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Abstract: Intraoperative imaging can assist neurosurgeons to 

define brain tumours and other surrounding brain structures. 

Interventional ultrasound (iUS) is a convenient modality with 

fast scan times. However, iUS data may suffer from noise and 

artefacts which limit their interpretation during brain surgery. 

In this work, we use two deep learning networks, namely UNet 

and TransUNet, to make automatic and accurate segmentation 

of the brain tumour in iUS data. Experiments were conducted 

on a dataset of 27 iUS volumes. The outcomes show that using 

a transformer with UNet is advantageous providing an 

efficient segmentation modelling long-range dependencies 

between each iUS image. In particular, the enhanced 

TransUNet was able to predict cavity segmentation in iUS data 

with an inference rate of more than 125 FPS. These promising 

results suggest that deep learning networks can be successfully 

deployed to assist neurosurgeons in the operating room. 

Keywords: Brain tumour, Deep learning, Image-guided 

neurosurgery, iUS, Segmentation. 

1 Introduction 

Interventional ultrasound (iUS) imaging offers real-time 

guidance information about the brain tissues including the 

brain tumour and surrounding anatomical structures [1, 2]. iUS 

is frequently used during brain surgery to guide neurosurgeons 

and to ensure that the tumour is resected completely while 

keeping other healthy tissues safe. However, the iUS signal 

can be poorly contrasted which limits the accurate definition 

of tumour and healthy brain parenchyma. Further, iUS data 

have a limited field of view and may contain artefacts. All 

these issues make interpreting iUS data challenging and highly 

dependent on the surgeon’s experience. 

In fact, manual delineation is robust against noise; 

however, it is a time-consuming and error-prone process that 

cannot be performed in the operating room due to the human-

machine interaction constraints in sterile environments. 

Alternatively, automatic segmentation methods can be used to 

enhance the visualization of the brain tumour and the risk 

structures intraoperatively. In recent years, deep learning-

based approaches, especially convolutional neural networks 

(CNNs), have achieved tremendous success in medical 

segmentation tasks [3, 4].  

Few studies in the literature addressed the introduction of 

deep learning into automatic structure segmentation in iUS 

data. For instance, Canalini et al. [5] focused on salient 

structures segmentation, sulci, and falx cerebri, for guiding the 

registration of US volumes acquired before and after resection. 

The authors in [6] proposed an enhanced method based on the 

segmentation of the resection cavity using 3D CNN as a prior 

step to register corresponding iUS images. Similarly, Carton 

et al. [7] proposed an automatic method for low-grade brain 

tumours segmentation in iUS images using two UNet-based 

models. 

In this work, we present deep learning to tackle the 

problem of automatic brain tumour segmentation in iUS data 

during neurosurgery. To do this, we use two CNN models, 

UNet [8] and TransUNet [9]. First, UNet [8] is used as the 

baseline CNN due to its impressive performance and 

popularity in medical image segmentation tasks. The main 

limitation of UNet is the lack of learning long-range 

dependencies since each convolutional layer operates on only 

a local subset of the input image making the network focus on 

local features instead of the global context. On the other hand, 

TransUNet [9] was proposed to tackle this problem by using 

the self-attention mechanism that encodes the dependency 

between all given input pixels. Further, we evaluate the 

performance of the two networks in the RESECT dataset and 

compare the results with the state-of-the-art methods. 
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2 Materials and Methods 

2.1 Data and pre-processing 

We used a publicly available dataset containing iUS images 

obtained at two different stages of tumour resection [10]. 

Manual ground annotations for resection cavity segmentation 

were provided separately by two experts who annotated the 

volumes using the MEVIS Draw1 tool [6]. The dataset contains 

27 3D iUS scan volumes for low-grade glioma patients 

obtained during and after tumour resection. Each iUS volume 

was acquired using the Sonowand Invite System with a 

frequency range of 6–12 MHz and with a voxel spatial 

resolution of 0.14 × 0.14 × 0.14 mm3 to 0.24 × 0.24 × 0.24 

mm3. 

