The VLDB Journal
https://doi.org/10.1007/s00778-022-00742-4

SPECIAL ISSUE PAPER l‘)

Check for
updates

The full story of 1000 cores

An examination of concurrency control on real(ly) large multi-socket hardware

Tiemo Bang'® - Norman May? - llia Petrov? . Carsten Binnig*

Received: 7 May 2021/ Revised: 15 December 2021 / Accepted: 19 March 2022
© The Author(s) 2022

Abstract

In our initial DaMoN paper, we set out the goal to revisit the results of “Starring into the Abyss [...] of Concurrency Control
with [1000] Cores” (Yu in Proc. VLDB Endow 8: 209-220, 2014). Against their assumption, today we do not see single-
socket CPUs with 1000 cores. Instead, multi-socket hardware is prevalent today and in fact offers over 1000 cores. Hence,
we evaluated concurrency control (CC) schemes on a real (Intel-based) multi-socket platform. To our surprise, we made
interesting findings opposing results of the original analysis that we discussed in our initial DaMoN paper. In this paper,
we further broaden our analysis, detailing the effect of hardware and workload characteristics via additional real hardware
platforms (IBM Power8 and 9) and the full TPC-C transaction mix. Among others, we identified clear connections between
the performance of the CC schemes and hardware characteristics, especially concerning NUMA and CPU cache. Overall, we
conclude that no CC scheme can efficiently make use of large multi-socket hardware in a robust manner and suggest several

directions on how CC schemes and overall OLTP DBMS should evolve in future.

Keywords Databases - Modern hardware - Benchmarking - OLTP - Concurrency control - Multi-socket

1 Introduction

We are now 8§ years after “Starring into the Abyss [...] of
Concurrency Control with [1000] Cores” [71], which pre-
sented an evaluation of concurrency schemes for in-memory
databases on simulated hardware. The speculation of the
authors at that time was that today we would see single
CPUs with 1000s of cores. However, so far reality is dif-

<1 Tiemo Bang
tiemo.bang @cs.tu-darmstadt.de

Norman May
norman.may @sap.com

Ilia Petrov
ilia.petrov @reutlingen-university.de

Carsten Binnig
carsten.binnig @cs.tu-darmstadt.de

I Technical University of Darmstadt & SAP SE, Darmstadt,
Germany

2 SAP SE, Walldorf, Germany

Reutlingen University, Reutlingen, Germany

Technical University of Darmstadt, Darmstadt, Germany

Published online: 29 April 2022

ferent [22,30,31,36]. Instead, multi-socket hardware indeed
offering 1000s of cores made their way into production data
centres. Accordingly, in-memory DBMS are facing not only
challenges of massive thread-level parallelism, such as coor-
dination of hundreds of concurrent transactions as predicted
by [71], but multi-socket systems also expose in-memory
DBMS to further challenges, such as deep NUMA topolo-
gies connecting all CPUs [21,23,30,31].

In this paper, we thus set out the goal to bring in-memory
DBMS to 1000 cores on today’s multi-socket hardware,
revisiting the results of the simulation of [71] based on the
original code, which the authors generously provide as open
source. That s, we follow-up on [71] with an evaluation of the
characteristics of concurrency control (CC) schemes on real
production hardware using their DBx1000 as a starting point.
As the main contribution, we provide an extensive analysis
of CC schemes on real large hardware, which beyond related
evaluation works [2,19,48,52,69,71] provides a breadth of
insights for OLTP on modern multi-socket hardware plat-
forms, as discussed below. Moreover, as another contribution
of this paper we have released all artefacts [5,6] (code and
measurements) for further analysis by the database commu-
nity. While we already provide an extensive analysis of our

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00742-4&domain=pdf
http://orcid.org/0000-0003-0826-8645

T.Bang et al.

data, we believe that the data itself is an interesting source
for future findings simply by analysing the data even further.

1.1 Part one

This part is based on the results of our recent DaMoN paper
[3] where we analysed concurrency control schemes on an
Intel multi-socket hardware with 1568 cores. To our surprise,
we made several interesting findings: (1) Overall, running the
DBx1000 open source prototype of [71] on today’s produc-
tion hardware revealed a very different picture compared to
prior observations on simulated hardware with 1000 cores.
While simulations indeed are valuable for early path find-
ing, today’s real hardware and progress of state-of-the-art
have changed the prospect for OLTP on 1000 cores. (2) In
a “deeper look”, we additionally revisited the limitations
and assumptions of the simulation for our real hardware.
For example, we found that hardware-assisted timestamp
allocation indeed available today has ambiguous benefits,
as physical contention shifts rather than disappears. More-
over, aspects of real systems (e.g. memory management)
have proven significant performance impact apart from con-
currency control. (3) Based on these findings, we revised
the original prototype for large multi-socket hardware and
finally the experimental results gave a clear view on concur-
rency control with 1000 cores, i.e. good scaling of all CC
schemes under low conflict and textbook behaviour under
high conflict though with thrashing.

1.2 Part two

This new part extends our DaMoN paper [3] significantly and
broadens the evaluation in two dimensions: hardware and
workload. First, we additionally include two IBM Power-
based platforms (Power8 and Power9), which come with
different hardware characteristics on the macro-level (e.g.
their overall topology) as well as the micro-level (e.g. their
simultaneous multithreading implementation). The focus of
this part is on singling out the effects of hardware characteris-
tics on the CC schemes (e.g. of different NUMA topologies,
cache capacities). Second, we also extended our evaluation
in terms of the workload. While in the first part, we only used
the common limited transactions mix of the TPC-C bench-
mark that was available in DBx1000, in part two we also
analyse how the full TPC-C transaction mix effects con-
currency control on our large multi-socket hardware. The
most compelling findings of our deep dive into hardware
and workload characteristics are: (1) We could identify clear
connections between the performance of the individual CC
schemes and specific hardware characteristics. For example,
NUMA had an outstanding but nuanced effect on the CC
schemes. (2) The significance of hardware characteristics
like NUMA effects further depends on the workload. For

@ Springer

example, a larger footprint of the workload (accessed tuples)
increases the bandwidth demand of the optimistic concur-
rency control (OCC) scheme and thus, OCC scales as long
as the underlying NUMA architecture offers sufficient band-
width. (3) Under high conflict, no CC scheme achieves high
concurrency on any hardware platform. Our analysis here
surfaced inherent issues of today’s transaction execution, i.e.
increasing inter-transaction parallelism under high conflict
will not help without changing the CC schemes and execu-
tion schemes.

Overall, our evaluation exhibits the complex interaction
of the system design, the workload, and the underlying hard-
ware that determines DBMS performance. Therefore, we
recommend reflecting on concurrency in OLTP DBMSs, to
put available hardware resources to effective use. Especially
with hundreds to thousands of cores, we need broader options
for utilising those, apart from executing more concurrent
transactions and comprehensive contention management is
imperative. Finally, we advocate for performance models to
aid exploration of system performance and adaptive DBMS
designs towards robust performance in any condition.

1.3 Outline

We first provide the background and present the different
hardware platforms used in this paper (Sect. 2). In Sect. 3,
we then present the results of part one which is based on [3],
as mentioned before. Afterwards, in Sect. 4 we present the
results of part two which includes the findings of our broad-
ened evaluation with additional hardware platforms and the
full TPC-C benchmark. Finally, we conclude with a summary
and discussion of the overall findings in Sect. 5.

2 Background and setup

In the following, we provide a brief overview of the con-
currency control (CC) schemes, the hardware as well as the
benchmarking environment used in our evaluation.

2.1 Concurrency control schemes

Table 1 summarises the evaluated CC schemes. They range
from lock-based CC, with diverse mechanisms against dead-
locks, to timestamp-ordering-based CC, including multi-
versioning, 2-versioning, coarse locking, and advanced
ordering. For details on these CC schemes, we refer to their
original publications [7,8,32,35,62,73] and to [71]. The first
7 CC schemes in Table 1 correspond to the prior evaluation in
[71]. We further include the more recent schemes SILO [62]
and TICTOC [73], originally not included. Unfortunately,
TIMESTAMP [7] from [71] has a fatal bug in the latest ver-
sion of the prototype, so we excluded it.

The full story of 1000 cores

CPU UPL CPU % M £

———NUMALink
ASIC 0
= — 1 = |

il

L

————INUMALink Vs
——— ASIC| FP——=

(a) Chassis topology HPE (b) NUMALink topology HPE

CPU CPU

/ 4
Vrr Var = Y
‘\\' CPU PU |PU

Kl

(c¢) 16-socket IBM Power9 (d) 8-socket IBM Power8

Fig.1 System topologies of the HPE, Power9, and Power8 platforms. [21,23,49,63]

Table 1 Evaluated concurrency control schemes

DL DETECT 2PL with deadlock detection [7]

NO WAIT 2PL with non-waiting deadlock prevention [7]
WAIT DIE 2PL with wait-and-die deadlock prevention [7]
MVCC Multi-version T/O [8]

occC Optimistic concurrency control [35]

HSTORE T/O with partition-level locking [32]

SILO Epoch-based T/O [62]

TICTOC Data-driven T/O [73]

2.2 Today’s real hardware with 1000 cores

The prevalent hardware in production today offering 1000
cores is large multi-socket hardware platforms [22,30,31,36].
Rather than hosting many cores on a single CPU, these multi-
socket platforms connect many CPUs to a single system. In
the following, we first introduce the Intel-based HPE plat-
form used in the comparison with the simulation and the
later comparison of different real multi-socket platforms.
Then, we introduce two further IBM platforms. Notably, we
choose these three specific platforms for comparing large
multi-socket hardware with diverse characteristics, espe-
cially different NUMA topologies. In general, we expect
systems with similar NUMA topologies to have similar
NUMA effects.

2.2.1 Intel-based HPE platform

Our HPE SuperdomeFlex system [22], used for part one of
our evaluation (Sect. 3), contains 28 Intel Xeon 8180 CPUs
each having 28 physical cores with SMT-2 [39]. This makes
a total of 1568 logical cores (hardware threads), as shown in
Table 2a. Figure 1a, b shows how this system groups 4 CPUs
into hardware partitions (chassis) [21] and then joins these
[23], forming a single cache coherent system with the total of
1568 logical cores and 20 TB of DRAM. As shown in Fig. 1a,
within the chassis each CPU connects to two neighbouring
CPUs and to a NUMALink controller via UPI links. In turn,
the NUMA Link controllers couple all chassis in a fully con-

nected topology (Fig. 1b), yielding 4 levels of NUMA with
performance properties summarised in Table 2c!.

Comparing this hardware to potential many-core hardware
as simulated in [71] reveals that this multi-socket setup for
1000 cores differs in many aspects. Importantly, one similar-
ity of today’s hardware to the simulated architecture of [71]
is that both communicate and share cache in a non-uniform
manner via a 2D-mesh on the chip [17] (and UPI beyond),
such that the cores use the aggregated capacity to cache data
but need to coordinate for coherence. This non-uniform com-
munication is an important hardware characteristic, as it can
amplify the impact of contention points in the CC schemes
on any large hardware (multi-socket and many-core). Other-
wise, the simulation differs from today’s hardware, since it
assumed low-power and in-order processing cores clocked
at 1GHz, cache hierarchies with only two levels, and cache
capacities larger than today’s caches. Notably, it simulates
the DBMS in isolation without an OS, disregarding over-
heads and potential side effects of OS memory management,
scheduling, etc., omitting essential aspects of real systems
[15,44].

2.2.2 Power-based IBM platforms

In the second part of our evaluation, we consider the IBM
Power platforms as prominent hardware platforms for scale-
up systems, in addition to the Intel-based platform. There
are several distinctive features, making these IBM Power
platforms an interesting alternative for our analysis [30,31,
49].

In particular, we use an IBM Power system E880 (Power8)
[63] configured with 8 Power8 CPUs and an IBM Power sys-
tem E980 (Power9) [64] configured with 16 Power9 CPUs.
As outlined in Table 2a, these platforms offer a total of 768

I NUMAPerf is a cross-platform tool in HCMT [46] that performs
similar tests like Intel MLC [65]. Different from MLC it provides com-
parable results across platforms. While it clearly does not implement
platform-specific optimisations and thus observed performance can be
Footnote 1 continued

lower, NUMAPerf allow us to compare the performance across plat-
forms.

@ Springer

T.Bang et al.

Table 2 Properties of evaluated
hardware platforms

(a) Number of CPUs, physical cores, and logical cores. In parentheses is the number of logical cores available
to the application on Power8 and Power9

Platform CPUs
HPE 28
Power9 16
Power8 8

* Phy. Cores * SMT = Logical Cores
* 28 *2 = 1568

* 12 * 8 = 1536 (1504)
* 12 * 8 =768 (752)

(b) Cache capacity in KB per physical core and in parentheses per logical core. Agg. denotes the aggregated
cache capacity of the L2 and the non-inclusive L3 cache. [39,49,50]

Platform L1 Inst., Data
HPE 32,32 (16, 16)
Power9 64,64 (4,4)
Power8 32,64 (2,4)

L2 L3 Agg.

1024 (512) 1408 (687.5) 2432 (1216)
512 (64) 10240 (1280) 10752 (1344)
512 (64) 8192 (1024) 8704 (1088)

(c) Memory access latency and bandwidth by NUMA distance measured with NUMAPerf! [46]. HPE has
a deeper topology than the Power platforms. Distance 0 (Local) refers to memory directly located the CPU,
1-2 (1 Hop, 2 Hop) refer to memory of neighbouring CPUs within the same chassis, and 3 (Remote) refers

to accesses across chassis.

Platform NUMA Distance Latency(ns) Bandwidth(GB/s)
HPE 0: Local 97 101
1: 1 Hop 226 16
2:2 Hop 260 16
3: Remote 380 12
Power8 0: Local 117 193
1: 1 Hop 142 28
2:n/a
3: Remote 260 43
Power9 0: Local 118 148
1: 1 Hop 214 39
2:n/a
3: Remote 361 90

and 1536 logical cores (hardware threads), of which 752
and 1504 are available to applications. Both systems provide
16 TB of memory.

The IBM Power CPUs use a RISC-based instruction set
architecture (ISA) unlike Intel CPUs, though both types of
CPUs share many features such as vector instructions, sup-
port of hardware transactional memory, and simultaneous
multithreading (SMT). Notably, IBM Power CPUs realise
configurable levels for SMT exposing 1 to 8 logical cores
(hardware threads) per physical CPU core. In our experi-
ments, we use SMT-8 if not noted otherwise. Therefore, the
12 physical cores in either Power processor provide up to 96
logical cores (hardware threads). We remark that both IBM
Power platforms reserve one physical core on some CPUs (2
on our Power8 and 4 on our Power9) to manage logical hard-
ware partitions (LPARs), e.g. governing storage and other
periphery. All other cores and memory resources are avail-
able for our evaluation without restrictions and any resource
sharing.

@ Springer

In the memory hierarchy, caches and the NUMA hierarchy
differ in important aspects between the two Power platforms
as well as the Intel-based platform. The cache capacities
in Table 2b reveal the large L3 caches per physical core
for Power9 and Power8. The Power9 processor contains the
largest L3 cache per physical core. Additionally, higher over-
all cache performance is claimed on Power9 due to increased
associativity (20-way in Power9 vs. 8-way on Power8) [49].
Notably, the IBM systems have a L4 cache on their custom
DRAM DIMMs. However, this is a memory buffer outside
of the processor rather than a CPU cache, thus unlike CPU
caches this L4 cache does not hide NUMA effects.

Like the Intel-based platform, the IBM Power systems
follow a NUMA architecture to scale to more than 1000 log-
ical cores. In Table 2¢, we summarise the respective latency
and bandwidth of memory accesses alongside the Intel-based
platform. As shown in Fig. 1c, our 16-socket Power9 system
features a NUMA topology with one hop to sockets in the
same chassis and two hops to sockets in its other three chas-

The full story of 1000 cores

sis, whereas our smaller 8-socket Power8 system can afford a
fully connected NUMA topology directly connecting every
socket between its two chassis. Additionally, both systems
have faster interconnects within the chassis than between the
chassis, therefore still establishing three NUMA level on both
Power systems.

Notably, a larger Power8 system with 16 sockets would
have a similar topology to our Power9 and inversely smaller
versions of the HPE and Power9 systems would similarly
benefit from stronger connections.

2.3 Benchmarking environment

In this paper, we evaluate the CC schemes mentioned before
on our multi-socket hardware with the TPC-C benchmark
[56] as implemented in the latest version of DBx1000 [72].
This version of DBx1000 includes the extended set of CC
schemes as mentioned before and bug fixes, beyond the ver-
sion used in the original paper [71]. Additionally, we rely on
the provided embedded instrumentation to measure the time
spent in the system.

For running the benchmarks, we use the given default
configuration of DBx1000. This configuration defines the
TPC-C workload as equal mix of New-Order and Payment
transactions covering 88% of TPC-C with standard remote
warehouse probabilities (1% and 15%). This configuration
partitions the TPC-C database by warehouse (WH) ID for all
CC schemes. Based on this configuration, we specify 4 ware-
houses for the high conflict TPC-C workload and 1024 or
1568 warehouses for the low conflict workload, as in our ini-
tial DaMoN paper [3]. Similar to the original evaluation, each
benchmark runs until the first transaction executor has com-
mitted 100K transactions, and we measure the throughput
as the number of transactions committed by all transaction
executors in that time. We observed this method to pro-
vide reliable measurements despite NUMA effects in our
large system or other effects influencing the execution of the
benchmark.

An interesting first observation was that DBx1000’s TPC-
C did not implement insert statements, presumably due to the
mentioned limitations of the simulator, e.g. memory capacity
and no OS. In part one of the paper, we thus first start with
the very same setup, but later we enable insert statements in
the evaluation after taking a first look at the CC schemes.
As minor extension, we added a locality-aware thread place-
ment strategy to DBx1000 for all experiments in this paper. It
exclusively pins DBMS threads to a specific core. For scaling
the DBMS threads in our experiments, we use the minimal
number of sockets to accommodate the desired resources,
e.g. 2 sockets for 112 threads, otherwise OS and NUMA
effects would dominate the overall results. Note that as con-
sequence of this thread placement strategy, cores and threads

equally refer to a single execution stream (i.e. a worker) of
the DBMS.

For the broader evaluation in part two, we use a setup
similar to the optimised DBx1000 from part one as discussed
before. Notably, we aim to match the thread placement on the
additional hardware platforms with the placement we used on
HPE. Moreover, throughout part two, TPC-C is configured
with the full TPC-C schema and transactions always execute
their insert statements. Finally, for the last experiments in
part two, we extend DBx 1000 to support the remaining TPC-
C transactions for the full TPC-C benchmark. For all other
experiments in part two, we use the more narrow mix of New-
Order and Payment transactions only, as was the case for the
original simulation.

