such as A*, Dijkstra, 
D*Lite, or a combination of artificial potential field algorithms 
for optimal path planning [22]. Conventional AGVs follow 
fixed paths to move to predefined points on the determined 
route [1]. Due to this design, it would take most of the AGVs a 
substantial time to adapt to changes on a dynamic factory floor. 
[23] present a dispatch and navigation plan to serve the 
randomly constantly incoming orders to reduce time 
consumption for dynamic route planning. Furthermore, the 
application of multimodal deep Q learning increases fleet 
efficiency by multi-source data monitoring. Moreover, [24] 
present guidelines for when each algorithm should be used on 
a problem considering several algorithms for path planning as 
A* and D* lite.  
 

3. Application of machine learning to planning and 
control tasks for AGVs 

3.1 Machine learning paradigms 
 
According to [25], machine learning approaches can be 

divided into the following three application classes: Supervised 
learning (SL), unsupervised learning (UL), and reinforcement 
learning (RL).  

In the supervised learning approach, training is performed 
by explicitly evaluating the data with respect to the learning 
goal. Classification and regression issues can typically be 
clarified by employing the supervised learning approach.  

For unsupervised learning, the data is processed without 
explicit evaluation for the learning approach. The algorithms 
determine patterns or structures via data exploration. The UL 
approach solves clustering or dimension reduction tasks.  

In ML-paradigm reinforcement learning, learning is enabled 
via a reinforcing reward structure. For example, an AGV can 
maximize the number of delivered packages by avoiding 
obstacles [20].  
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In ML-paradigm reinforcement learning, learning is enabled 
via a reinforcing reward structure. For example, an AGV can 
maximize the number of delivered packages by avoiding 
obstacles [20].  
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The problem classification component determines the 

appropriate algorithms based on input data. Within the phase 
of problem classification, a transformation of the technical 
problem to the abstract problem type occurs. The derivation of 
the suitable algorithms considers the available empirical data 
stock and falls back to the possible algorithms stored in a 
database. For example, if a problem is requested for the first 
time, only the heuristic algorithms or optimization approaches 
are offered for selection due to the lack of data.  

The algorithm evaluator component performs an execution 
for the selected set of algorithms to determine the solution. For 
this purpose, instances are available to the evaluator for 
execution. These instances can pursue generic (e.g., 
mathematical optimization models) or specific solution 
approaches. For the solution determination, the algorithms 
based on training data also access the historical data.  

The results of individual algorithms are passed with the 
model data to the algorithm decision component. Within this 
component, the decision for the most suitable algorithm is 
executed. In addition to the fulfillment of the target parameters, 
other parameters such as runtime and complexity are also 
considered in the decision-making process. 
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communication to the connected intralogistics systems and the 
internal communication between the components.  
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4.2. Implementation model  
 
Due to the dynamics of smart production systems, a static 

and time-stable selection of algorithms is critical. Therefore, 
the implementation of the algorithm selection framework must 
take into account the dynamic aspects and the increasing degree 
of autonomy [1] of AGV systems. The implementation model 
(Figure 3) includes the four areas: 
• Place of execution 
• Degree of autonomy 
• Algorithm solver systems 
• Type of results 
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Figure 3. Implementation model algorithm selection framework 
 
 

4.2.1 Place of execution 
 
On the one hand, the selection of the algorithms is critical to 

success, and, on the other hand, it should not place too high 
demands on the infrastructure for specific application groups, 
such as small and medium-sized enterprises. Thus, the 
operation of the framework must be possible both in an on-
premise and in a cloud variant. If the selection of the algorithm 
contains confidential information, the execution can be split 
between the cloud and the on-premise area. For example, the 
historical data can be stored on an on-premise system to which 
only the local system has access.  

 
4.2.2 Degree of autonomy 
 
The framework supports a centralized as well as a 

decentralized organization. In the case of the centralized 
approach, the selection is performed by a defined entity that 
performs all selection tasks. In the case of a decentralized or 
usually partially decentralized organization, the selection can 
be made on different levels. A decentralized organization is 
beneficial for time-critical problems that can be solved with 
algorithms that are not computationally intensive. In addition, 
individual AGVs are being equipped with increasingly 
powerful IT systems. 

 
4.2.3 Algorithm solver systems 
 
The software systems required for solving the individual 

algorithms can be implemented analogously to the higher-level 
solution either on an on-premise solution or on a cloud solution. 
Especially for time-critical tasks, such as extensive training 
data or complex optimization algorithms, ready-made and 
scalable cloud solutions can be used. Cloud solutions can 
furthermore be a cost-saving way of implementation for 
selection decisions that are only temporarily necessary in 
relatively stable production systems. Since the architecture of 
the framework structurally supports different solution 
instances, these can, of course, also be used in a hybrid form. 

 
4.2.4 Type of results 
The algorithm selection framework’s original task is to 

determine the suitable algorithm. Particularly in the case of ML 
algorithms, in addition to the actual algorithm, corresponding 
model data, for instance in the form of a trained neural network, 
are sometimes necessary for the execution.  

 
 
 

4.3 Integration Model 
 
In order to ensure good integration into existing IT 

infrastructures, it must be possible to connect newer 
standardization approaches, such as the VDA 5050 
standardization [29] on the one hand, and legacy systems on 
the other. To guarantee this, the integration is basically ensured 
via a service-oriented approach, which can be operated in 
passive mode (request-response) as well as in active mode 
(active message control via message systems). The basic 
functionality of the algorithm selection system is connected to 
the systems via an integration layer (see Figure 4). This ensures 
with the changes and advancements of the systems to be 
expected that only the respective assignment between the 
inquiring system and the algorithm selection system must be 
changed. The assignment layer can be static or dynamic via the 
inclusion of semantic information [30]. 

 
Figure 4. Implementation of integration layer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Conclusion and Outlook 

The presented approach demonstrates how the selection of 
algorithms can be realized via the framework for productive 
use. In addition to the selection, it supports the execution of the 
algorithms with corresponding data and model sets. The 
feedback also supports the dynamic adaptation to changing 
conditions and the flexibility regarding the place of execution. 
The restrictions of the existing static approaches are thereby 
overcome and a stepwise integration into the IT systems of 
different structure is thus ensured. Due to the gradual 
introduction, the knowledge gained in each phase can be taken 
into account in order to support both the secure development of 
algorithm know-how and the development of the necessary 
database. Future potentials of the approach lie, in particular, in 
the inclusion of more flexible AMR and the structural 
consideration of further dynamic data such as employee 
movement data.  
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