In order to obtain suitable 2D data for our models, we 

sliced the manual segmentations along all three axes. This 

procedure results in a total of 28057 data points of which 8746 

contain resection cavities. To achieve a uniform image size, 

we resized all images to 256x256 pixels. Then, the resultant 

images were normalized by subtracting the mean value and 

dividing by the standard deviation for each image. Training 

our models with the whole dataset did not yield good results 

due to the high proportion of data points without resection 

cavities. Therefore, we limited our experiments to the subset 

containing only resection cavities. 

2.2 UNet 

The baseline model is an encode-decoder CNN based on UNet 

[8], which implements the specifiable topological and other 

architectural properties explained in the following. The 

encoder consists of four 3 × 3 convolutional blocks with an 

output of 16, 32, 64, and 128 feature channels, respectively. 

All convolutions consist of 1 × 1 stride as well as a zero-

padding of the input. Each convolutional block is followed by 

batch normalization, Rectified Linear Unit (ReLU) activation 

as well as 2 × 2 max-pooling layers. Skip connections pass the 

ReLU output of each convolution block to its counterpart in 

the decoder. The maximum number of feature channels was 

fixed to 128.  

The decoder consists of four convolutional blocks, each 

being preceded by a 2 × 2 up-sampling convolutional block 

and a concatenation block which includes the data of the 

corresponding encoder blocks. The feature channels are 

reduced by half after each convolution block. In the last 

convolutional block, there is an additional convolution that 

reduces the feature channels to one with a stride of one in each 

dimension. Finally, the output layer consists of a sigmoid 

activation function after the 1 × 1 convolution.

 

Figure 1: An overview of the customized TransUNet architecture with a detailed representation of the transformer layer on the left.

 

 
1 https://www.mevis.fraunhofer.de/en/research-and-

technologies/image-and-data-analysis/mevis-draw.html 
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2.3 TransUNet 

Figure 1 displays the second deep learning model which is 

designed after the TransUNet [9] architecture. TransUNet 

consists of a CNN-Transformer hybrid model as the encoder 

and a classical cascaded upsampler as the decoder. 

Transformers come from the field of natural language 

processing (NLP) and are built upon stacked self-attention 

mechanisms. Then, patch embedding is applied to the 

extracted feature map instead of raw images. The cascaded 

upsampler was applied to decode the hidden feature to enable 

precise localization of the segmentation output. 

We made some modifications to the original TransUNet 

as follows. The number of feature channels for encoding levels 

is 16, 32, 48, and 64, respectively. The number of 

convolutional layers stack was set to one for both 

downsampling and upsampling levels. Similarly, the number 

of transformer blocks and attention heads was set to one. 

Furthermore, the transformer Multi-layer Perceptrons each 

have a Gaussian Error Linear Unit (GELU) [11]. A ReLU was 

otherwise chosen after the convolution layer, as well as a 

sigmoid output activation function and a batch normalization. 

Finally, downsampling was made through max-pooling and 

upsampling with bilinear interpolation. 

3 Experiments 

3.1 Experimental setup 

For all experiments, the deep learning models were 

implemented with TensorFlow and Keras and trained on an 

Nvidia RTX 3060 graphic card. The dataset was randomly 

image-wise split into a ratio of 80, 10, and 10 for the training, 

validation, and testing subsets, respectively. To optimize the 

hyperparameters of the learning rate, batch size, and whether 

augmentations should be used, a manual grid search was 

performed. In total, the UNet model has a number of 1,227,521 

trainable parameters while the TransUNet model has 

8,135,297 trainable parameters. As an evaluation metric, the 

Dice coefficient (Dice) was used for our quantitative 

assessment. 

3.2 Results 

Figure 2 visualizes the segmentation results from our two deep 

learning models: UNet and TransUNet. It can be seen that 

UNet tends to provide resection cavities with smoother edges 

than in the ground truth segmentations. On the other hand, 

TransUNnet performs better than UNet making better use of 

long-range dependencies with sharper segmentation edges. 

Examples can be seen in rows 1, 2, and 5 where UNet misses 

smaller cavities while TransUNet can detect the long-range 

dependencies well. An exception can be seen in row 3, where 

the TransUNet identified part of the resection cavity as part of 

the background.  