3 Part one: simulation vs. real hardware
3.1 Afirst look: simulation vs. reality

We now report the results of running the DBx1000 proto-
type directly on the multi-socket Intel-based hardware (HPE
platform) as opposed to a simulation.

3.1.1 The plain results

Figure 2 displays the throughput of TPC-C transactions for 4
warehouses and 1024 warehouses, i.e. high and low conflict
OLTP workloads. On the left of each figure are the original
simulation results [71] and on the right are our results on real
multi-socket hardware (Intel-based HPE). We first compare

—— DL DETECT
—-—0CC

WAIT DIE
—— HSTORE

NO WAIT
TIMESTAMP

Real Multi-Socket System

—— MVCC

Many-Core Simulation

%) S

=015 1 AN

7 1 L [A

o 01sl

19 Ji —— -

= 0.05N 0.5 iy
=

% 50 100 150 200 250
Number of Cores

% 50 100 150 200 250
Number of Cores

(a) High Conflict, 4 Warehouses

Many-Core Simulation 40Real Multi-Socket System
7407'0“*

—_

N = O 00 O
)

=N W
%OOO

Million txn/s

A g
o ~—! 4 -

00" 200 400 600 8001,000°% 200 400 600 8001,000
Number of Cores Number of Cores

(b) Low Conflict, 1024 Warehouses

Fig. 2 Throughput of TPC-C in original simulation [71] and on real
multi-socket hardware (Intel, HPE)

@ Springer

T.Bang et al.

the overall throughput. Then, we break down where time is
spent in the DBMS to better understand our observations.

We first look at the results for 4 warehouses as shown
in Fig. 2a. Overall, it is obvious that the absolute throughput
differs due to the characteristics of the CPUs in the simulation
and our hardware, e.g. low-power 1 GHz cores versus high-
power 2.5 GHz cores. This is expected, and therefore, only
the relative performance of the CC schemes matters. In the
following, we discuss similarities and significant differences.

First, comparing the simulation and the real hardware
(Intel-based HPE platform) in Fig. 2a, we see that the CC
schemes HSTORE, MVCC, and NO WAIT show similar
trends. That is, these CC schemes have a similar thrashing
point in the simulation and the real hardware, i.e. HSTORE
at 4-8 cores and MVCC as well as NO WAIT at 56 to 64
cores. After the respective thrashing point, these CC schemes
degrade steeper on the multi-socket hardware, which can be
linked to the additional NUMA effect of the multi-socket
hardware appearing beyond 56 cores. For the other CC
schemes, the results for the simulation and real hardware
differ more widely, especially the diverging behaviour of the
pessimistic CC schemes sticks out. Considering these pes-
simistic CC schemes, DL DETECT behaves broadly different
already degrading at 8 cores rather than 64 cores and WAIT
DIE performs surprisingly close to NO WAIT. In Sect. 3.1.2,
we analyse the time breakdown of this experiment to explain
these results. It reveals characteristic behaviour of the indi-
vidual CC schemes, despite the diverging throughput in the
simulation and the multi-socket hardware.

Next, we look at the low conflict TPC-C workload (1024
warehouses) in Fig. 2b. The results here present fewer sim-
ilarities of the many-core simulation and the multi-socket
hardware (Intel-based HPE), i.e. only the slope of MVCC is
similar. Additionally, DL DETECT and NO WAIT stagnate
athigh core counts (>224) in the simulation and on the multi-
socket hardware. In contrast, HSTORE performs worse on
the multi-socket hardware than in the simulation. It is slower
than the pessimistic CC schemes and OCC from >112 cores.
Also, OCC and WAIT DIE achieve higher throughput on the
multi-socket hardware, now similar to DL DETECT and NO
WAIT. Moreover, MVCC is significantly slower than OCC
and the pessimistic CC schemes, due to high overheads of
this scheme as we discuss next.

Insight The initial comparison of concurrency control
schemes on 1000 cores presents only minor similarities
between the simulation and our multi-socket hardware with
surprising differences in the behaviour of the CC schemes
mandating further analysis.

3.1.2 First time breakdown on intel-based hardware

For deeper understanding of the observed behaviour of the
CC schemes, we now break down where time is spent in

@ Springer

Table 3 Time breakdown categories

I Useful Time usefully executing application logic and
operations on tuples.
Abort Time rolling back and time of wasted useful work
due to abort.
Backoff Time waiting as backoff after abort (and requesting
next transaction to execute).
Ts. Alloc. Time allocating timestamps.
Il Index Time operating on hash index of tables including
latching.
Il Wait Time waiting on locks for concurrency control.
B Commit Time committing transaction and cleaning up.
Il CC Mgmt. Time managing concurrency control other than prior

categories, e.g. constructing read set.

mm Commit mm CC Mgmt. mm Wait mm [ndex
Backoff Abort Ts. Alloc. mm Useful
1 DL DETECT WAIT DIE NO WAIT
[= -
08!!!! I!..-- I!..-
0.6 I - =
Sl il
o2 NnEsENl_ BisE=22001
“2’10 MVCC HSTORE
Ry | | L “l==:
égﬁiiq““ll it i
s IIVRARETH g 10
e Number ofﬁCﬁot;e(; e
(a) High Conflict, 4 Warehouses
1 DL DETECT WAIT DIE NO WAIT
s (O LT
ggfillll.““ Illl..|“ i l...“
oz 1NN NNNas VRRNNNARs DRRNNDASG
'02)1 0 MVCC_ OCC STORE
S oy i MR
{1111 BT e
. n I
:RNSNRNN ARRERRNus Ranadzill
(A IR R B B B | NN~ N F 0N m = ¥ 0N
- Nt 0 O - N % 0 O - N ¥ 0w O

Number of Cores
(b) Low Conflict, 1024 Warehouses

Fig. 3 Breakdown of relative time spent for TPC-C transactions on
multi-socket hardware (Intel, HPE)

processing the TPC-C transactions on the multi-socket hard-
ware. Therefore, we apply the breakdown of [71] categorising
time as outlined in Table 3. For each CC scheme, Fig. 3 breaks
down the time spent relative to the total execution time of the
TPC-C benchmark with a bar for each core count.

The time breakdown of 4 warehouses in Figure 3a neatly
shows the expected effect of conflicting transactions and
aborts for increasing core counts under high conflict work-

The full story of 1000 cores

load. That is, most CC schemes result in high proportions
of wait, abort, and backoff as soon as the number of cores
exceeds the number of warehouses (>4 cores), yielding
nearly no useful work at higher core counts. Only the wait
time of HSTORE grows at 4 cores concurrently executing
transactions, such that HSTORE appears more sensitive to
conflicts.

Remarkably, textbook behaviour of the specific schemes
becomes visible in the breakdown: Starting with DL DETECT,
its wait time increases with the number of concurrent trans-
actions as expected, following the increasing potential of
conflicts between concurrent transactions. Different from DL
DETECT, WAIT DIE spends more time backing off and
aborting due to its characteristic aborts after a short wait
time (small wait proportion). Instead, NO WAIT solely backs
off without waiting, spending even more time on aborted
transactions. The optimistic MVCC waits on locks during
validation, such that its breakdown shows similar wait times
like DL DETECT. Finally, for OCC we can see that the high
abort portion reflects its sensitivity to conflicts while the high
commit portion stems from high costs for cleaning up tem-
porary versions.

Having observed this “expected” behaviour of the CC
schemes under high conflict, we now analyse the unexpected
behaviour under low conflict as shown in Fig. 3b. Against the
expectation, most CC schemes spend considerable amount of
time to manage concurrency (black and grey area) such as
lock acquisition (except HSTORE which we discuss later).
For these schemes, this results in at most 50% of useful work
(red area). Staggeringly, MVCC, which actually should per-
form well under low conflicting workloads, spends almost no
time with useful work despite the low conflict in the work-
load, i.e. <10% useful work from 224 cores. In fact, the
low conflict is visible in the overall little time spent wait-
ing or aborting. Consequently, the slowdown compared to
pessimistic CC schemes does not stem from wasted work
but from internal overhead in execution of this CC scheme
under high core counts.

In contrast, we observe for HSTORE an increasing impact
of timestamp allocation and waiting time. While timestamp
allocation is used by the other schemes as well, the relative
overhead for HSTORE is the highest due to its cheaper lock
acquisition. In fact, the authors of [71] did analyse different
timestamp allocation methods in their paper but chose atomic
increment as a sufficiently well performing method that is a
generally applicable option when there is no specialised hard-
ware available. However, as we can see this choice is not
optimal for multi-socket hardware. Moreover, we attribute
the increasing waiting time of HSTORE to its coarse-grained
partition locking to sequentially execute transactions on each
partition. This partition-level locking causes a higher over-
head if more cores are used since this leads to more conflicts
between transactions as shown in prior work [34,41].

NO WAIT —-— MVCC
TICTOC

—— DL DETECT WAIT DIE

—— HSTORE —— SILO

%

o
Q
Q

Throughput vs. Atomic Increment

Million txn/s (log;,)
A

Number of Cores

Number of Cores

Fig.4 Throughput of low conflict TPC-C for timestamp allocation with
hardware clock

Insight The analysed CC schemes behave differently on
the real multi-socket hardware than in the simulation of [71].
For the high conflict workload (4 warehouses), the behaviour
on real hardware and the simulation appears more similar, for
which the time breakdown confirms the expected character-
istics for each CC scheme. However, low conflict workload
causes an unexpectedly high CC management overhead in
most CC schemes and transactions execute only a limited
amount of useful work, except for HSTORE where waiting
and timestamp allocation dominate.

3.2 A second look: hidden secrets

In this section, we now take a “second look” at the fac-
tors leading to the surprising behaviour of the CC schemes
observed in our initial analysis and discover equally surpris-
ing insights.

3.2.1 Hardware assistance: the good?

In a first step, we analyse the benefit of hardware-assisted
timestamp allocation over using atomic counters for the
real multi-socket hardware. As explained earlier, the atomic
increment is generally applicable but may cause contention,
which efficient and specialised hardware may prevent if avail-
able. Our hardware provides a synchronised hardware clock
indeed offering a new option for efficient timestamp alloca-
tion, as projected by [71]. Specifically, our Intel processors
provide efficient access to a hardware clock on each core [29]
(rdtsc instruction), which ticks at the same rate on all cores
in the entire system (invariant tsc feature) and is synchro-
nised across all cores and hardware chassis by the platform
firmware, verified by the OS [43,59-61].

In the following experiment, we analyse the benefit of this
hardware assistance for timestamp allocation. Figure 4 shows
the throughput of the CC schemes for 1024 warehouses with
timestamp allocation based on the hardware clock.

On one hand, HSTORE greatly benefits from the hard-
ware clock (as expected) achieving peak throughput of

@ Springer

T.Bang et al.

~4(0 M txn/s with an overall speedup over atomic increment
of up to 3x. We now also include SILO and TICTOC in
our results which perform like HSTORE except for high
core counts as we discuss in the time breakdown analysis
below. On the other hand, the remaining CC schemes (DL
DETECT, WAIT DIE, NO WAIT,MVCC, and OCC) degrade
drastically when using the hardware clock instead of atomic
counters. That is, the pessimistic CC schemes DL DETECT,
WAIT DIE, and NO WAIT perform ~50% slower within a
socket (0.51-0.55x speedup for <56 cores), after which they
degrade to 0.01x speedup at 1024 cores (0.37-0.39 M txn/s).
Likewise, MVCC is stable (~1x speedup) up to 56 cores and
its speedup drops to 0.1x when exceeding the single socket.
Finally, OCC does not benefit from the hardware clock at all
(0.44-0.01x speedup).

Overall, timestamp allocation based on the hardware clock
drastically changes the perspective on the performance of
the CC schemes. Now, HSTORE performs best, meeting the
initial observations of [71] (joined by SILO and TICTOC),
whereas the pessimistic schemes, OCC, and MVCC degrade
severely.

For better understanding of these diverse effects of the
hardware clock, we again look at the time breakdown shown
in Fig. 5a (top row). As expected, HSTORE now spends
little time for timestamp allocation (like SILO and TICTOC).
Otherwise, HSTORE spends time similarly as with atomic
increment, especially with a similar increase in the waiting
time. Importantly, we do not observe any bias introduced by
the hardware clock, since HSTORE (as well as the other CC
schemes) spends no significant time aborting and our detailed
logs show no outliers for the number of aborted transactions
per transaction executor. Consequently, the hardware clock
is reliable for timestamp allocation.

An interesting observation is the significant change in the
time breakdown of the other CC schemes. For example, DL
DETECT, WAIT DIE, and NO WAIT show at least 2x the
time spent for CC Mgmt. and committing/cleaning up (black
& grey) with a sudden increase after 56 cores. OCC’s increase
in time spent in these categories is even more drastic with
less than 20% of useful work at any core count. Only MVCC
changes insignificantly, as useful time spent was low already.

Profiling these CC schemes reveals physical contention,
that previously was on the atomic counter, now results in
thrashing of latches. Previously, the physical contention
on the atomic counter has throttled transaction execution
including latching, e.g. for lock acquisition. Now, that the
hardware clock has removed the physical contention from
timestamp allocation, transactions access latches more fre-
quently, indeed reaching their thrashing point despite a latch
per row and low conflicts in the workload with 1024 ware-
houses. Notably, our profiling reveals further details of the
individual CC schemes: The pthread_mutex employed in DL
DETECT, WAIT DIE, NO WAIT, and OCC sharply degrades

@ Springer

due to NUMA sensitivity of hardware transactional mem-
ory [9] used for lock elision and its fallback to robust but
costly queuing synchronisation [18] as well as costly inter-
action with the scheduler of the 0S.2 In contrast, MVCC
uses an embedded flag as spin latch which is not as sensi-
tive to NUMA but also not robust [12]. Hence, this type of
latch shows a slower but also continuous degrading of per-
formance.

Insight Hardware-assisted timestamp allocation via spe-
cialised clocks alleviates contention and leads to better
scalability for HSTORE (as well as SILO and TICTOC).
However, while hardware-assisted clocks also lift the over-
head in the other schemes, it does not necessarily improve
their overall performance as contention moves and puts pres-
sure on other components (e.g. latches), even leading to
performance degradation.

3.2.2 Data size: the bad?

In the context of this surprisingly high overhead, our second
look at the paper [71] brings the following statement to our
attention: “Due to memory constraints [...], we reduced the
size of [the] database” [71]. Consequently, we are wonder-
ing if the staggering overhead is potentially caused by the
absence of useful work to execute rather than the abundance
of overhead in the CC schemes, due to the reduced data size
imposed by limited memory capacity of the simulatorin [71].

We revert the benchmark to the full TPC-C database in
the following experiment and report on the surprising effect
of the larger data volume. In detail, to return to the officially
specified database, we increase (1) the cardinality of the item
relation from 10K to 100K, (2) the factor of customers per
warehouse from 20K to 30K determining the cardinalities
of the customer, order, order-line, and history relations, and
(3) we include all attributes rather than only those accessed.

Figure 6 shows the throughput for the full schema with
1024 warehouses and speedup in comparison with the small
schema based on the previous experiment (cf. Fig. 4). We
measure quite diverse throughput of the CC schemes. Yet,
the speedup indicates that two major effects of the increased
data volume appear in the same clusters as in the previ-
ous experiment but with inverse outcome. The first cluster
of HSTORE, SILO, and TICTOC is slower with the full
schema, i.e. 0.2-0.6x, 0.3-0.5x, and 0.2-0.5x, respectively.
The second cluster, consisting of the previously “slower”
CC schemes, improves inversely to the previously described
thrashing points. That is, DL DETECT, WAIT DIE, and NO
WALIT have a speedup of 0.7x until 56 cores, after which
they benefit from the full schema with speedups of 2.4-9.1x,
2.5-8.3x, and 2.0-9.3x, respectively. MVCC has a speedup
of 0.5-0.6x until 56 cores, breaks even (1x) at 112 cores

2 pthread_mutex is specific to libc and the OS.

The full story of 1000 cores

mm Commit mem CC Mgmt. s Wait msm Index

1 DL DETECT WAIT DIE NO WAIT MVCC
] = = ==
R LB TR
BT
oz un NI RNNNRRARRERR DR RARNAR R EEEE)
>
LT EELEECY T RPEEEE | EEFTT
éoﬁ g II 1 & 1 e HH
T
0'3llllll|l| llllnll lln..ll i
TRRNETESY THBNEIYSY "B EIEd "8REE g
R0 o ~H A oo ~HAa oo A Aa oo

Backoff Abort Ts. Alloc. mmm Useful
OCC HSTORE SILO TICTOC

ial Ill =
|| H £
Ill g %
et 2
1] iis <
AT Il
il I -
Q0
nnnnnahan Deegeaaiinl 1B

— 00 © N0 H OOt ~ 00 <+ —~ 0 ©

REJER3E3 R 378 g3

Number of Cores

Fig.5 Breakdown of relative time spent processing TPC-C transactions on small and full schema with 1024 warehouses using timestamp allocation

via hardware clock

—— DL DETECT WAIT DIE NO WAIT — MVCC

—— OCC —— HSTORE —— SILO TICTOC
Throughput vs. Small Schema

12

=15

£ 10

=

15

= 5

EOoooc:oo 0l s o o o o o
S &5 5 &5 3 S & 5 & 3
] F B 0 S XN F B o S

— —

Number of Cores

Number of Cores

Fig.6 Throughput of low conflict TPC-C for small schema size like in
the simulation versus full schema size both executed on multi-socket
hardware (Intel, HPE)

and then, improves with a speedup of 1.2-9.3x. OCC has a
speedup of 0.8 at 1 core and broadly improves with the full
schema with 2.1-14.9x speedup.

The time breakdown in Fig. 5b (lower row) details the
causes. As for the CC schemes in the first cluster, HSTORE
has increased useful work, while for SILO and TICTOC CC
Mgmt. increases. Both indicate increased cost of data move-
ment, as HSTORE directly accesses tuples and the other
two create temporary copies in the CC manager. The sec-
ond cluster shows an increase in useful work, presenting less
staggering overhead of CC management at low core counts.
Importantly, the sudden increase in commit for DL DETECT,
WAIT DIE, and NO WAIT is delayed, indicating that latches
thrash only from 448 cores (while previously already from
112 cores). For OCC, the time spent on commit also decreases
with the larger data volume, but the increase in CC Mgmt.
due to larger temporary copies still diminishes useful work.
Only for MVCC, the time breakdown does not change sig-
nificantly.

Insight The effect of larger data volumes in the full
schema changes the perspective on the CC schemes again.
We attribute our observations to the effects, that heavier data

= . DL DETECT - WAIT DIE
Z NO WAIT - MVCC

8 —..0CC —~ HSTORE
§ — SILO TICTOC

Number of Cores

Fig. 7 Throughput of TPC-C including inserts with full schema size
on multi-socket hardware (Intel, HPE)

movement slows down data-centric operations (e.g. tuple
accesses or copies), which in turn alleviates pressure on
latches preventing thrashing.

3.2.3 Inserts: facing reality!

Since the simulator of [71] had limited memory capac-
ity and excluded the simulation of important OS features
such as memory management, the TPC-C implementation
of DBx1000 did not include insert statements and for com-
parability we initially excluded these as well. For the last
experiment in this section, we now complete the picture of
concurrency control on real hardware (Intel).

Accordingly, Fig. 7 shows the throughput of TPC-C trans-
actions including inserts (as well as all before-mentioned
changes) for 1024 warehouses. The inserts drastically reduce
throughput of all CC schemes with heavy degradation at the
socket boundary (56 cores). Even more interesting, all CC
schemes perform similarly with inserts in the transactions.
Indeed, profiling indicates execution of insert statements are
the hotspot of the TPC-C transactions now, but the causes are
orthogonal to concurrency control. The two major hotspots
are (1) catalogue lookups to locate tuple fields and (2) mem-
ory allocation for new tuples.

@ Springer

T.Bang et al.

DL DETECT

WAIT DIE NO WAIT MVCC

Fig. 8 Summary of speedup of the CC schemes provided our optimi-
sations Opt. 1-8 described in Sect. 3.3.1 for (a) the high and (b) the
low conflict workloads (i.e. 4 and 1568 warehouses). Optimisations are

Profiling details show that catalogue lookups cause fre-
quent accesses to L1 and L3 caches. For tuple allocation,
profiling details indicate significant time spent in the mem-
ory allocator and for OS memory management including
page faults. These hotspots are amplified by NUMA in our
multi-socket system, since the catalogue is centrally allocated
and memory management in Linux is also contention- and
NUMA-sensitive [11]. Hence, such impact on performance
only becomes visible in its full extent on large systems like
ours.

Insight Inserts significantly affect the performance in this
benchmark, though due to hotspots orthogonal to the CC
schemes, most notably cache misses of the catalogue and
memory allocation.

3.3 Effect of state-of-the-art-optimisations

Finally, we take a last step to provide a clear view on the
characteristics of concurrency control on large multi-socket
hardware. First, we elaborate on our optimisations to reach
this clear view and provide an overview of their individual
speedups. Then, we repeat our assessment of the CC schemes
using all optimisations.

Notably, in the following experiments, we use the full
TPC-C schema as well as inserts in the transactions, and we
exercise the whole 1568 cores for the low conflict workload.
We maintain the one-to-one relation of cores to warehouses
for the low conflict workload, as the TPC-C workload induces
significant conflict when concurrent transactions exceed the
number of warehouses.

3.3.1 Overview of optimisations

To clear the view, we remove previously identified obstacles
and optimise the overall system based on state-of-the-art in-
memory DBMS for large multi-socket hardware: (Opt. 1) We
introduce a thread-local memory allocator that pre-allocates

@ Springer

OoCC HSTORE SILO TICTOC

(a) 4 WH

(b) 1568 WH

applied one after the other, and speedup is reported as the factor of
throughput increase over the base implementation

memory, as in today’s commercial in-memory databases
[16]. Importantly, it aligns allocations to cache line bound-
aries, otherwise false sharing obliterates performance. (Opt.
2) We add a flat perfect hash index [34], e.g. reducing pointer
chasing and cache misses. (Opt. 3) We address latch thrash-
ing with a queuing latch [12,34,54] and exponential backoff
[26]. (Opt. 4) We replicate read-only relations to each socket,
utilising faster local memory instead of slow remote mem-
ory [34]. (Opt. 5) We reorder and prefetch tuple and index
accesses to optimise data movement. (Opt. 6) We lift expen-
sive query interpretation (e.g. catalogue lookups) to efficient
query compilation as in state-of-the-art in-memory DBMS
[16,33,55,57]. (Opt. 7) We update the deadlock prevention
mechanisms to state-of-the-art [26]. (Opt. 8) We eliminate
CC overhead for read-only relations.

In Fig. 8, we report the speedup provided by each opti-
misation when consecutively adding the optimisations, as
the factor of throughput increase over the unoptimized base
implementation. Note that, we discuss the detailed through-
put with all optimisations in place in the next section and the
detailed throughput of the individual optimisations is avail-
able in [5].

For the high conflict workload, Fig. 8a shows that the
thread-local memory allocator (Opt. 1) and the eliminated
CC overhead for read-only relations (Opt. 8) provide signif-
icant speedup for all CC schemes with each up to 5.38x and
4.33x. Additionally, the optimised latching (Opt. 3) indeed
notably benefits the CC schemes involving heavy latching
(pessimistic CC schemes and OCC) with further speedup of
up to 2.12x.

For the low conflict workload, Fig. 8b shows an even
greater speedup for the thread-local memory allocator (Opt.
1), by up to 268x. Additionally, in this low conflict work-
load the NUMA -aware replication (Opt. 4) proves beneficial
with up to 227x speedup, as actual work including record
accesses dominates the low conflict workload (rather than
concurrency control). Further, there are notable speedups of

The full story of 1000 cores

—— DL DETECT WAIT DIE NO WAIT
—— MVCC — 0CC —— HSTORE
—— TIMESTAMP —— SILO TICTOC

Many-Core Simulation Multi-Socket Hardware

g 0 15
” k
§ O O
50 100 150 200 250 50 100 150 200 250
Number of Cores Number of Cores
(a) High Conflict, 4 Warehouses
b% Many-Core Simulation Multi-Socket Hardware
S 10 A
2]
=1
%
e
§o.1
= o o o 9o 9o o
= 8 § 8 8 8
i

Number of Cores

(b) Low Conflict, 1024 Warehouses for Simulation and 1568
for Multi-Socket Hardware

Fig. 9 Throughput of TPC-C in original many-core simulation [71]
without full schema & inserts and our optimised implementation with
full schema & inserts on multi-socket hardware (Intel, HPE)

the other optimisations for distinct CC schemes, e.g. the opti-
mised index (Opt. 2) notably benefits HSTORE, SILO, and
TICTOC with up to 2.83x, whereas the optimised latching
(Opt. 3) again benefits the pessimistic CC schemes, OCC,
and now also HSTORE (up to 2.49x). Finally, the updated
deadlock prevention (Opt. 7) significantly benefits OCC with
up to 1.71x. The other optimisations show less significant
speedups (<1.5x).

Notably, the speedup of the optimisations varies in detail,
across the CC schemes, workloads, and number of cores.

mm Commit mm CC Mgmt. mmm Wait mem Index ms= Backoff
MVCC

CT WAIT DIE NO WAIT

o
Q

- .
56 I — -

28 Il

Number of Cores
(a) High Conflict, 4 Warehouses

112 .

224 1

=
i 08
06

There are many factors influencing the specific speedup.
Their detailed study is beyond the scope of our evaluation
of concurrency control.

3.3.2 Results after optimisations

With the above optimisations in place, we now repeat the
detailed assessment of the CC schemes under high and low
conflict OLTP workload (as initially in Sect. 3.1). Accord-
ingly, Fig. 9 presents the throughput of the fully optimised
DBx1000 for the high conflict and low conflict TPC-C work-
loads. In addition, Fig. 10 again details the performance of the
CC schemes on the multi-socket hardware with time break-
downs.

Starting with throughput of the high conflict workload
in Fig. 9a (top row), we again observe similar results as
reported in our first assessment. The many-core simulation
and the multi-socket hardware results show different but
reasonable behaviour due to the respective hardware char-
acteristics. The only difference is that now our optimisations
further offset throughput on the multi-socket hardware. Addi-
tionally, we now include the advanced CC schemes SILO
and TICTOC whose peak throughput remarkably outperform
the originally covered CC schemes with 4.6 and 5.3 M txn/s,
respectively. Yet, those two CC schemes similarly degrade at
high core counts converging to the performance of the other
CC schemes from 56 cores (>1 socket).

For the other CC schemes, there are minor similarities of
the individual throughput curves of the CC schemes between
the many-core simulation and the multi-socket hardware.
Focusing on the relative performance of the CC schemes
other than SILO and TICTOC reveals significant improve-
ment of OCC and decrease in MVCC. The pessimistic
schemes converge at high core counts, only degrading at dif-
ferent points and rates. Finally, HSTORE still only performs

Ts. Alloc. mm Useful
N O WAIT

Abort

A
e
H
o)
=
&
UJ
O
S ——
Q <
H -
8 I O
o
1

cCooo
oo owq;

Yy [

28 H N ——

56 I I
112 NI
168 1IN
224 [N
448 1NN
896 |1

1344 |

1568 | I
28 NI

56 M1

112 [—
224 I —

448 NI

28 NN

56 N
112 NN
168 NN
224 NN
4438 NN ——
896 HINNN———

s9c NI
1344 NI

s9c I

1568 1IN I

448 N

224 NI
1568 I

1344 NN
1568 H N

Number of Cores
(b) Low Conflict, 1568 Warehouses

Fig. 10 Breakdown of relative time spent processing TPC-C transactions with optimised DBx 1000 using full schema and inserts on multi-socket

hardware (Intel)

@ Springer

T.Bang et al.

well for small core counts (<4) and remains slow beyond.
Moreover, considering the time breakdown for the high con-
flict TPC-C workload in Fig. 10a, we again observe textbook
behaviour as in the early time breakdown in Sect. 3.1.2 with
fractions of wait, backoff, and abort characteristic for the
individual CC schemes, though the amount of useful gen-
erally improves and commit as well as CC Mgmt. decrease
through our optimisations.

Next, we analyse the low conflict workload using our
optimised implementation. Figure 9b reveals that under this
workload all CC schemes broadly provide scalable perfor-
mance with fewer differences as the schemes show in the
many-core simulation. That is, up to two sockets the through-
put of all CC schemes steeply grows. Then, the throughput
continues to grow linearly up to 1344 cores at a lower growth
rate. At the full scale of 1568 cores, the behaviour of the
CC schemes differs. TICTOC, SILO, and MVCC make a
steep jump reaching 197 M txn/s, 159 M txn/s, and 75 M txn/s,
respectively. Also, the growth rate of the pessimistic locking
schemes increases but not as much, yielding 34 M txn/s for
DL DETECT, 32 txn/s for WAIT DIE, and 36 M txn/s for
NO WAIT. OCC stays linear achieving 39 M txn/s. In con-
trast, HSTORE degrades from 59 M txn/s at 1344 cores to
35Mtxn/s at 1568 cores.

Now with this clear view, we can make out different
characteristics of the CC schemes on the large multi-socket
hardware, visible in their throughput and time breakdown
(Fig. 10b). Under high conflict, the schemes SILO and TIC-
TOC clearly excel, although they neither scale to high core
counts (similar to the other schemes). Under low conflict,
HSTORE performs the best until the number of concur-
rent transactions (cores) equals the number of partitions
(warehouses). Beyond this point it degrades, due to its
coarse partition locking, similarly observed in the simula-
tion. HSTORE’s sensitivity to conflicts becomes obvious in
the steep increase in wait time in the time breakdown.

Under low conflict, TICTOC follows as second fastest
with SILO close by. Both provide significantly lower through-
put than HSTORE until the tipping point at 1344 cores from
which they outperform HSTORE by a large margin due to
efficient fine-grained coordination, as indicated by their sta-
ble amount of Commit and CC Mgmt. For the other CC
schemes, the view is diverse as their relation changes with
the NUMA distance between the participating cores. After
exceeding 8 sockets (448 cores/2 chassis), the pessimistic
schemes fall behind the advanced optimistic CC schemes
(TICTOC & SILO) and eventually also behind OCC and
MVCC. This degrading is unrelated to conflicts (no wait
time) but correlates with increasing NUMA distances. Con-
sequently, for the low conflict OLTP workload, it appears
that pessimistic locking is beneficial when access latencies
(NUMA effects) are low. The temporary copies of optimistic
CC can hide these latencies, but at the cost of additional

@ Springer

data movement, slowing down throughput at close NUMA
distance. To this end, HSTORE and TICTOC implement
these two approaches as well, but they are more efficient,
e.g. as HSTORE locks less frequently. Notably, there is no
difference among the pessimistic CC schemes with different
mechanisms against deadlocks, as the low conflict has few
deadlocks.

Insight After spending considerable engineering effort
bringing state-of-the-art in-memory optimisations to
DBx1000, we shed new light on concurrency control on 1000
cores. First, we unveil remarkable peak throughput of the
newer CC schemes, TICTOC and SILO, on high conflict
workload, while also presenting textbook behaviour of all
CC schemes in the time breakdown. Second, we brighten the
grim forecast of concurrency control on 1000 cores for low
conflict workload from the simulation of [71]. In fact, under
low conflict all CC schemes scale nearly linearly to 1568
cores reaching 200 million TPC-C transactions per second.

3.4 Summary of part one

In this part, we analysed in-memory DBMS on an Intel-based
platform with 1568 cores, revisiting the results of the simula-
tion in [71], using their original prototype DBMS DBx1000.
This led to surprising findings:

(1) A first attempt of running their prototype on today’s
multi-socket hardware presented broadly different
behaviour of the CC schemes. To our surprise, the low
conflict TPC-C workload with at most one warehouse per
core (and transaction executor) revealed most concur-
rency control schemes not only stopped scaling beyond
200 cores but also were very inefficient spending not
even half of their time on useful work.

(2) Based on these results, we decided to take a sec-
ond deeper look into the underlying causes and made
several discoveries. First, the default timestamp alloca-
tion via atomic increment was a major bottleneck on
the multi-socket hardware. Second, the default bench-
mark settings of DBx1000 used a TPC-C database
significantly reduced in size and disregarded inserts in
the transactions. Changing these default setting shifted
the picture of our initial assessment completely: while
replacing the atomic counter with a hardware clock
removed the timestamp creation bottleneck, enabling the
original database size and insert statements, however, led
to an even darker picture than in our first look. In this
second look, we saw that all CC schemes completely
collapsed when scaling to more than 200 cores, despite
absent conflicts in the workload.

(3) Finally, we spent significant engineering efforts on our
optimised DBx1000 [6] across all components from
memory management over transaction scheduling to

The full story of 1000 cores

locking. This cleared the dark skies we faced before and
allowed most CC schemes to scale very well, provid-
ing up to 200 million txn/s on 1568 cores. Even more
surprisingly, now, the CC schemes behave very similar
with no clear winner. Having cleared the view on con-
currency control with this evaluation on real hardware,
an interesting question is now how these findings gen-
eralise across different scale-up hardware platforms and
more demanding workloads.

4 Part two: broadening the evaluation

In this second part, we broaden the evaluation of in-memory
OLTP DBMS on large hardware. Previously, in the first part,
we evaluated how the insights of in-memory DBMS running
on a simulated many-core hardware transfer to today’s hard-
ware. Indeed, we observed significantly different behaviour
of the in-memory DBMS DBx1000 on real hardware com-
pared to the original simulation [71]. For the second part, we
now widen the evaluation in the two dimensions hardware
and workload, as discussed in Sect. 1. First, we study the CC
schemes on a broader set of hardware platforms, before we
then look at the full TPC-C transaction mix.

4.1 Intel-based vs. IBM power 8/9 platforms

We begin with an overview how the different approaches to
“1000 cores” of today’s hardware affect concurrency con-
trol. Initially, we focus on identifying diverging behaviour of
CC schemes on the different hardware platforms, perform-
ing scalability experiments. Later sections cover detailed root
cause analyses. The following scalability experiments deter-
mine how the CC schemes respond to increasing number
of cores provided by the three different hardware platforms
(HPE, Power9, and Power8), when the CC schemes pres-
sure different aspects of the hardware depending on the scale
(number of cores). For example, compute resources, caches,
and interconnects between the processors are utilised differ-
ently depending on the hardware scale (number of cores). As
before, we separately evaluate high and low conflict work-
load, due to their significant effect on the CC schemes. For
example, high conflict generally requires more coordination
(e.g. latching), while low conflict allows for high concur-
rency, influencing the behaviour of the CC schemes on the
different platforms.

4.1.1 Scaling on different real hardware—high conflict

Figure 11 presents the performance of the CC schemes for
the high conflict workload on HPE, Power9, and PowerS.
Overall, for the throughput in Fig. 11a, we observe vaguely
similar scaling behaviour on Power9 and Power8 as previ-

-o- DL DETECT
-o- OCC

WAIT DIE
-2 HSTORE - SILO

NO WAIT - MVCC

TICTOC

Throughput Abort Ratio
5 1
A N
4 7 0.8 7 a
3 \ 06 0 /o d
) ¥ e

2 '):\.\\ 0.4 2 ./ T

1 ""“:=§i§' 0.2 5/

o= v 0 Sm-m—u ‘m
<5 = —
IS 0.8 Nn—"—0 o
%4 o] o~ o
S ol S0 g
SS9 & 204 & e 5
= 7 SEEA — 8 v ~
= lrol—i—_ 4 < 0274

0~ ——w= , 0 SEm—u | |

5 1 —

4 08 o n=q o o«

3 As 0.6 oo B

2 &N 04 2 o— 0 g

18 o 5 02447 / o

0 e = 0 “EE—m—m n

0 100 200 300 0 100 200 300

Number of Cores

(b) Abort Ratio

Number of Cores

(a) Throughput

Fig. 11 Performance for TPC-C under high conflict on HPE, Power9,
and Power8

ously on HPE, i.e. the CC schemes briefly scale well but
eventually thrash. This thrashing is caused by the high con-
flict in the workload. As indicated by according abort rates
in Fig. 11b, the CC schemes respond to these conflicts sim-
ilarly on all three hardware platforms. Notably, not only the
general behaviour is similar on the three platforms, but also
the actual throughput of the CC schemes is of the same mag-
nitude as opposed to the simulation, allowing for comparison
of absolute performance.

Figure 12 details the scaling behaviour of the individual
CC schemes on the three hardware platforms side by side (i.e.
1. HPE, 2. Power9, and 3. PowerS8). As discussed next, their
diverse behaviours indicate no clear benefit of either hard-
ware platform, but rather highlight the benefit of individual
hardware properties taking effect at specific core counts.