Table 1 summarizes the quantitative results achieved by 

using the proposed segmentation approaches. The average of 

the dice score of all dataset volumes is calculated and provided 

in the last column since the training, validation, and test splits 

were selected randomly from the whole dataset. In general, the 

quantitative evaluation supports the visual observations. Both 

networks, UNet and TransUNet, were able to outline brain 

tumor in iUS precisely with average Dice scores of 93.50 and 

93.70, respectively.  

 

Figure 2: Qualitative results of the deep learning networks on the 

test dataset. The red box highlights regions where 

TransUNet performs better than UNet (volumes 4, 30, 460, 

and 460) or attempts to segment non-existing small regions 

(volume 317). 
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Table 1: Quantitative comparison of our best models and other 

models at different stages. Segmentation performance measured 

with Dice. 

Method Training Validation Test Average 

UNet 93.79 93.63 93.09 93.50 

TransUNet 94.72 93.14 93.26 93.70 

Canalini et al. [6] - - 75.00 84.00 

Carton et al. 

(2D) [7] 

- - 67.00 67.00 

Carton et al. 

(3D) [7] 

- - 72.00 72.00 

Moreover, the utilized deep neural networks were 

compared to the other comparative approaches in [6] and [7]. 

In [6], Canalini et al. proposed a segmentation method as a 

prior step for the registration of iUS data during neurosurgery. 

Furthermore, they provided a manually annotated version of 

the RESECT dataset containing 27 iUS volumes acquired 

during and after brain tumour resection. An average Dice of 

0.84 over the 27 volumes, including the training and validation 

volumes, were reported. Another work by Carton et al. [7] also 

used the RESECT dataset to train and evaluate their networks. 

2D and 3D UNets were trained with manual segmentations 

based on 17 volumes before resection [12]. They concluded 

that the 3D model performed better than the 2D model due to 

more contextual information. However, their 2D model was 

faster and generalized well to the unseen test dataset (refer to 

table 1). 

It is notable to note that the TransUNet performed a 

prediction on 55 batches of 16 images each in 6.94s resulting 

in ~8ms per image. The model loaded in 0.50s and the results 

were written to the hard drive in 1min 2.5s. The inference time 

for an average volume with around 300 slices is, therefore, 

~3s, not including the time needed to process the volume 

before and after it is used in the model. 

3.3 Discussion 

These findings support the concept that employing a 

Transformer as a feature extractor enables precise localization 

of resection cavities. In the case of UNet, feature 

representations of the image in the encoder are generated by 

convolutions. Later, they are decoded back to the full spatial 

resolution by the decoder. Convolution operations are 

intrinsically local and UNet, therefore, has problems 

accounting for long-range dependencies in the data. 

Transformers, on the other hand, with their global self-

attention mechanism, can consider the global context. Hence, 

TransUNet combines the advantages of both techniques, 

which means that they can consider both local and global 

contexts in signals. 

Quantitatively, it can be observed that our developed 

networks outperform the state-of-the-art approaches with the 

average Dice coefficient of 93.50 and 93.70 versus 84.00 

achieved by Canalini et al. [6]. Remarkably, the enhanced 

TransUNet model can predict more than 125 FPS using a 

modern GPU, which allows its use in interventional settings 

assisting brain surgery. 

Furthermore, our architectural modifications result in a 

much smaller model with fewer parameters than the original 

TransUNET architecture. However, this is motivated by the 

fact that we want to achieve a short inference time to check 

whether the method could be suitable for real-time application. 

One question still unanswered is whether this affects the 

inference time in 3D, which can be explored in future work. 

4 Conclusion 

In this study, we investigated the use of two deep learning-

based methods, UNet and TransUNet, to automatically 

segment the resection cavity in iUS volumes for neurosurgical 

assistance. Quantitative and qualitative results indicate that 

both networks were able to correctly segment the brain tumour 

in the iUS images. TransUNet provided slightly better 

performance than UNet with a mean Dice of 93.70. In 

particular, using transformers with UNet successfully 

improves the performance for brain tumour segmentation over 

standard CNNs as a potential for its use in neurosurgical 

guidance. Nevertheless, the training dataset plays an important 

role in these results which should contain a large number of 

segmented tumours in iUS data to confirm these results. 

Future work would include testing on an iUS dataset from 

our clinical partners at Ulm hospital university. Besides, 

evaluating the proposed models using other assessment 

parameters such as the contour mean distance (CMD) [13]. 
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