Starting with the pessimistic locking scheme DL DETECT,
we find its peak performance on HPE and at only 16
cores (1.5Mtxn/s, 5.3x). On Power9, DL DETECT sharply
degrades already at 16 cores, falling behind the perfor-
mance on HPE and Power8. Beyond 16 cores, DL DETECT
degrades on all three hardware platforms. Instead, the other
two pessimistic locking schemes WAIT DIE and NO WAIT
achieve their peak performance at 24 cores on Power9
(2.6/2.7Mtxn/s, 9.5/9.8x). Then, these CC schemes grad-
ually degrade similarly on all three hardware platforms until
thrashing at 88 cores. Notably, this thrashing occurs when
using two sockets on HPE but only one socket on Power9 and
Power8, i.e. across NUMA distance 1 on HPE but NUMA-
local on the Power platforms. This fact and similar abort
ratios on all three platforms beyond the thrashing point indi-

@ Springer

T.Bang et al.

DL DETECT 1. 0 0. (
2 0 0 8 B 0 0 0. (0.072) 0.07
0 0 0.0011

WAIT DIE 1 ™
2 (0.13) (0.095) 0.088
3 (0.19) 0.14
NO WAIT 1 0.1
2. 38) (0.046) 0.042)
3. 0.074 ~
MVCC 1. s
2. %
3 +
occ 1. g
2. o—
3. =
HSTORE 1.
) =
3. (—
SILO 1.
2. 31) (1.9 18 (1.7
3. (190 1.6 (1.6) (L.5)
TICTOC 1. . 2 (149 (13) 11]
2. (35 35 (32 | (2 18 (L.7)
3. 24 (24) (22) 17 (17 (16) 15
8 16 22 24 28 44 48 56 88 96 112 184 192 224 279 288

Number of Cores

Fig. 12 Detailed throughput for TPC-C (Million txn/s) under high conflict on HPE, Power9, and Power8. The figure shows the speedup of different
CC schemes (on y-axis) when scaling the number of cores (on x-axis). Per CC scheme, we have 3 rows — one for each platform (1. HPE, 2. Power9,

3. Power8)

cate overwhelming conflicts as cause for this thrashing of
WAIT DIE and NO WAIT (rather than NUMA or other hard-
ware properties). At high core counts, NUMA additionally
takes effect. Then, WAIT DIE and NO WAIT benefit from
lower NUMA latency on Power8, though only by less degrad-
ing.

Moving forward to the other schemes, we see further
interesting behaviours: (1) MVCC and OCC again scale dif-
ferently than the pessimistic locking schemes on larger core
counts, peaking at 24 cores (on Power 9 with 1.6/2.6 M txn/s).
Afterwards, OCC degrades less on HPE than on Power9 and
Power8, resulting in significantly higher throughput on HPE
at high core counts despite the stronger NUMA effect on
this hardware platform, as we will see later. (2) HSTORE
also reaches peak performance on Power9 with 1.35M txn/s
at 4 cores. Afterwards, its performance converges between
Power9 and Power8. In contrast, HSTORE gradually falls
behind on HPE between 4 and 56 cores (one full socket), then
worse NUMA effects on HPE further slow down HSTORE.
(3) Finally, SILO and TICTOC initially perform best on HPE,
peaking at 56 cores with 4.6/5.3 M txn/s. Beyond this peak,
SILO and TICTOC degrade steeply on HPE. Instead, on
Power9 and Power§8 their throughput scales worse with a
lower peak but also less degrading than on HPE. Notably,
the performance of both CC schemes drops at 88 cores on
Power8 within a socket. Since Power9 does not exhibit such
performance drop within a single socket, fewer hardware
resources of the Power8 processor (especially L3 cache) and
subsequent resource contention within SILO and TICTOC
seem to cause the earlier performance drop.

Comparing the performance of the CC schemes for this
high conflict workload reveals an influence of the hardware
properties, e.g. some CC schemes react stronger to NUMA

@ Springer

and cache contention than others. Overall, the pessimistic
CC schemes degrade strongest at high core counts on all
three hardware platforms. Notably, among the pessimistic
CC schemes NO WAIT stays ahead until utilising all cores
of a socket on the individual platforms, at which point WAIT
DIE overtakes. This indicates cache contention and NUMA
as factors strongly influencing the pessimistic CC schemes
besides conflicts, i.e. the simpler NO WAIT is not only sen-
sitive to conflicts in the workload but also to contention
inside the hardware, whereas WAIT DIE copes better with
higher conflicts and contention at the cost of overhead. A
similar influence of hardware effects versus overhead can be
observed between MVCC, OCC, and HSTORE. On Power9
and Power8 at higher numbers of cores with high conflict,
HSTORE despite its coarse partition locking catches up
with MVCC and OCC circumventing NUMA and resource
contention effects due to the lower overhead, whereas the
medium overhead OCC performs the best on HPE. Finally,
SILO and TICTOC perform the best on all three platforms.
Their peak performance is further ahead of the other CC
schemes on HPE than on Power9 and Power8, but as NUMA
takes effect SILO and TICTOC degrade less on the Power
platforms.

Further analysis of the detailed time breakdowns” con-
firms that the hardware characteristics effect how the indi-
vidual CC schemes spent time. The time breakdowns on
Power8 reveal increased proportions of time spent for index
accesses and concurrency control compared to HPE, on
which more time is spent for actual work. Profiling confirms
that latching within the CC schemes and index traversal are
the hotspots on Power8, both of which are sensitive to mem-
ory latency. Notably, latching occurs to different extends in

3

3 Figures omitted for brevity are available online [5].

https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements/blob/main/section_4-1_intel-based_vs_power_high_conflict_4_warehouses/time_breakdown.md

The full story of 1000 cores

the CC schemes and in different phases, i.e. during transac-
tion execution categorised as CC Mgmt. or when committing
transactions categorised as Commit. The observations for
the individual CC schemes are accordingly. For example,
the pessimistic locking schemes spend more time acquiring
locks and committing, whereas MVCC and OCC spend more
time committing. On Power9, the time breakdowns exhibit
similar increases in time spent for index accesses and con-
currency control, yet lower than on Power8. That is, the time
spent for index accesses and concurrency control is related
to the cache sizes of the hardware platforms, resulting in the
least time spent on HPE with the largest L1 and L2 caches
per logical core followed by Power9 with a larger L3 cache
than Power8 (cf. Table 2b). With increasing core counts and
accordingly more conflicts, these differences vanish as time
spent for waiting or aborting dominates.

Insight Under high conflict, regardless the hardware plat-
form no CC scheme utilises high core counts effectively, i.e.
the CC schemes only initially scale well with increasing core
counts, but quickly thrash under the overwhelming conflicts.
Yet, their specific scaling behaviour indeed depends on the
hardware, especially on processor characteristics (e.g. caches
capacity) and NUMA, further analysed in the following sec-
tions.

4.1.2 Scaling on different real hardware—low conflict

In this second experiment, we determine how the different
CC schemes scale on the different hardware platforms pro-
viding a high number of cores, when low conflict workload
permits high concurrency. Accordingly, Fig. 13 shows the
throughput of the CC schemes on HPE, Power9, and Power8.
Briefly summarised, all CC schemes present positive scaling
behaviour on all three hardware platforms, HSTORE initially
performs the best, but most CC schemes follow HSTORE in
a pack, and MVCC is behind at least for lower core counts.

However, a closer comparison between the three hardware
platforms indicates again two interesting trends for this low
conflict workload. First, the throughput of all CC schemes
increases in distinctly different slopes on the three platforms,
i.e. the hardware platforms seem to have a distinct effect
on the scaling behaviour. Second, as the number of cores
increases, the relative performance of the CC schemes dis-
tinctly differs between HPE and the two Power platforms.
For detailed analysis, Fig. 14 shows comparisons, indicating
for each CC scheme the speedup of one platform over another
(e.g. Power8 vs. Power9) at the same number of cores.

The comparison of Power9 and HPE in Fig. 14 (Power9
vs. HPE) indicates that all CC schemes are faster on Power9.
However, the speedup on Power9 compared to HPE varies
in distinct pattern, corresponding to the increasing NUMA
distance. For the pessimistic locking schemes, the throughput
difference between Power9 and HPE shrinks until using 2

—o- DL DETECT

WAIT DIE
100 2 NO WAIT
/./' a —* MVCC
—_ — e e~ OCC
o 10 ™ %'
= —=- HSTORE
= : —o— SILO
=z TICTOC
E Power9 Power8
£100 s
= = n
= ./E/o/'/' s
g e
e i
.]
R=R=-R=-E=R=R=-R=R=lek===-E=-E=E=E=E=]
o O O O o O O O o O O O O O O O
ANFOHDSAFOE AOFO0SA XS
— = o~ N = =

Number of Cores Number of Cores

Fig. 13 Throughput for TPC-C under low conflict on HPE, Power9,
and Power§

sockets (112 cores) on HPE, then throughput on HPE falls
behind and with more than 224 cores across 4 sockets on HPE
(across the farthest NUMA distance 3) throughput drops even
further. The other CC schemes react similarly to these on
HPE, except for HSTORE, which instead is affected by the
closest boundary beyond one socket and farthest boundary
above 4 sockets (with NUMA distances 1 and 3). Further,
the closest boundary after 56 cores on HPE has a diverse
effect on the CC schemes. This NUMA boundary only has a
negative effect on the fastest two CC schemes (i.e. HSTORE
and TICTOC) as well as OCC. Instead, the other CC schemes
scale well past one socket (56 cores) on HPE and in fact close
in onto the throughput on Power9.

Comparing Power8 and HPE in Fig. 14 (Power8 vs. HPE),
indicates the same effect as observed in comparison with
Power9. Also on Power8, the performance of all CC schemes
initially is ahead; then, their performance on HPE catches up
around 56-112 cores (across two sockets with NUMA dis-
tance 1). In fact, HPE overtakes Power8, on which the CC
schemes struggle due to resource contention (to be discussed
in Sect. 4.2.1). Remarkably, the larger processor resources
on HPE compensate for its worse NUMA properties (lower
bandwidth and higher latency), when operating across 2
sockets. Across more than 2 sockets (112 cores), the perfor-
mance of most CC schemes on HPE is even to Power8. Only
HSTORE and MVCC straggle on HPE, due to their higher
load on the memory subsystem (i.e. sheer performance of
HSTORE and overhead of MVCC).

The comparison of Power9 and Power8 in Fig. 14 (Power
9 vs. Power 8 or vice versa) indicates improved performance
of the Power9 processor over Power8, as throughput on one
socket is 1.2-2x higher. Notably, beyond one socket the
performance benefit of Power9 stagnates or even decreases.

@ Springer

T.Bang et al.

DL DETECT

WAIT DIE

=
o
X
&
N
2

NO WAIT

MVCC

OCC P

HSTORE

SILO

197 159

TICTOC

DL DETECT [&

(1.6)

1.3) (1.3)

5) (1
)
)
)

WAIT DIE & & =

1

5
4
4
5

NO WAIT &

(1.5
(1.3
(1

MVCC

5) (1.6) (1
4 (15) (1
5) (1.5) (1

5)

occ = = il - 0 = =~

1
a
a
a

HSTORE & :

(0.34)(

(15 (
(14)

o <) <

SIOBlddddddddc oSSR o e -
SRR S & 5 o 0)

TICTOC:‘~'~'~~:@¢¢c‘s‘ dog
00 00 © 00 ©O©NWFANFOW0FNO© 0N <+ 0 ©
N FWOO~O©OANF O <+ <+ 0

HoH A AN F~00M

2

Number o

Fig. 14 Detailed throughput for TPC-C under low conflict on HPE,
Power9, and Power8 (1st row) and comparison between the hardware
platforms (2nd). The comparisons indicate by which speedup ratio the

Consequently, the strong NUMA topologies of both Power
platforms similarly boost concurrency control at large scale.
This confirms a general advantage of Power’s stronger
NUMA topology and importantly indicates the relevance of
NUMA properties for the performance of concurrency con-
trol.

Furthermore, the time breakdowns* indicate diverging
internal behaviour of the CC schemes on the hardware plat-
forms. Similar to the high conflict workload, on Power§8 the
CC schemes spend significant time for concurrency con-
trol and index accesses, while on HPE for useful work (e.g.
accessing records). Also Power9 shows increased time spent
for concurrency control and index accesses, but again over-
all lower than on Power8 and biased towards index accesses
(less for concurrency control but more for index accesses).
Profiling on Power8 confirms this continued trend, again
identifying latching as bottleneck related to memory latency.
Conversely, for HPE, these observations hint at memory
bandwidth as bottleneck for this low conflict workload.

Regarding the second trend about the relative performance
of the CC schemes, on Power9 and Power8 the pessimistic
locking schemes perform better than on HPE. Notably, these
perform better than SILO and TICTOC for 96-1504 and
192-928 cores, respectively. Also, OCC improves but only

4 Figures omitted for brevity are available online [5].

@ Springer

168 (1
184 (1

on Power9 Throughput on Power8

40
80

(39) (38) (39)
40

41
(57) (55) (52)

Million txn/s

10

(60) (50) (49) (43) [

Vi

§83-FK8F e
Bl= - < g cis 2
Bl "B R SRR Ka
o T8 8o Z C pai
- 382 E R
ST - sssss eSS == o
NS R e o =
S ERKE© 3K
SRS - = K '-8
S CrfSazaxon o
D R S - S) @
< 'S IEECEONC g2= 2,
© ~ N 0 © o = n
S o K K X R T
Sl-scgdgcogocEgoco
- s ~ s
o8& 82X = &)
Z s ees8 88 S oo o
e o EEEE S - —~ = = = =
o8P FgogdarsEa

Z Bl- S s S Scc —~— 2 CEET

I R AR B EEEEE R RN

=) HYO N AN ¥ F WO A D 0NN T 00

— IS RG] e R R L BT B

Regg=

throughput differs for a CC scheme (on y-axis) at the same number of
cores (x-axis) on one platform versus another platform

at larger core counts and not as much as the pessimistic
schemes. Consequently, on Power, OCC overtakes SILO, but
falls behind the pessimistic schemes. In contrast, MVCC pro-
vides the worst throughout on Power with a growing gap to
the other CC schemes, whereas on HPE MVCC does over-
take the other CC schemes at large scale. These differences
of the relative performance of the CC schemes indicate two
underlying causes for this second trend: (1) Especially the
latency sensitive pessimistic locking schemes benefit from
the lower latency in Power’s NUMA topology; (2) Resource
intense CC schemes (e.g. MVCC) benefit from the larger
hardware resources of the processors in HPE.

Insight Under low conflict, the NUMA characteristics of
the specific hardware platforms clearly affect the perfor-
mance of the CC schemes, i.e. the scaling slopes of the
CC schemes closely match the NUMA topology. The CC
schemes generally benefit from lower latency and higher
bandwidth in the NUMA topology. Yet the individual CC
schemes benefit differently from either better latency or
bandwidth and resource contention within the processor
influences their scaling behaviour.

4.2 Zooming into hardware aspects

Having identified diverging behaviour on the different hard-
ware platforms, we now zoom into those aspects that realise

https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements/blob/main/section_4-1_intel-based_vs_power_low_conflict_1568_warehouses/time_breakdown.md

The full story of 1000 cores

the large number of cores: (1) Hardware parallelism within
the processors and (2) the topology connecting processors in
a single system.

4.2.1 Simultaneous multithreading

The superscalar processors of today’s hardware employ sev-
eral techniques to implement hardware parallelism. Besides
a high number of physical cores, the processors also employ
(superscalar) instruction-level parallelism (ILP) [20] and
Simultaneous Multithreading (SMT) [10]. SMT establishes
multiple parallel execution streams as logical cores to better
utilise the resources of their underlying superscalar physical
core, especially to facilitate thread-parallel software such as
OLTP DBMSs.

While many of today’s superscalar processors employ
these general techniques, the specific implementations differ
[1,29-31]. Especially the Power processors utilise sophisti-
cated SMT with a high degree of parallel execution streams
on a smaller number of physical cores, up to 8 such streams
(i.e. SMT-8) [30,31]. Notably, from Power8 to Power9 IBM’s
hardware designers have enhanced the SMT implementation,
e.g. with advanced scheduling of the execution streams. In
contrast, Intel processors mainly drive hardware parallelism
by the number of physical cores and use simpler SMT with
two parallel execution streams (SMT-2) [29].

These elaborate techniques of hardware parallelism depend
on processor resources and the software as well as the work-
load running on top. Therefore, our particular questions are
how big this benefit can be as OLTP workloads typically
strain the memory subsystem more than other processor
resources and if the CC schemes allow for sufficient con-
currency to utilise the parallel hardware execution streams
of SMT.

In the following, we analyse the benefit of SMT for OLTP
workloads, focusing on the sophisticated and high-degree
SMT (up to SMT-8) of the Power processors. In the exper-
iments, we use all physical cores of a single processor and
observe the throughput for increasing SMT degree. We first
analyse the best-case benefit using the low conflict TPC-C
workload, before also considering high conflict scenarios.

High SMT degree for low conflict OLTP Figure 15 shows
the throughput for the low conflict TPC-C workload of all CC
schemes under increasing SMT degree and the speedup rel-
ative to SMT-1. On the Power9 processor, most CC schemes
speedup equally with increasing SMT degree, despite differ-
ing throughput; 1.7-1.8x for SMT-2, 2.4-2.5x for SMT-4,
and 3.3 -3.4x for SMT-8. Only HSTORE utilises SMT better
with a speedup of 2.6x for SMT-4 and 3.9x for SMT-8, relat-
ing to low overhead and exceptional performance for low
conflict workloads. Notably, despite a significant speedup of
all CC schemes, the speedup of SMT on the Power9 proces-
sor is sublinear for this low conflict OLTP workload.

-o- DL DETECT WAIT DIE NO WAIT - MVCC

-o- OCC -~ HSTORE —e-SILO TICTOC
Throughput A Speedup over SMT-1
®]]
15
=])}
- 10 _ ° . AE 2
g u !/u %2 r‘/ g
= 5 NS~ a— 1 n yVal ~
E 0 = 1w
7 E3 ®
*10 " Z s O
=] o] / 2
.2 n &2 Ne———% 0
E b opri——————2 UD)« ,:%'<t o
= e —® u :/-
E 0 b 1
12 4 8 12 4 8
SMT Degree SMT Degree

(a) Throughput (b) Speedup over SMT-1

Fig. 15 Effect of broad SMT in Power9 and Power8 processors on
throughput for TPC-C under low conflict

On the Power8 processor, in contrast, the CC schemes
achieve overall lower throughput and speedup than on
Power9 (SMT-2: 1.4-1.5x, SMT-4: 1.8-2.1x, SMT-8: 1.6-
2.6x). That is, SMT of the Power8 processor provides less
benefit and the speedup of the CC schemes also diverges, in
three distinct groups. (1) HSTORE utilises SMT best with
the highest speedup, as on Power9. (2) TICTOC, OCC, and
the pessimistic locking schemes follow with still positive
speedup for SMT-8, but progressively less in according order.
(3) The speedup of MVCC stagnates from SMT-4 and for
SILO even decreases from 1.8x for SMT-4 to 1.6x for SMT-
8.

Notably, the three groups with distinct benefit of SMT
comprise CC schemes with similar memory footprints and
the speedup of these groups correlates with these footprints,
i.e. the group of CC schemes with the smallest footprint gains
most speedup from SMT and inversely the group with the
largest footprint gains least. This correlation to the memory
footprint and the increasing gap to Power9 indeed indicates
increasing resource contention for SMT on Power8. Com-
paring their cache capacity highlights the larger L3 cache
per logical core on Power9 (cf. Table 2b) [30,31]. Evidently,
sufficient L3 cache capacity for all the execution streams is
an important factor to effectively utilise SMT.

On the Intel processor with only SMT-2, we make similar
observations, omitted from Fig. 15 due to the small SMT
degree. For example, SMT-2 of that Intel processor pro-
vides a speedup of 1.5x for TICTOC from a throughput of
5.25Mtxn/s with SMT-1 to 7.92 M txn/s with SMT-2.

Insight Overall, SMT indeed benefits our favourable (i.e.
low conflict) OLTP workload, yet with sublinear speedup in
relation to the SMT degree. The sophisticated SMT of the
Power9 processor provides broad benefit for all CC schemes
up to the highest SMT degree (SMT-8). In contrast, resource

@ Springer

T.Bang et al.

—-o- DL DETECT WAIT DIE NO WAIT —+- MVCC

-o- OCC - HSTORE —=-SILO TICTOC
Power9 Power8

12]

> . i -

£3 /

»% ® . L]

§2 3/. . ;,.\ \.

2 g a—o

SN T/ T e——
012 4 8 12 4 8

SMT Degree SMT Degree

Fig. 16 Throughput of broad SMT in Power9 & Power8 processors for
TPC-C under high conflict

contention limits the benefit of SMT on the Power8 processor,
indicating a dependency between the benefit of SMT and the
resource footprint of the CC schemes.

High SMT degree for high conflict OLTP For the second
workload with high conflict, throughput of the CC schemes
under increasing SMT degree and speedup relative to SMT-1
is shown in Fig. 16. Overall, the CC schemes barely bene-
fit from SMT on neither Power9 nor Power8. In detail, on
Power9, SILO and TICTOC utilise SMT best. These speed
up by 1.4x with SMT-2 and maintain this speedup for SMT-4
and SMT-8. In contrast, the remaining CC schemes speed up
with SMT-2 by a smaller factor — if at all. Latest with SMT-
4, their speedup declines to a slowdown (<1x speedup). DL
DETECT and HSTORE immediately slow down with SMT-2
(0.59x and 0.93x, respectively). On Power8, the CC schemes
benefit even less from SMT, i.e. the speedup for SMT-2 is
lower and for higher SMT degrees the slowdown is stronger.
Notably, MVCC has the same speedup on both Power9 and
Power8, throughput is higher on Power9 by stable 10%. In
conclusion, conflicts are the determining factor for the per-
formance of all CC schemes and prohibit general benefit of
SMT. Yet, the improved SMT of Power9 is still noticeable,
albeit more limited than under low conflict.

Insight For high conflict OLTP workload, the performance
of all CC schemes is widely determined by the conflicts rather
than SMT, yet some benefit of SMT appears, especially from
the Power9 processor.

4.2.2 Non-uniform memory access

Today, thousands of cores are only available via multi-
socket hardware imposing the Non-Uniform Memory Access
(NUMA) effect for memory accesses. Such multi-socket
hardware connects its processors (and memory) in a tiered
non-uniform topology, through which the processors com-
municate and mutually access memory. As the topology
connecting the processors is tiered and non-uniform, so are
the performance characteristics for processors when com-
municating or accessing memory, i.e. bandwidth and latency
between processors in the topology differ. These diverging

@ Springer

WAIT DIE
-~ HSTORE —-SILO

Throughput

NO WAIT —«- MVCC
TICTOC

Speedup over Local

—-o- DL DETECT
- OCC

200 g 0.8 —
E—n 0.6 =g

L 0 ~ Eg

N

]
B 0.2

HPE

100 o g

0 0

Local 1 Hop 2 Hop Remote

) 1 ms
~ N —-
=] X W _
B100 S BT TNt %
g siﬁ\, g T 2
250 o ——e———y 207 e
2 OLocal 1 Hop Remote OLocal 1 Hop Remote
1F= —m- — T
I T 0.6 . ¢ g
20 o ————4 0.4 Tee— I
0.2
O Local 1 Hop Remote 0L ocal 1 Hop Remote

NUMA Distance NUMA Distance

(a) Throughput (b) Speedup over Local

Fig. 17 Performance for TPC-C under low conflict with strict access
to home warehouse at specified NUMA distance (on x-axis) on HPE,
Power9, and Power8. Speedup is reported as ratio of throughput at the
specified NUMA distance over Local. For Power, the distance 2 Hop
is missing since this hardware has a shallower topology than HPE (cf.
Sect. 2.2)

performance characteristics of the underlying hardware (the
NUMA effect) impact the performance of a DBMS depend-
ing on its communication and memory access pattern.

In the following, we analyse the NUMA effect of our three
hardware platforms on the CC schemes, which all employ
different technologies and topologies to connect their pro-
cessors (see Sect. 2 for more details). For this analysis, we
start with an extreme scenario isolating the NUMA charac-
teristic of the three hardware platforms and their effect on
the CC schemes when all memory accesses have a prede-
fined NUMA distance. In a second experiment, we compare
the NUMA effect on the CC schemes using a more realistic
and complex scenario with NUMA effects imposed by the
workload.

Isolated NUMA effects (fixed distance) First, we analyse the
NUMA effect on the CC schemes in an extreme scenario,
where transactions strictly access memory at a fixed (speci-
fied) NUMA distance. This extreme scenario overall exposes
the differing NUMA characteristics of our hardware plat-
forms and subsequently reveals their influence on the CC
schemes. For this scenario, we restrict the TPC-C transac-
tions to only access their home warehouse and allocate this
warehouse on memory with the specified NUMA distance.
Further, we use the low conflict workload and the maxi-
mum cores, isolating the effect of operating across a specified
NUMA distance from other effects (e.g. conflicts).

The full story of 1000 cores

Figure 17 shows the throughput and speedup of the CC
schemes under increasing NUMA distance on HPE, Power9,
and Power8. Since the maximum number of cores (where the
NUMA effect is strongest) differs on the hardware platforms
and thus the throughput, we rather focus on the speedup of
the NUMA distances 1-3 (I Hop, 2 Hop, Remote) over the
local NUMA distance O (i.e. when all data are accessed on the
local NUMA region/processor), as shown in Fig. 17b. Over-
all, as expected the NUMA effect (deteriorating bandwidth
and latency) indeed degrades performance as the NUMA
distance increases. Yet, throughput and speedup of the CC
schemes show several trends on the different hardware plat-
forms.

On HPE when accessing only local memory, the CC
schemes HSTORE, SILO, and TICTOC achieve remarkable
throughput of 178-234 Mtxn/s. However, when accessing
farther memory, SILO and TICTOC immediately slow down
sharply by 0.56x and 0.55x at NUMA distance 1, respec-
tively. Then, SILO and TICTOC slow down at a lower rate,
to 0.21x (38Mtxn/s) and 0.18x (41 Mtxn/s) for NUMA
distance 3 (Remote). On Power9 and Power8, SILO and
TICTOC slow down similarly for the NUMA distance 1
(0.55-0.6x), but for the farthest NUMA distance (Remote)
their slowdown is more graceful (0.39-0.42x). In contrast,
HSTORE slows down much less on all three hardware plat-
forms. For NUMA distances 1-2, HSTORE slows down
least on Power8 (0.97x), followed by HPE and Power9 on
par (0.86x). Afterwards, the farthest NUMA distance affects
HSTORE again the least on Power8 (0.84x), followed by
Power9 (0.74x), but HPE falls behind (0.47x).

The remaining CC schemes generally slow down more
gracefully under increasing NUMA distance. Notably, on
HPE, the pessimistic locking schemes (DL DETECT, WAIT
DIE, and NO WAIT initially slow down stronger for NUMA
distance 1 (0.67-0.7x vs. 0.72-0.78x) but then slow down at
a lower rate, while MVCC and OCC slow down stronger at
the farthest NUMA distance 3 (Remote). On Power9, the pes-
simistic locking schemes slow down similarly. On Power8,
however, these CC schemes slow down less, i.e. by 0.78-
0.83x for distance 1 and 0.65-0.67x for distance 3. That is,
the lower latency in the topology of Power8 significantly
benefits the pessimistic locking schemes.

In contrast, MVCC slows down most on HPE, with
Power9 and Power8 similarly ahead for NUMA distance 1
(HPE: 0.72x, Power9: 0.89x, PowerS8: 0.94x), but at the far-
thest NUMA distance Power9 falls behind and Power§ leads
again (HPE: 0.36x, Power9: 0.74x, Power8: 0.89). From the
higher bandwidth of the Power platforms and in turn higher
bandwidth in Power8 than Power9, we conclude that MVCC
benefits from higher bandwidth in the topology (and lower
latency).

Finally, OCC also presents diverse slowdown across the
three hardware platforms. Initially, at NUMA distance 1 OCC

slows down least on Power9, followed by HPE and Power8
on par (Power9: 0.89x, HPE: 0.78x, Power8: 0.79x), while
at the farthest NUMA distance 3, Power9 and Power8 are
equally ahead of HPE (Power9: 0.65x, Power8: 0.62x, HPE:
0.38x).

Insight Overall, two notable trends appear relating to
the NUMA characteristics of the three hardware platforms.
First, the latency sensitive pessimistic locking schemes do
best on Power8 providing the lowest latency in its topol-
ogy. On HPE and Power9 instead, which have similarly
higher latencies than Power8 for NUMA Remote accesses,
these schemes perform similarly worse. Second, CC schemes
that require more bandwidth, either due to sheer perfor-
mance as for HSTORE or due to memory overhead as for
MVCC, perform better on Power9 and Power8, both of which
provide higher-bandwidth interconnects in their topologies.
Both these trends confirm our early observations of NUMA
effects on the scaling behaviour of the CC schemes on the
three hardware platforms.

Workload imposed NUMA effect The previous experi-
ment highlights effects on the CC schemes relating to the
NUMA characteristics in an extreme scenario. However,
realistic operating conditions of OLTP DBMSs are more
complex. On one hand, DBMSs commonly attempt to miti-
gate extreme NUMA effects by strategies like NUMA-aware
database partitioning. On the other hand, realistic workload
dictates the access pattern, still imposing NUMA effects
(and other non-NUMA effects). We now analyse these more
realistic workload-imposed NUMA effects using TPC-C’s
remote transactions. That is, TPC-C is commonly partitioned
by warehouses (also in our experiments) mitigating NUMA
effects. Yet, TPC-C specifies so-called remote transactions
that apart from their home warehouse span further ware-
houses (remote warehouses), thus these remote transactions
are not partitionable and cause workload-imposed NUMA
effects.

In the following experiment, we use the combination of
following two setups to isolate the NUMA-related from the
other non-NUMA effects in this more complex scenario:
(1) In the first setup, we analyse the non-NUMA related
effects of remote transactions. For this, we vary the amount
of remote transactions across warehouses but use only local
memory for all warehouses (i.e. no NUMA effects occur);
(2) In the second setup, we then distribute warehouses across
NUMA regions and thus observe the combined (NUMA and
non-NUMA) effects imposed by remote transactions. Con-
sequently, we can thus better isolate the NUMA-related from
the non-NUMA -related effects on the CC schemes by com-
paring their performance in these two settings.

In detail, for setup (/) NUMA Local, we allocate the
remote warehouses on local memory (alongside the home
warehouse and transaction executor). In contrast, for setup
(2) NUMA Remote, we allocate the remote warehouses the

@ Springer

T.Bang et al.

-o- DL DETECT WAIT DIE NO WAIT —«- MVCC

-~ OCC -#- HSTORE -« SILO TICTOC
Local Remote Remote vs. Local
N
PO S— S— | 0.8 8\tco—o
I 1Ny 0.6 B o, '\ o
100 oico—p——3 Bg\ 04 g e e
e P 52555 0.2 e
0 —m - g M 0 \.
% 1o
100 % » o . ='§n:.\‘ o
ﬁ I,(_":.:'—/’: 3 'g 8 8 .’H\: L E
5 50% . moe—i—— S04 LB
g TRee e Me—s—200 A
S o "a—a wa—a 2
~ ~ 1 %a<i—m
40 % * g N
Il N
20 ('\%:‘. o ® =E:>\'.‘ o4 _ %
B u_ 0.2 -
0 L | —p 0
o o co o o =) = S
S S D S S

% Remote Transactions

(a) Throughput (b) Speedup

Fig. 18 Effect of workload-imposed NUMA by increasing ratio of
remote transactions (on x-axis) on TPC-C under low conflict in the
two different setups (Local and Remote as described in the setup of this
experiment) and the three platforms: HPE, Power9, and Power8. Figure
(a) shows the throughput for increasing ratio of remote transactions.
Figure (b) shows the ratio of throughput of the Remote over the Local
setup

farthest away from the transaction executors, i.e. remote
warehouses are at remote NUMA distance 3 but the home
warehouses remain at local NUMA distance 0. The remain-
ing setup is identical to the prior experiment (cf. Isolated
NUMA effects).

Figures 18a shows the performance in the two described
settings ((1) Local and (2) Remote), when transactions
increasingly access remote warehouses (% remote transac-
tions) either on (1) local memory or (2) remote memory.
In addition, Fig. 18b compares the performance in these two
settings (Remote vs. Local) for the same ratio of remote trans-
actions. We first analyse how the different CC schemes are
affected by the aforementioned effects focusing first on the
HPE platform. In a second step, we then compare the effects
across the different hardware platforms to identify the effect
of their NUMA characteristics.

Starting with the CC schemes on HPE (top row of Fig. 18):
while most CC schemes provide stable throughput for the
Local setting on HPE, they all degrade in the Remote setting
due to the NUMA effect (also on the Power platforms, though
with further effects which we discuss later). Notably, DL
DETECT and HSTORE significantly degrade already in the
Local setting without the NUMA effects, i.e. non-NUMA
effects impact these CC schemes as well.

Figure 18b shows the performance ratio when increasing
the NUMA distance for remote warehouses in setup (2) com-

@ Springer

pared to the (/) Local setup. This provides a more detailed
insight into the effects of remote transactions. Overall, the
resulting effects on CC schemes can be grouped into three
categories:

1. DL DETECT drops to 0.83x at 1% remote transactions
but then degrades only to 0.72x, which indeed is the least
effect across all CC schemes. Consequently, conflicts (and
other non-NUMA effects) affect DL DETECT more than
NUMA.

2. Conversely, the other pessimistic CC schemes (WAIT DIE
and NO WAIT) as well as OCC, SILO, and TICTOC suffer
more from the NUMA effects. These significantly slow
down with NUMA Remote compared to NUMA Local,
while their throughput for NUMA Local is mostly stable.

3. HSTORE and MVCC suffer from the combination of
NUMA effects and non-NUMA-related conflicts. While
for HSTORE a combined effect relates to its high sensi-
tivity to conflicts (as observed previously), for MVCC an
additional effect of conflicts only appears by comparison
with the prior experiment on NUMA effects (cf. Fig. 17).
Previously MVCC suffered less NUMA effects, when
there were no conflicts in the workload. Consequently, the
conflicts indeed amplify the NUMA effect for MVCC.

Comparing the hardware platforms (2nd and 3rd row of
Fig. 18), we see that the CC schemes on the Power platforms
behave similar to HPE. However, looking into the detailed
behaviour, we see that the workload-imposed NUMA effects
depend on the individual NUMA characteristics of the hard-
ware platforms. For example, in our following analysis we
confirm the advantage of the better NUMA characteristics
of the Power platforms compared to HPE, providing more
stable behaviour (as already observed in the previous exper-
iment). This can be seen by the fact that the CC schemes on
the Power platforms for the Remote setup in Fig. 18 (right
column) show a shallower drop when compared to HPE. In
the following, we now discuss the details that lead to this
behaviour.

In Fig. 18a, the throughput of the CC schemes for NUMA
Remote degrades depending on three factors: the sensitivity
of the CC schemes to NUMA, the NUMA characteristics
of the specific hardware platform, and non-NUMA effects
such as cache pollution. These effects appear as follows on
the three hardware platforms for the CC schemes previously
categorised as significantly affected by NUMA (and insignif-
icantly by non-NUMA effects): (1) On HPE, as already
determined, the NUMA effect strongly and continuously
degrades the CC schemes; (2) on Power9, the better NUMA
characteristics degrade the CC schemes less, but the smaller
cache causes a small drop for 1% remote transactions; (3) on
Power8, the small cache causes a significant non-NUMA-
related drop for 1% remote transactions for both NUMA

The full story of 1000 cores

Remote and NUMA Local, afterwards the CC schemes also
degrade due to the NUMA effect similar to Power9, as
detailed in Fig. 18b.

Finally, the CC schemes of the other categories (not men-
tioned above) also diverge between the three platforms. We
summarise the most important findings for those schemes in
the following. Figure 18b indicates that the cache pollution
on Power8 exposes DL DETECT to NUMA effects, as there
is no NUMA effect on HPE or Power9. Furthermore, observ-
ing the speedup of Remote vs. Local in Fig. 18b confirms for
the CC schemes of the third category (e.g. HSTORE) that the
NUMA effects are amplified by non-NUMA effects. As the
NUMA characteristics improve from HPE to Power9, and
further from Power9 to Power8, we observe that the speedup
of Remote vs. Local converges towards lx, i.e. the perfor-
mance of these CC schemes indeed becomes independent
of NUMA effects and depended on the other non-NUMA
effects.

Insight In the more realistic scenario of workload-imposed
NUMA effects (by TPC-C remote transactions), the CC
schemes not only face NUMA effects but also other effects.
To summarise, we have seen that they are affected in three
groups: (1) one group is mainly affected by non-NUMA
effects (e.g. conflicts), such as DL DETECT, (2) another
group is primarily affected by NUMA effects, e.g. WAIT
DIE or TICTOC, and (3) the last group is affected by the
combination of NUMA effects and conflicts, e.g. MVCC
and HSTORE. These findings apply to all three hardware
platforms, in variations according to the specific hardware
characteristics as previously observed for the isolated NUMA
effect.

4.3 The full TPC-C benchmark

In the previous experiments, we observed a significant impact
of conflicts and data locality on the behaviour of the CC
schemes. However, besides conflicts and data locality, the
type of workload and operations is a major aspect. There-
fore, in this final evaluation step, we analyse the effect of
the workload on the CC schemes in more detail. In particu-
lar, we evaluate the contrast between a more comprehensive
workload covering the full TPC-C transaction mix (all 5)
versus the often used more narrow transaction mix compris-
ing just the NewOrder and Payment transactions, which was
used in the simulation of prior work [71]. Notably, the full
transaction mix includes read-heavy and additionally more
expensive (i.e. longer-running) transactions, such as Stock-
Level aggregating records from many districts. In addition,
the full mix requires additional indexes increasing the cost
of the NewOrder and Payment transactions (used in the more
narrow mix) as well.

In the following, we again start with an analysis of the
high conflict workload and then discuss the results for the
low conflict workload.

4.3.1 Full TPC-C under high conflict

In this experiment, we analyse how the behaviour of the CC
schemes differs between the full and the narrow transaction
mixes for high conflict workload. Most notable, the read-
heavy transactions of the full mix are expected to affect the
CC schemes depending on their ability to handle read-write
conflicts. In a first step, we thus focus on diverging behaviour
of the CC schemes between these two transaction mixes on
the same hardware platform. Then, we assess whether their
behaviour further differs across the hardware platforms. Asin
our previous experiments, we first evaluate the CC schemes
on HPE and then compare the Power platforms.

Full vs. narrow mix on HPE Fig. 19 displays the performance
of the individual CC schemes for the full TPC-C transaction
and a comparison with the narrow mix (only NewOrder and
Payment transactions), cf. Fig. 13. The top row provides an
overview over the performance of the individual CC schemes.
Overall, it shows that the CC schemes scale well initially,
but eventually all thrash due to overwhelming conflicts—a
similar behaviour as with the narrow transaction mix.

However, the comparison with the throughput of the
narrow mix (Fig. 19a, 2nd row) indicates broadly worse
throughput with the full mix until about 56 cores. At higher
core counts, though most CC schemes indeed provide better
throughput (e.g. NO WAIT at 224 cores 2.6x over the narrow
mix). Remarkably, the CC schemes better handle increasing
conflicts and NUMA effects with the more (read)-intense
transactions in this full mix. Only HSTORE does not quite
close the performance gap between the full transaction mix
and the narrow mix (0.53-0.77x the performance of the nar-
row mix) and OCC’s performance for the full mix remains
low at 0.4x, not improving at higher core counts.

The detailed scaling behaviourin Fig. 19bindeed indicates
that this positive effect of the heavier transactions in the full
transaction mix already starts at lower core counts. The com-
parison between the full and the narrow mix (Fig. 19b, 2nd
row) shows that already from 8 cores the CC schemes exhibit
better scaling for the heavier transactions, though beyond 56
cores (more than one socket) the lead decreases. Notably,
SILO and TICTOC benefit the most (peak improvement),
while MVCC benefits across the widest number of cores.

Having identified diverging impact of the full TPC-C
transaction mix on the CC schemes, we now analyse the
causes in further details. Specifically, we search for (1) rea-
sons reducing the performance at lower core counts as well
as improving the performance at higher core counts and (2)
reasons for higher impact on some CC schemes than others.

@ Springer

T.Bang et al.

Throughput

[N

Million txn/s
O = NN W

vs. New & Pay

DL DETECT 0.48 0.46 0.46 0.43 0.38 0.36 0.47 0.53 %}
WAIT DIE 0.48 0.47 0.45 0.46 0.53 0.5 0.62 1.5
NO WAIT 0.49 0.47 0.45 0.46 0.55 0.6
MVCC 0.54 0.61 0.6 0.75 0.85 0.97 1.1 1.3 1.2
OCC 0.41 0.43 0.43 0.43 0.37 0.32 0.37 0.39
HSTORE 0.54 0.55 0.56 0.57 0.55 0.53 0.56 0.65 0.77
SILO 0.48 0.46 0.47 0.49 0.55 0.65 0.84 1.4 1.3
TICTOC 0.45 0.41 0.42 0.44 0.52 0.64 0.81 1.4 1.2
1 2 4 8 16 28 56 112224

Number of Cores

0.2 035 2 (44

mLiboocococoo

EL o
0.5 Speedup 25 -1

(a) Throughput

Fig. 19 Throughput, scalability, and abort ratio for full TPC-C trans-
action mix under high conflict on HPE. In the 2nd row, throughput and
scalability, and abort rate are compared between the full and the nar-
row TPC-C mix (only NewOrder & Payment). For throughput (a, 2nd
row), we compare the speedup of the full over the narrow mix. Since
scalability as such is reported as speedup over 1 core (b, 1st row), we

For the first case, as the full transaction mix introduces
additional read-write conflicts and longer transactions, there
are two major differences between the full and the narrow
transaction mix potentially causing the observed general
divergence: Conflict handling and amount of actual work.
If conflict handling has a major influence on the observed
throughput and scaling behaviour, then the CC schemes
should exhibit similarly diverging abort rates. However, in
Fig. 19c¢ the abort rates for the full mix and the comparison
with the narrow mix are ambiguous without a clear effect
of the heavier transactions. For example, MVCC has simi-
lar abort rates for both transaction mixes while throughput
significantly differs. Similarly, the improved throughput for
the full mix of SILO and TICTOC does not relate to their
abort rate. Consequently, the abort rates of the CC schemes
surprisingly do not relate to their diverging throughput for
the two transaction mixes.

As further step in analysing the impact of read-write
conflicts and longer transactions, we analyse the time break-
downs [5] detailing how the CC schemes spend their time
processing transactions of the full and the narrow mix (e.g.
useful work, aborting, etc., cf. Table 3 in Sect. 3). The time
breakdowns reveal that lower throughput for the full trans-
actions mix relates to an increase in relative time spent for
concurrency control in all CC schemes (i.e. CC Mgmt. or
Commit), either in addition to increased waiting/aborting (for
DL DETECT, WAIT DIE, NO WAIT, and OCC) or exceed-
ing a reduction in waiting/aborting (for MVCC, SILO, and
TICTOC). As the number of cores increases and throughput
improves for the full mix, the time spent for concurrency

@ Springer

Scalability

vs. New & Pay

-0.09-0.15-0.5 -1.2 -1.1 -0.1 0.09 0.9
-0.04-0.17-0.26 0.77 0.27 1.8 2.6 1.6
0.06-0.22-0.25 1.1 2.2 i) 3.6 1.6
722 9.6 3.1
0.08 0.15 0.26-0.66 -2.1 -0.8 -0.21

0.02 0.1 0.12 0.01-0.040.06 0.21 0.28
-0.06-0.030.15 1.5 JAS NERERY 43
0.15-0.21-0.08 1.5 | 5.2 8]
2 4 8 16 28 56 112224

Number of Cores

Difference

(b) Scalability

Abort Ratio

-1
5 0.8 a——
.06 - e % -+ DLDETECT
>
F04 4 et WAIT DIE
202 @ NO WAIT

0 - aam—m— -0 -~

v 10V 200 —o- MVCC
vs. New & Pay e OCC

0 0.03 0.05 0.06 0.08 26 @5

0 5
0 001 -45 -2.5 72 22 062 W HSTORE
0

0.02 4.1 -1.1 52 95 015-025 _o S[[,O

0 0 -0.19-14 -41 -4.7 -2.3 -1.3

TICTOC
008023 -0 0 -0 -0 0 0
0 -0 -7 8.6 -3.6 -2.2
0 -0 -7.8 6.1 -5.5 -1.1
2 4 8 16 28 56 112224
Number of Cores

12 W)

Hoooooooo
=
o
=
1=
&
&
©
'
N
=Y

[|
10 —20 Difference 5

(¢) Abort Rate

rather compare the scalability as difference (b, 2nd row) between the
speedup of the full mix minus the narrow mix. Likewise, the abort ratio
(c, 2nd row) is compared by the difference, i.e. abort ratio of the full
mix minus the abort ratio of the narrow mix. In all plots, one data point
for OCC (at 224 cores) is missing, since here the OCC scheme “froze”
due to high conflicts

control converges between the full and the narrow mixes.
Instead, the time breakdowns of the full mix indicate a slight
reduction in time spent waiting or aborting in conjunction
with a slight lead in useful work. Consequently, the higher
transaction throughput in the full mix relates to lower conflict
athigher core counts. These two trends in the time breakdown
imply that, first, the lower throughput for the full mix is not
only associated with conflicts, but also with the higher load of
the heavier transactions, making concurrency control more
costly for all CC schemes compared to the narrow transac-
tion mix. Second, at high core counts the heavier transactions
dampen the impact of conflicts, allowing higher throughput
especially for those CC schemes that can efficiently handle
read-heavy transactions. This is not the case for DL DETECT,
OCC, and HSTORE, as explained below.

The time breakdowns also provide insight into why DL
DETECT, OCC, and HSTORE behave inconsistently with
the other CC schemes, i.e. with increasing core counts these
do not benefit (as much) from the heavier transactions. DL
DETECT spends much more time waiting with the full trans-
action mix compared to the narrow mix, since waiting itself
becomes more costly for DL DETECT due to traversing
larger wait-for-graphs. OCC is initially slower due to more
costly concurrency control like the other CC schemes, but
at higher core counts aborting in OCC appears as new bot-
tleneck. Remarkably, the time spent aborting increases for
OCC despite lower abort rate for the full mix, i.e. for OCC
aborting the heavier transactions is more costly and over-
shadows lower conflict. In contrast, HSTORE spends its time
very similar for both transaction mixes, i.e. waiting time

The full story of 1000 cores

eventually dominates as conflicts overwhelm HSTORE’s
partition-based locking regardless the type of work. Con-
sequently, the performance of HSTORE converges between
the two transaction mixes due to similarly dominating wait-
ing time. In contrast to the prior three CC schemes, MVCC
performs exceptionally better with the full mix and indeed
it spends more time for actual work and less for aborting or
waiting, confirming its ability to prevent read-write conflicts
(similar applies to TICTOC and SILO).

Insight Under high conflict, the heavier transactions of

the full TPC-C transaction mix make concurrency control of
all CC schemes more costly. However, at large scale, these
heavier transactions also dampen the impact of conflicts,
especially benefiting CC schemes that efficiently handle
read-write conflicts.
Power vs. HPE: Figure 20 displays the throughput of the
CC schemes for the full TPC-C transaction mix on Power9
and Power8. Additionally, this figure provides a comparison
with the narrow mix on these hardware platforms and the
difference to the comparison with the narrow mix on HPE.
The behaviour of the CC schemes for the full transaction
mix on Power8/9 broadly resembles their behaviour on HPE.
The most noticeable difference is that throughput is gener-
ally lower, i.e. the heavier transactions reduce throughput on
Power8/9 more than on HPE. Accordingly, at low core counts
the full mix lags further behind the narrow mix and at high
core counts it is less ahead on the Power platforms.

The general cause for the slowdown for the full transac-
tion mix on Power is the same as on HPE, i.e. especially at
low core counts the heavier transactions make concurrency
control more costly. Furthermore, the following three differ-
ences between the Power and the HPE hardware platforms
stand out:

1. As the number of cores increases on Power, especially
the pessimistic locking schemes benefit far less from the
full mix compared to HPE. HSTORE even degrades on
Power9 and Power8, with increasing numbers of cores
it increasingly falls behind its throughput for the narrow
mix. That is, these CC schemes as well as SILO and TIC-
TOC deviate further apart from their performance for the
narrow transaction mix as the number of cores increases
on Power. For the pessimistic locking schemes, the time
breakdowns reveal more time spent aborting rather than
waiting. The time breakdowns of HSTORE, SILO, and
TICTOC are very similar on the three hardware platforms,
i.e. their behaviour is the same, but hardware performance
makes the difference.

2. In contrast to the prior CC schemes, OCC copes better
with the full mix on Power than on HPE. On Power9, OCC
speeds up by 2.5x over the narrow mix, while on HPE it
slows down by 0.4x. On Power8, OCC only reduces the

-o- DL DETECT ‘WAIT DIE NO WAIT —+ MVCC
- OCC -a- HSTORE —e- SILO —-TICTOC
Power9 Power8

w4

~ A

=) Je

g3 4 \ i

§ 2 '\a f/'\;/é\!

=1 — A’t'_.\a\

2 0 -:g = a v:! a i

100 200 300 0 100 200 300

vs. New & Pay

59
65)

55 0.
63) (0

160,
22 (0.
240
28 (0
44 (0
48 0
56 (0
88 (0

Number of Cores
Difference of Speedup I [
—1 1

Fig. 20 Throughput for full TPC-C mix under high conflict on
Power9/8 with comparison to narrow mix (NewOrder & Payment) and
in 3rd row difference to comparison of full vs. narrow mix on HPE (cf.
Fig. 19a)

performance gap, reaching 0.84x speedup at the maxi-
mum of cores.

3. Only MVCC does not diverge further, providing con-
stantly less speedup (—0.10x) on Power than on HPE.
Indeed, the time breakdowns of MVCC are similar for all
three hardware platforms, i.e. its behaviour is the same,
but hardware performance differs.

Insight In conclusion, TICTOC and SILO handle high
amount of conflicts best, regardless the hardware or work-
load type (full and narrow TPC-C mix), while MVCC proves
its conflict handling advantageous for (read-)heavy work-
load (full TPC-C). Moreover, the specific performance of
the CC schemes for heavier transactions as in the full TPC-
C mix depends on the underlying hardware and the number

@ Springer

T.Bang et al.

-~ DL DETECT WAIT DIE NO WAIT -« MVCC
-o- OCC -~ HSTORE - SILO TICTOC
HPE Power9
100 o
— e
a0 a’ L@ — S e
10 ./. .%;;/f@é .l./:g;=;' T
s mZ=S L=
g ¢
=
~
3| Power9 (RI) Power8
100
g .
= —
= | [
210 & "ot
5‘/ _I_,;/
1€ T
D)
°
C 0000000000000 D 090D
S5 55553 S5 SoS5585S S
NFODSNFTSE QOFODSAF O
— = = — o= o~ -

Number of Cores Number of Cores

Fig.21 Throughput of optimised DBx1000 for full TPC-C transaction
mix under low conflict on HPE, Power9, and Power8. The full mix
causes a performance bug on Power9, which is removed in “Power9
(RI)” by replicating internal data structures

of utilised cores, making for varying relative performance of
the CC schemes across the hardware platforms and workload

types.

4.3.2 Full TPC-C under low conflict

The previous experiment with the full TPC-C transaction
mix under high conflict indicated that besides more conflicts
also the higher load on the hardware impacts performance.
That is, even for the high conflict workload that generally
limits hardware utilisation, the increased load of the heavy
transactions influences the CC schemes. Consequently, in
the absence of conflicts (low conflict workload), hardware
utilisation is the main factor determining the performance of
the CC schemes.

First, we provide an overview of the performance of the
CC schemes for the full mix on all three hardware platforms
(indicating significant differences between those). In the next
step, we then contrast the behaviour of the CC schemes for the
full mix with the narrow mix on the same hardware platform
(i.e. HPE) to identify divergences due to workload character-
istics. In the final step, we then compare these divergences of
the CC schemes for the full transactions mix across the three
hardware platforms to distinguish trends relating to either
workload or hardware characteristics.

Comparison of CC Schemes Figure 21 provides an overview
of the throughput of all CC schemes for the full TPC-C
mix under low conflict on all three hardware platforms. As
expected, it shows that the CC schemes have a generally
positive scaling behaviour on HPE and Powers, i.e. through-
put increases with increasing number of cores. However, in

@ Springer

Throughput Full TPC-C vs. New & Pay

®© 0 0

DL DETECT

WAIT DIE

NO WAIT

St
R
S,
=
i
)
S,
=
i
R
S

3)0.66 0.73 0.72

[&¢:3 0.57 0.55 0.51

MVCC

(0.86

occ

HSTORE

2.4 (U851 0.86 NONEN 0.77 (k3%

0.73 - 0.76

0.88 [(Z)]

SILO

$

1344 0.73

TICTOC [

28 0.72 0.76 1.1 [5P4 0.71 0.69 0.69 0.68

o
]
<
<

448 0.78 0:68] 0.77 (5] 0.84 (AR 1R:¥4

224 (0.8)(0.81)0.83)(05
228 (0.8)(0.81)0.83)(x)

1568 112

©
o
0

0
]
&

896
1568

Number of Cores Number of Cores

|
10 Million txn/s 90 0.4 Speedup 1

Fig. 22 Detailed throughput for the full TPC-C transaction mix under
low conflict on HPE with comparison to the narrow mix. The compar-
ison indicates the speedup ratio by which the throughput differs from
the narrow transaction mix (cf. Fig. 13) for a CC scheme (on y-axis) at
the same number of cores (on x-axis)

comparison with the narrow transaction mix, throughput is
overall lower (cf. Fig. 13). We will compare the narrow mix
in detail below.

On Power9, though, the full mix causes anomalous
behaviour for all CC schemes, due to a combination of
caching and NUMA effects caused by the higher memory
footprint. Specifically, pointers to access indexes drop out of
the individual processor caches and have to be fetched from
potentially distant memory, causing significant slowdown as
number of cores increases and subsequently the NUMA dis-
tance between them.

We thus further optimised DBx1000 for Power9 by copy-
ing these crucial pointers into the local memory of each
processor to reduce the memory access cost but have the
cores of each processor share these pointers (at most one
copy in each processor cache). The results of this optimised
variant of Power9 (called Power9 (RI)) indeed show a similar
behaviour to Power8 and HPE. Notably, this optimisation for
Power9 has only minimal effect for the narrow transaction
mix, due to the smaller footprint of the involved transactions.
Full vs. Narrow Mix on HPE: In the following, we compare
the full and the narrow mix on HPE. On HPE, the transactions
of the full TPC-C mix indeed show the expected benefit of
MVCC, generally handling read-heavy transactions better.
Also under low conflict MVCC becomes third best for the full
mix at high core counts, which is different from the narrow
mix. Conversely, SILO falls behind for this full mix.

In more detail, Fig. 22 shows the detailed throughput for
the full TPC-C mix on HPE and a comparison with the nar-
row mix. The full mix reduces the throughput of all CC
schemes, but distinctly for the individual CC schemes. The
best performing HSTORE and the improved MVCC slow
down least (HSTORE: 0.69-0.88x, MVCC: 0.71-0.86x). At
highest core count, HSTORE even speeds up by 2.4x and
does not thrash as in the narrow mix. TICTOC follows with a

The full story of 1000 cores

slightly stronger slowdown, especially under NUMA effects
at 56 cores and the highest core count. Next, the group of
pessimistic locking schemes increasingly slows down until
1344 cores, even more so SILO with a significant slowdown
of 0.24x at 1568 cores. Lastly, OCC is significantly affected
by the full transaction mix (0.5x). A comparison of the time
breakdowns reveals higher coordination costs as the main
reason for the overall lower performance for the full trans-
action mix, i.e. even in this low conflict workload, the heavy
transactions increase the time spent for coordination for all
CC schemes.

Insight As a major observation, the more involved (i.e.
long-running) transactions of the full TPC-C mix do not sim-
ply increase the amount of actual work, but their increased
footprint indeed impacts concurrency control, for both the
high conflict and the low conflict workload. Besides a damp-
ening effect on conflicts and the benefit of MVCC, the
individual CC schemes slowdown distinctly. Hence, we con-
clude that the (read-)heavy transactions of the full TPC-C
directly amplify the cost of the individual CC schemes.
Power vs. HPE: Finally, the comparison of the results for the
full TPC-C under low conflict across the different hardware
platforms confirms the general slowdown on the Power plat-
forms and similar the slowdown trends of most CC schemes>.

Importantly, the comparison across the hardware plat-
forms confirms our observations on the relation of their
hardware characteristics to the behaviour of the CC schemes,
albeit leading to different performance. On one hand, the
heavier transactions of the full mix cause stronger resource
contention on Power, such that on both Power platforms the
slowdown at low core counts is stronger than on HPE. On
the other hand, the CC schemes scale better on Power, due
to their better NUMA characteristics, finally reaching sim-
ilar or less slowdown than on HPE at highest core counts.
Notably, on HPE we previously observed a significant ben-
efit of MVCC handling the read-heavy transactions of the
full mix. On Power, the resource contention cancels out this
benefit of MVCC.

Insight The full TPC-C transaction mix makes concur-
rency control even more costly on Power regardless the
amount of conflicts in the workload, i.e. larger processor
resources on HPE prove more beneficial than the better
NUMA characteristics on Power for the full mix in contrast
to the narrow mix. Overall, considering both transactions
mixes, the CC schemes compare for low conflict workload
as follows: (1) HSTORE provides the best performance (on
any hardware) as long as there are barely any conflicts, i.e.
even few conflicts inhibit its performance (e.g. even low con-
flict TPC-C at high core counts). (2) TICTOC performs most
reliably (even for both low and high conflict workloads).
The remaining CC schemes compare diversely. Their per-

5 Detailed figures omitted for brevity are available online [5].

formance depends on the characteristics of the individual
hardware platforms (NUMA and cache capacity) and the
workload. For example, due to the large memory footprint of
the read-heavy transactions, MVCC does not prove advan-
tageous on all hardware (i.e. on Power), despite targeting
read-heavy transactions.

5 Conclusion and future work

In this paper, we presented the results of our extensive anal-
ysis of concurrency control on real(ly) large multi-socket
hardware as major component of OLTP DBMS. To con-
clude, we first summarise our major findings. Based on these
findings, we then discuss our recommendations as well as
possible future directions towards high and robust perform-
ing OLTP DBMSs.

5.1 Discussion of findings

In the following, we summarise the main findings of the two
evaluation parts and conclude with final insights.

5.1.1 Findings of part one

In the first part of our evaluation, we revisited the simulation
of OLTP on then predicted large many-core hardware [71]
and compared it to an Intel-based hardware which does pro-
vide “a 1000 cores” today but as multi-socket hardware. We
identified several discrepancies between the original simu-
lation and real hardware in our evaluation. Importantly, we
showed that all CC schemes indeed scale well beyond 1000
cores for low conflict workload, when using state-of-the-art
optimisations. Notably, due to shifting bottlenecks, combina-
tions of optimisations were necessary, e.g. hardware-assisted
timestamp allocation only improved performance with addi-
tional optimisations, as shifting contention then caused
latch thrashing. Among the evaluated CC schemes, the now
included TICTOC outperformed all other schemes for both
low conflict and high conflict workloads. However, all of
them including TICTOC still become overwhelmed by con-
flicts under high contention, degrading even more drastically
on our real Intel-based hardware than in the simulation.

5.1.2 Findings of part two

In the second part of our evaluation, we then presented the
results of our broadened evaluation, additionally compris-
ing two IBM Power-based hardware platforms and the full
transaction mix of TPC-C. With this broadened evaluation,
we indeed confirmed our initial observations and further
connected the performance of CC schemes with hardware

@ Springer

https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements/blob/main/section_4-3-1_full_TPC-C_low_conflict_1568_warehouses/comparison_full_TPC-C_vs_narrow_TPC-C_all_hardware/README.md

T.Bang et al.

and workload characteristics, e.g. NUMA effects, processor
resources, conflicts, and transaction footprint.

We observed common outstanding and complex nuanced
effects of hardware and workload characteristics. First, under
high contention, the previously observed thrashing caused by
overwhelming conflicts persisted regardless of hardware or
other workload characteristics, impeding adequate utilisation
of all our large hardware. A major cause of this thrashing of all
CC schemes is the simple inter-transaction parallel execution
scheme commonly used in today’s DBMS [16,32,34,36,51],
as it can only utilise high hardware parallelism with high
transaction concurrency, amplifying contention. Second, we
observed more nuanced effects from the interaction between
CC schemes, hardware, and workload. Different hardware
characteristics proved significant depending on the design
of the CC schemes, e.g. temporary copies of optimistic CC
demand cache capacity and bandwidth, while locking of
pessimistic CC is latency sensitive. Notably, we observed
negative effects only when this demand exceeded the avail-
able cache capacity or bandwidth. That is, these capacity
related effects did not appear as long as sufficient resources
were available. Moreover, the workload further influenced
this interaction between the CC schemes and the hard-
ware. For example, the transaction footprint (accessed tuples)
amplified the cache demand, degrading performance of opti-
mistic CC when the cache was too small. However, at the
same time, the transaction footprint also alleviated contention
off latches indeed improving performance of pessimistic CC.
Consequently, hardware and workload have complex effects
on CC schemes and overall bottlenecks in the DBMS.

5.1.3 Insights from findings

The bottom line of our findings is, that an agglomeration of
bottlenecks in the system determines the cost of transaction
execution and overall system performance. To reason about
the scalability of DBMSs, it thus is important to understand
how the cost of individual bottlenecks scales and how these
bottlenecks interact. In this regard, our evaluation has shown
complex effects of workload and hardware as well as complex
interaction of bottlenecks adding up, amplifying each other
but also dampening or hiding each other. Then, to achieve
high performance, these costs must be balanced against the
available hardware resources considering the workload at
hand. To conclude, we argue that maintaining the ideal bal-
ance despite changing workloads and evolving hardware will
enable robust DBMS performance.

5.2 Recommendations and peek into the future
Based on our findings, we now discuss our recommendations

to achieve robust DBMS performance and point out accord-
ing research avenues.

@ Springer

5.2.1 Comprehensive contention management

As discussed above, all evaluated CC schemes scale poorly,
surrendering to conflicts and contention. Even advanced CC
schemes with conflict mitigation mechanisms do not reliably
withstand many conflicts, like TICTOC or beyond the eval-
uated ones CICADA [26,37,45,68,73]. Moreover, besides
logical contention of transaction conflicts, also physical con-
tention (e.g. on latches) significantly impacts performance
and system components outside of the CC scheme strongly
affect contention (logical & physical), especially the simple
but common inter-transaction parallel execution scheme.

As a consequence, we recommend broader system-wide
contention management far beyond the CC scheme, since
system-wide many factors affect contention and there are
more options to efficiently manage contention. For exam-
ple, system-wide contention management (especially across
concurrency control, execution scheme, and scheduler) could
reduce logical contention with smarter parallel execution
rather than with conflict mitigation in CC schemes, thereby
reducing contention more efficiently. As such, we envision
contention management throughout the entire system to bet-
ter balance contention shifting across system components,
which is a big challenge in achieving robust performance.
While there is work in this direction [13,42,58,66,67,70,74],
we believe that extending these to our notion of system-
wide contention management and extending to stronger
awareness of the underlying hardware would greatly benefit
DBMS performance. In particular, interesting directions are
broader forms of parallel execution besides inter-transaction
parallelism and a transaction scheduler, which is aware
of system-wide contention and the interaction with hard-
ware like cache competition. A future route along this line
would be to choose the appropriate form of parallel execu-
tion of transactions, e.g. inter-transaction parallel execution
for uncontended workloads or where contention is “benefi-
cial” (i.e. due to resource sharing), intra-transaction parallel
execution for contending transactions, and even sequential
execution under excessive contention.

We further recommend adaptive concurrency control as
part of comprehensive contention management. Adaptive CC
is recognised for employing the most suitable CC scheme for
a group of transactions or partition of tuples, e.g. CormCC
[53] is an outstanding candidate with low overhead coopera-
tion between a host of CC schemes. We believe that adaptive
CC should determine the CC schemes as part of our proposed
system-wide contention management, as those CC schemes
are strongly affected by many factors of the overall system
but in turn strongly affect the system. For example, conflict
frequency on a tuple (logical contention) is an important fea-
ture to determine the CC scheme, which again is strongly
affected by transaction scheduling.

The full story of 1000 cores

5.2.2 Advanced performance models

Other important aspects shown in our evaluation are the com-
plex dependencies of DBMS performance, i.e. the system
design, the workload and the underlying hardware interacting
and jointly affecting thrashing points. Due to these complex
dependencies, we argue for comprehensive (e.g. learned) per-
formance models that can better reflect these complex effects.
Current work on performance models facilitating synthe-
sis of data structures [28] and recent progress on learned
components [14,24,38,47] spark our confidence in learned
performance models [25] deriving complex dependencies
beyond the ability of purely analytical models. Such models
would then not only help to inform contention management
as discussed above but also would open new opportunities,
e.g. finding the optimal hardware for a given workload. In the
long term, such performance models would further enable
quick exploration of system performance without extensive
benchmarking and could eventually lead to performance
guarantees of DBMSs.

5.2.3 Adaptive system architectures

Our findings point out that optimal system performance
requires the system design to ideally balance bottlenecks.
However, this balance differs for workloads as well as hard-
ware and changes over time, due to workload fluctuation
but also progress of state-of-the-art (e.g. optimisations).
Hence, we advocate for adaptive systems and especially
adaptive system architectures capable of re-balancing the
system design. Beyond the proposed adaptation and synthesis
strategies [27,28,40,53], we argue for flexible system-wide
adaptation, which exceeds adaptation of individual com-
ponents and opposes rigid instance optimisation. Towards
effective system-wide adaptation, performance prediction
and adaptation overhead are significant challenges. As rec-
ommended above, performance predictions will benefit from
advanced performance models, whereas we consider flex-
ible system architectures and execution models to drive
efficiency. Specifically, we envision the decomposition of
system designs into fine-grained building blocks which
can be efficiently composed at runtime [4] (e.g. by new
compilation techniques). This will enable flexible system
architectures to broadly transform a system balancing bottle-
necks across all system components. Thereby, we envision
adaptive system architectures to successfully adjust to chang-
ing workloads and shifting hardware balances.

5.2.4 Artefact availability
Finally, another important route is that data of extensive eval-

uations like this should be made available for the community.
We have released all artefacts [5,6] of this evaluation, mak-

ing these available to the database community for further
research. We believe that despite our extensive analysis in this
paper the data itself is a valuable source for future research.
So, we hope that this source helps researchers and system
builders to further dig into details they find interesting and
come up with their own conclusions.

Acknowledgements We would like to express our great gratitude to
the authors of [71] for providing DBx1000 as open-source making this
work possible. Furthermore, we also would like to thank IBM and HPE
for providing us extensive access to the hardware used in this paper.

Funding Open Access funding enabled and organized by Projekt
DEAL.

References

1. Advanced Micro Devices, Inc.: AMD EPYC™ 7003 SERIES
PROCESSORS (2021). https://www.amd.com/system/files/
documents/amd-epyc-7003-series-datasheet.pdf

2. Appuswamy, R., Anadiotis, A.C., Porobic, D., Iman, M.K., Ail-
amaki, A.: Analyzing the impact of system architecture on the
scalability of OLTP engines for high-contention workloads. Proc.
VLDB Endow. 11(2), 121-134 (2017). https://doi.org/10.14778/
3149193.3149194

3. Bang, T., May, N., Petrov, 1., Binnig, C.: The tale of 1000 cores:
an evaluation of concurrency control on real(ly) large multi-socket
hardware. In: Proceedings of the 16th International Workshop on
Data Management on New Hardware, pp. 3:1-3:9. ACM (2020).
https://doi.org/10.1145/3399666.3399910

4. Bang, T., May, N., Petrov, L., Binnig, C.: AnyDB: An architecture-
less DBMS for any workload. In: 11th Annual Conference on
Innovative Data Systems Research (CIDR ‘21) (2021). http:/
cidrdb.org/cidr2021/papers/cidr2021_paper10.pdf

5. Bang, T., May, N., Petrov, I., Binnig, C.: The full story of
1000 cores: an examination of concurrency control on real(ly)
large multi-socket hardware - measurements, logs, plots (2021).
Archived: https://doi.org/10.48328/tudatalib-726, browsable:
https://github.com/DataManagementLab/VLDBJ_1000_cores_
measurements

6. Bang, T., May, N., Petrov, I., Binnig, C.: The full story of
1000 cores: An examination of concurrency control on real(ly)
large multi-socket hardware - source code (2021). Archived:
https://doi.org/10.48328/tudatalib-727, browsable: https://github.
com/DataManagementLab/DBx1000

7. Bernstein, P.A., Goodman, N.: Concurrency control in distributed
database systems. ACM Comput. Surv. 13(2), 185-221 (1981)

8. Bernstein, P.A., Goodman, N.: Multiversion concurrency control-
theory and algorithms. ACM Trans. Database Syst. 8(4), 465483
(1983)

9. Brown, T.,Kogan, A., Lev, Y., Luchangco, V.: Investigating the per-
formance of hardware transactions on a multi-socket machine. In:
Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 121-132. ACM, 2935796 (2016).
https://doi.org/10.1145/2935764.2935796

10. Celtruda, J.O., Crosthwait, W.R., Earle, J.G., Henderson, R.E., Fen-
nel, J.W.J.: Apparatus and method for serializing instructions from
two independent instruction streams (1972). https://worldwide.
espacenet.com/patent/search?q=pn%3DCA954227A

11. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address
spaces using RCU balanced trees. In: Proceedings of the Sev-

@ Springer

https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://doi.org/10.14778/3149193.3149194
https://doi.org/10.14778/3149193.3149194
https://doi.org/10.1145/3399666.3399910
http://cidrdb.org/cidr2021/papers/cidr2021_paper10.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper10.pdf
https://doi.org/10.48328/tudatalib-726
https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements
https://github.com/DataManagementLab/VLDBJ_1000_cores_measurements
https://doi.org/10.48328/tudatalib-727
https://github.com/DataManagementLab/DBx1000
https://github.com/DataManagementLab/DBx1000
https://doi.org/10.1145/2935764.2935796
https://worldwide.espacenet.com/patent/search?q=pn%3DCA954227A
https://worldwide.espacenet.com/patent/search?q=pn%3DCA954227A

T.Bang et al.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

enteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 199-210.
Association for Computing Machinery (2012). https://doi.org/10.
1145/2150976.2150998

David, T., Guerraoui, R., Trigonakis, V.: Everything you always
wanted to know about synchronization but were afraid to ask. In:
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 33-48. ACM, 2522714 (2013). https://doi.
org/10.1145/2517349.2522714

Dice, D., Kogan, A.: Avoiding Scalability Collapse by Restricting
Concurrency. Lecture Notes in Computer Science, pp. 363-376.
Springer International Publishing (2019). https://doi.org/10.1007/
978-3-030-29400-7_26

Ding, J., Minhas, U.E, Yu, J., Wang, C., Do, J., Li, Y., Zhang, H.,
Chandramouli, B., Gehrke, J., Kossmann, D., Lomet, D., Kraska,
T.: Alex: an updatable adaptive learned index. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 20, SIGMOD 20, pp. 969-984. ACM
(2020). https://doi.org/10.1145/3318464.3389711

Drepper, U.: What every programmer should know about memory
(2007). https://people.freebsd.org/~Istewart/articles/cpumemory.
pdf

Férber, F., Cha, S.K., Primsch, J., Bornhovd, C., Sigg, S., Lehner,
W.: SAP HANA database: data management for modern business
applications. SIGMOD Rec. 40(4), 45-51 (2012). https://doi.org/
10.1145/2094114.2094126

Farshin, A., Roozbeh, A., Maguire, G.Q., Kosti¢, D.: Make the most
out of last level cache in Intel processors. In: Proceedings of the
Fourteenth EuroSys Conference 2019. Association for Computing
Machinery, p. Article 8 (2019). https://doi.org/10.1145/3302424.
3303977

Franke, H., Russell, R., Kirkwood, M.: Fuss, futexes and fur-
wocks: fast userlevel locking in Linux. In: AUUG Conference
Proceedings, vol. 85, pp. 479 — 495. AUUG, Inc. Kensing-
ton, NSW, Australia (2002). https://www.kernel.org/doc/mirror/
0ls2002.pdf#page=479

Harding, R., Van Aken, D., Pavlo, A., Stonebraker, M.: An evalua-
tion of distributed concurrency control. Proc. VLDB Endow. 10(5),
553-564 (2017). https://doi.org/10.14778/3055540.3055548
Hennessy, J.L.: Computer architecture: a quantitative approach, 5th
edn. Morgan Kaufmann Publication, Burlington (2012)

Hewlett Packard Enterprise: The Unique Modular Architecture of
HPE Superdome Flex: How it Works and Why it Matters (2018).
https://community.hpe.com/t5/Servers-The-Right-Compute/The-
unique-modular-architecture-of- HPE-Superdome- Flex- How-it/
ba-p/7001330#.XnsMbEBFyAg

Hewlett Packard Enterprise Development LP: HPE Superdome
Flex, Intel Processors Scale SAP HANA (2018). https://www.
intel.com/content/ www/us/en/big-data/hpe- superdome- flex-sap-
hana-wp.html

Hewlett Packard Enterprise Development LP: HPE Super-
dome Flex Server Architecture and RAS (2020). https://assets.
ext.hpe.com/is/content/hpedam/documents/a00036000-6999/
a00036491/a00036491enw.pdf

Hilprecht, B., Binnig, C., R6hm, U.: Learning a partitioning advisor
for cloud databases. In: Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
720, pp. 143-157. ACM (2020). https://doi.org/10.1145/3318464.
3389704

Hilprecht, B., Binnig, C.: One model to rule them all: towards
zero-shot learning for databases. In: 11th Annual Conference on
Innovative Data Systems Research (CIDR ‘22) (2022)

Huang, Y., Qian, W., Kohler, E., Liskov, B., Shrira, L.: Opportu-
nities for optimism in contended main-memory multicore transac-
tions. Proc. VLDB Endow. 13(5), 629-642 (2020). https://doi.org/
10.14778/3377369.3377373

@ Springer

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Idreos, S., Dayan, N., Qin, W., Akmanalp, M., Hilgard, S., Ross, A.,
Lennon, J., Jain, V., Gupta, H., Li, D., Zhu, Z.: Learning key-value
store design. CoRR (2019). arxiv:1907.05443

Idreos, S., Dayan, N., Qin, W., Akmanalp, M., Hilgard, S., Ross, A.,
Lennon, J.,Jain, V., Gupta, H., Li, D., et al.: Design continuums and
the path toward self-designing key-value stores that know and learn.
In: 9th Annual Conference on Innovative Data Systems Research
(CIDR ‘19) (2019)

Intel Corporation: Intel®64 and IA-32 Architectures Software
Developer’s Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A,
3B, 3C, 3D and 4 (2019)

International Business Machines Corporation: POWERS Proces-
sor User’s Manual for the Single-Chip Module (Version 1.3)
(2016). https://openpowerfoundation.org/?resource_lib=power8-
processor-users-manual

International Business Machines Corporation: POWER9 Processor
User’s Manual (Version 2.1) (2019). https://openpowerfoundation.
org/resource_lib=power9-processor-users-manual

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik,
S., Jones, E.P.C., Madden, S., Stonebraker, M., Zhang, Y., Hugg,
J., Abadi, D.J.: H-Store: a high-performance, distributed main
memory transaction processing system. Proc. VLDB Endow. 1(2),
1496-1499 (2008). https://doi.org/10.14778/1454159.1454211
Kersten, T., Leis, V., Kemper, A., Neumann, T., Pavlo, A., Boncz,
P.: Everything you always wanted to know about compiled and vec-
torized queries but were afraid to ask. Proc. VLDB Endow. 11(13),
2209-2222 (2018). https://doi.org/10.14778/3275366.3284966
Kimura, H.: FOEDUS: OLTP engine for a thousand cores and
NVRAM. In: Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 691-706. ACM
(2015). https://doi.org/10.1145/2723372.2746480

Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency
control. ACM Trans. Database Syst. 6(2), 213-226 (1981)

Lahiri, T., Kissling, M.: Oracle’s In-Memory Database Strategy
for OLTP and Analytics (2015). https://www.doag.org/formes/
pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_
In-Memory_Database_Strategy_for_Analytics_and_OLTP-
Manuskript.pdf

Lim, H., Kaminsky, M., Andersen, D.G.: Cicada: Dependably fast
multi-core in-memory transactions. In: Proceedings of the 2017
ACM International Conference on Management of Data, pp. 21—
35. ACM (2017). https://doi.org/10.1145/3035918.3064015

Lu, J., Chen, Y., Herodotou, H., Babu, S.: Speedup your analytics:
automatic parameter tuning for databases and big data systems.
Proc. VLDB Endow. 12(12), 1970-1973 (2019). https://doi.org/
10.14778/3352063.3352112

Mulnix, D.L.: Intel®Xeon®Processor Scalable Family Technical
Overview (2017). https://www.intel.com/content/www/us/en/
developer/articles/technical/xeon-processor-scalable-family-
technical-overview.html

Porobic, D., Liarou, E., Tozun, P., Ailamaki, A.: Atrapos: adap-
tive transaction processing on hardware islands. In: 2014 IEEE
30th International Conference on Data Engineering, p. 12 (2014).
https://doi.org/10.1109/ICDE.2014.6816692

Porobic, D., Pandis, 1., Branco, M., Toziin, P., Ailamaki, A.: Char-
acterization of the impact of hardware islands on OLTP. VLDB
J. 25(5), 625-650 (2016). https://doi.org/10.1007/s00778-015-
0413-2

Prasaad, G., Cheung, A., Suciu, D.: Improving high con-
tention OLTP performance via transaction scheduling, [cs] (2018).
arXiv:1810.01997

Private conversation with Derek Schumacher, Russ Anderson, and
Dimitri Sivanich of Hewlett Packard Enterprise (HPE). 2021-11-16
Psaroudakis, 1., Scheuer, T., May, N., Sellami, A., Ailamaki,
A.: Scaling up concurrent main-memory column-store scans:
towards adaptive NUMA-aware data and task placement. Proc.

https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2517349.2522714
https://doi.org/10.1145/2517349.2522714
https://doi.org/10.1007/978-3-030-29400-7_26
https://doi.org/10.1007/978-3-030-29400-7_26
https://doi.org/10.1145/3318464.3389711
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3302424.3303977
https://www.kernel.org/doc/mirror/ols2002.pdf#page=479
https://www.kernel.org/doc/mirror/ols2002.pdf#page=479
https://doi.org/10.14778/3055540.3055548
https://community.hpe.com/t5/Servers-The-Right-Compute/The-unique-modular-architecture-of-HPE-Superdome-Flex-How-it/ba-p/7001330#.XnsMbEBFyAg
https://community.hpe.com/t5/Servers-The-Right-Compute/The-unique-modular-architecture-of-HPE-Superdome-Flex-How-it/ba-p/7001330#.XnsMbEBFyAg
https://community.hpe.com/t5/Servers-The-Right-Compute/The-unique-modular-architecture-of-HPE-Superdome-Flex-How-it/ba-p/7001330#.XnsMbEBFyAg
https://www.intel.com/content/www/us/en/big-data/hpe-superdome-flex-sap-hana-wp.html
https://www.intel.com/content/www/us/en/big-data/hpe-superdome-flex-sap-hana-wp.html
https://www.intel.com/content/www/us/en/big-data/hpe-superdome-flex-sap-hana-wp.html
https://assets.ext.hpe.com/is/content/hpedam/documents/a00036000-6999/a00036491/a00036491enw.pdf
https://assets.ext.hpe.com/is/content/hpedam/documents/a00036000-6999/a00036491/a00036491enw.pdf
https://assets.ext.hpe.com/is/content/hpedam/documents/a00036000-6999/a00036491/a00036491enw.pdf
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.14778/3377369.3377373
https://doi.org/10.14778/3377369.3377373
http://arxiv.org/abs/1907.05443
https://openpowerfoundation.org/?resource_lib=power8-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power8-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.1145/2723372.2746480
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://www.doag.org/formes/pubfiles/7378967/2015-K-DB-Tirthankar_Lahiri-Oracle_s_In-Memory_Database_Strategy_for_Analytics_and_OLTP-Manuskript.pdf
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.14778/3352063.3352112
https://doi.org/10.14778/3352063.3352112
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://doi.org/10.1109/ICDE.2014.6816692
https://doi.org/10.1007/s00778-015-0413-2
https://doi.org/10.1007/s00778-015-0413-2
http://arxiv.org/abs/1810.01997

The full story of 1000 cores

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

VLDB Endow. 8(12), 1442—1453 (2015). https://doi.org/10.14778/
2824032.2824043

Qadah, T.M., Sadoghi, M.: Quecc: A queue-oriented, control-free
concurrency architecture. In: Proceedings of the 19th International
Middleware Conference, pp. 13-25. ACM (2018). https://doi.org/
10.1145/3274808.3274810

SAP SE: SAP HANA Hardware and Cloud Measure-
ment Tools (HCMT) (2020). https://help.sap.com/viewer/
02bble64c2aedde7al 1369f4e70a6394/2.0/en-US

Sheng, Y., Tomasic, A., Zhang, T., Pavlo, A.: Scheduling OLTP
transactions via learned abort prediction. In: Proceedings of the
Second International Workshop on Exploiting Artificial Intelli-
gence Techniques for Data Management, aiDM ’19. Associa-
tion for Computing Machinery (2019). https://doi.org/10.1145/
3329859.3329871

Sirin, U., Toziin, P., Porobic, D., Ailamaki, A.: Micro-architectural
analysis of in-memory OLTP. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data, pp. 387-402. ACM
(2016). https://doi.org/10.1145/2882903.2882916

Starke, W.J., Dodson, J.S., Stuecheli, J., Retter, E., Michael, B.W.,
Powell, S.J., Marcella, J.A.: IBM POWER9 memory architectures
for optimized systems. IBM J. Res. Dev. 62(4-5), 3:1-3:13 (2018).
https://doi.org/10.1147/JRD.2018.2846159

Starke, W.J., Stuecheli, J., Daly, D.M., Dodson, J.S., Auernham-
mer, F., Sagmeister, PM., Guthrie, G.L., Marino, C.F., Siegel,
M., Blaner, B.: The cache and memory subsystems of the IBM
POWERS processor. IBM J. Res. Dev. 59(1), 3:1-3:13 (2015).
https://doi.org/10.1147/JRD.2014.2376131

Stonebraker, M., Rowe, L.A.: The design of postgres. In: Pro-
ceedings of the 1986 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’86, pp. 340-355. Association for
Computing Machinery, New York, NY, USA (1986). https://doi.
org/10.1145/16894.16888

Tanabe, T., Hoshino, T., Kawashima, H., Tatebe, O.: An analysis
of concurrency control protocols for in-memory databases with
CCBench. Proc. VLDB Endow. 13(13), 3531-3544 (2020). https://
doi.org/10.14778/3424573.3424575

Tang, D., Elmore, A.J.: Toward coordination-free and recon-
figurable mixed concurrency control. In: 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX
Association (2018). https://www.usenix.org/conference/atc18/
presentation/tang

Threading Building
threadingbuildingblocks.org/
The PostgreSQL Global Development Group: PostgreSQL 14
released! https://www.postgresql.org/about/news/postgresql- 14-
released-2318/

The Transaction Processing Council: TPC-C benchmark (revision
5.9.0) (2007). http://www.tpc.org/tpcc/spec/tpcc_current.pdf
Thomas Neumann, M.F.: Umbra: a disk-based system with in-
memory performance. In: 10th Annual Conference on Innovative
Data Systems Research (CIDR 20) (2020). http://cidrdb.org/
cidr2020/papers/p29-neumann-cidr20.pdf

Tian, B., Huang, J., Mozafari, B., Schoenebeck, G.: Contention-
aware lock scheduling for transactional databases. Proc. VLDB
Endow. 11(5), 648—662 (2018). https://doi.org/10.1145/3187009.
3177740

Travis, M.: x86/platform/uv: Add check of tsc
state set by uv bios (2017). https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?
1d=97d21003df3e7504c899b1701546f18{f475966f

Travis, M.: x86/tsc: Add option that tsc on socket
0 being non-zero is valid (2017). https:/gitkernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?
1d=341102c3ef29¢33611586072363cf9982a8bdb77

Blocks (TBB). https://www.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Travis, M.: x86/tsc: Provide a means to disable tsc art (2017).
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?7id=6c¢66350d0a482892793b888b07c1177fc6d4b344
Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy trans-
actions in multicore in-memory databases. In: ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP *13, Farm-
ington, PA, USA, November 3-6, 2013, pp. 18-32. ACM (2013).
https://doi.org/10.1145/2517349.2522713

Vetter, S., Caldeira, A.B., Cho, Y., Cruickshank, J., Grabowski, B.,
Haug, V., Laidlaw, A., Sung, S.Y.: IBM Power Systems E870 and
E880 Technical Overview and Introduction (2017). http://www.
redbooks.ibm.com/abstracts/redp5137.html?Open

Vetter, S., Cruickshank, J., Haug, V., Li (Victor), Y., Roll, A.:
IBM Power Systems E980: Technical Overview and Introduction
(2020). http://www.redbooks.ibm.com/abstracts/redp5510.htm1?
Open

Viswanathan, V., Kumar, K., Willhalm, T., Lu, P., Filipiak, B.,
Sakthivelu, S.: Intel memory latency checker v3.8 (2020). https://
software.intel.com/en-us/articles/intelr-memory-latency-checker
Wang, D., Cai, P, Qian, W., Zhou, A.: Discriminative admis-
sion control for shared-everything database under mixed OLTP
workloads. In: 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 780-791. IEEE (2021). https://doi.org/
10.1109/ICDE51399.2021.00073

Wang, J., Guo, J., Zhou, H., Cai, P., Qian, W.: Adaptive transac-
tion scheduling for highly contended workloads. In: Li, G., Yang,
J., Gama, J., Natwichai, J., Tong, Y. (eds.) Database Systems for
Advanced Applications, pp. 576-580. Springer International Pub-
lishing, Cham (2019). https://doi.org/10.1007/978-3-030-18590-
990

Wang, T., Kimura, H.: Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. Proc.
VLDB Endow. 10(2), 49-60 (2016). https://doi.org/10.14778/
3015274.3015276

Wu, Y., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical evalua-
tion of in-memory multi-version concurrency control. Proc. VLDB
Endow. 10(7), 781-792 (2017). https://doi.org/10.14778/3067421.
3067427

Yi, Z., Yao, Y., Chen, K.: Ftsd: a fissionable lock for multicores.
In: Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop
on Systems, pp. 123-130. ACM (2021). https://doi.org/10.1145/
3476886.3477518

Yu, X., Bezerra, G., Pavlo, A., Devadas, S., Stonebraker, M.: Star-
ing into the abyss: an evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow. 8(3), 209-220 (2014). https://
doi.org/10.14778/2735508.2735511

Yu, X., Bezerra, G., Pavlo, A., Devadas, S., Stone-
braker, M.: DBx1000 github (commit: b40c09a)
(2020). https://github.com/yxymit/DBx1000/tree/

b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040

Yu, X., Pavlo, A., Sanchez, D., Devadas, S.: TicToc: Time travel-
ing optimistic concurrency control. In: Proceedings of the 2016
International Conference on Management of Data, pp. 1629-
1642. Association for Computing Machinery, New York, NY, USA
(2016). https://doi.org/10.1145/2882903.2882935

Zhang, T., Tomasic, A., Sheng, Y., Pavlo, A.: Performance of OLTP
via intelligent scheduling. In: 34th International Conference on
Data Engineering (ICDE), EEE Computer Society, Paris, France
(2018). https://doi.org/10.1109/ICDE.2018.00132

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.14778/2824032.2824043
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.1145/3274808.3274810
https://doi.org/10.1145/3274808.3274810
https://help.sap.com/viewer/02bb1e64c2ae4de7a11369f4e70a6394/2.0/en-US
https://help.sap.com/viewer/02bb1e64c2ae4de7a11369f4e70a6394/2.0/en-US
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/3329859.3329871
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1147/JRD.2018.2846159
https://doi.org/10.1147/JRD.2014.2376131
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/16894.16888
https://doi.org/10.14778/3424573.3424575
https://doi.org/10.14778/3424573.3424575
https://www.usenix.org/conference/atc18/presentation/tang
https://www.usenix.org/conference/atc18/presentation/tang
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.postgresql.org/about/news/postgresql-14-released-2318/
https://www.postgresql.org/about/news/postgresql-14-released-2318/
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/3187009.3177740
https://doi.org/10.1145/3187009.3177740
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97d21003df3e7504c899b1701546f18ff475966f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97d21003df3e7504c899b1701546f18ff475966f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97d21003df3e7504c899b1701546f18ff475966f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=341102c3ef29c33611586072363cf9982a8bdb77
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=341102c3ef29c33611586072363cf9982a8bdb77
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=341102c3ef29c33611586072363cf9982a8bdb77
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6c66350d0a482892793b888b07c1177fc6d4b344
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6c66350d0a482892793b888b07c1177fc6d4b344
https://doi.org/10.1145/2517349.2522713
http://www.redbooks.ibm.com/abstracts/redp5137.html?Open
http://www.redbooks.ibm.com/abstracts/redp5137.html?Open
http://www.redbooks.ibm.com/abstracts/redp5510.html?Open
http://www.redbooks.ibm.com/abstracts/redp5510.html?Open
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://doi.org/10.1109/ICDE51399.2021.00073
https://doi.org/10.1109/ICDE51399.2021.00073
https://doi.org/10.1007/978-3-030-18590-9_90
https://doi.org/10.1007/978-3-030-18590-9_90
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.1145/3476886.3477518
https://doi.org/10.1145/3476886.3477518
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040
https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.1109/ICDE.2018.00132

	The full story of 1000 cores
	An examination of concurrency control on real(ly) large multi-socket hardware
	Abstract
	1 Introduction
	1.1 Part one
	1.2 Part two
	1.3 Outline

	2 Background and setup
	2.1 Concurrency control schemes
	2.2 Today's real hardware with 1000 cores
	2.2.1 Intel-based HPE platform
	2.2.2 Power-based IBM platforms

	2.3 Benchmarking environment

	3 Part one: simulation vs. real hardware
	3.1 A first look: simulation vs. reality
	3.1.1 The plain results
	3.1.2 First time breakdown on intel-based hardware

	3.2 A second look: hidden secrets
	3.2.1 Hardware assistance: the good?
	3.2.2 Data size: the bad?
	3.2.3 Inserts: facing reality!

	3.3 Effect of state-of-the-art-optimisations
	3.3.1 Overview of optimisations
	3.3.2 Results after optimisations

	3.4 Summary of part one

	4 Part two: broadening the evaluation
	4.1 Intel-based vs. IBM power 8/9 platforms
	4.1.1 Scaling on different real hardware—high conflict
	4.1.2 Scaling on different real hardware—low conflict

	4.2 Zooming into hardware aspects
	4.2.1 Simultaneous multithreading
	4.2.2 Non-uniform memory access

	4.3 The full TPC-C benchmark
	4.3.1 Full TPC-C under high conflict
	4.3.2 Full TPC-C under low conflict

	5 Conclusion and future work
	5.1 Discussion of findings
	5.1.1 Findings of part one
	5.1.2 Findings of part two
	5.1.3 Insights from findings

	5.2 Recommendations and peek into the future
	5.2.1 Comprehensive contention management
	5.2.2 Advanced performance models
	5.2.3 Adaptive system architectures
	5.2.4 Artefact availability

	Acknowledgements
	References

