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ABSTRACT

For optimization of production processes and product quality, often knowledge of the factors influencing the pro-
cess outcome is compulsory. Thus, process analytical technology (PAT) that allows deeper insight into the process
and results in a mathematical description of the process behavior as a simple function based on the most impor-
tant process factors can help to achieve higher production efficiency and quality. The present study aims at char-
acterizing a well-known industrial process, the transesterification reaction of rapeseed oil with methanol to
produce fatty acid methyl esters (FAME) for usage as biodiesel in a continuous micro reactor set-up. To this
end, a design of experiment approach is applied, where the effects of two process factors, the molar ratio and
the total flow rate of the reactants, are investigated. The optimized process target response is the FAME mass frac-
tion in the purified nonpolar phase of the product as a measure of reaction yield. The quantification is performed
using attenuated total reflection infrared spectroscopy in combination with partial least squares regression. The
data retrieved during the conduction of the DoE experimental plan were used for statistical analysis. A non-linear
model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high
coefficient of determination (R²) of 0.9608. Thus, we applied a PAT approach to generate further insight into this
established industrial process.
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1 Introduction

In the past years, the concerns about climate change have dramatically gained momentum and are very
much present in the media and the subject of many public debates. One possible contribution to limiting the
effect of climate change is to replace fossil fuels with biofuels to reduce greenhouse gas emissions since
biofuels have the potential to fit well into closed-loop processes and CO2-neutral product cycles. Among
biofuels, biodiesel is an especially promising candidate and is already widely applied in blends with
petroleum diesel in many parts of the world. This is reflected by the large total consumption of biodiesel
in the European Union in 2020, which was estimated to be 13 062.2 kt of oil equivalents [1]. Biodiesel
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consists of fatty acid methyl esters (FAME) derived from plant oils or animal fats and is usually produced by
a process called transesterification [2,3]. While oils and fats, that consist of triacylglycerides (IUPAC name:
tri-O-acylglycerols) already contain all the chemical energy needed to fuel engines, their viscosity is too high
for direct injection in modern diesel engines. Thus, they are commonly processed by transesterification with
short-chain monovalent alcohols, especially methanol. Here, the fatty acids, originally linked to the glycerol
backbone, are transferred to methanol forming FAMEs showing lower viscosity and improved burning
behavior (cetane number) compared to conventional diesel fuel. For transesterification, catalysts are
required to achieve reasonable reaction rates. Most commonly used are soluble alkali hydroxides like
potassium or sodium hydroxide [4] but other catalysts like acids [5], heterogeneous catalysts [6,7], and
enzymes [8] or even catalyst-free supercritical approaches [9] are also described in the literature. The
chemical reaction involves three steps that are shown in Fig. 1. Here, the fatty acids are transferred
individually from the glycerol. All three reactions involve chemical equilibria. Thus, an extent of the raw
material methanol is usually used to shift the reactions to the product side to increase process yield [10].

Several factors are known to influence the reaction rate of transesterification processes and were studied
extensively in the past: type and amount of catalyst [11], reaction temperature [5], and the amount of
excessive methanol [5,10]. The latter is usually expressed as molar ratio, methanol to oil, which needs to
be at least three moles of methanol to convert one mole of triglycerides according to the reaction
stoichiometry. Another important influence derives from the immiscibility of the reactants methanol and

Figure 1: Chemical reaction scheme illustrating the transesterification of plant oils. a) shows the overall
reaction, while equation b) depicts the three subsequent steps including the reaction intermediates
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oils/fats forming two phases that need to be mixed intensively to increase interphase area and thus the phase
transition of active reactants. Also, the products FAME and glycerol are immiscible in each other, while
methanol can be dissolved in both phases [12]. Furthermore, some contaminants can have negative
impacts on the reaction. E.g., the oils/fats can contain free fatty acids (FFA, these are not bound to
glycerol originally) that consume the alkaline catalyst, and also water can decrease reaction rates [5,13].

Thus, many influences can affect the course of transesterification in a technical process. Statistical design
of experiment (DoE) is a promising approach to studying these influences in a specific transesterification
plant. Here, a series of experiments is described where two process variables, the so-called factors, were
changed according to a randomized, systematic experimental plan. The experimental outcome was
subjected to statistical testing (ANOVA) to identify and quantify the effects of the varied process factors.
The dependence of yield on the process factors was fit by polynomial mathematical models that were
based on the statistically significant linear, non-linear and synergistic interaction effects. Thereby, the
transesterification process was described by a robust and predictive response surface model. Such a DoE-
based approach allows the optimization of a wide variety of processes according to numerous intended
goals simultaneously, like optimal yield at minimal cost and minimal hazard risks at moderate
experimental effort [14–17]. A series of widely used standard designs is available [18,19] and were
already applied to biodiesel processing. For instance, Sun et al. [20] used a full factorial approach to
investigate the influence of the reaction temperature, the molar ratio, the residence time, and catalyst
concentration on the FAME yield of the transesterification of rapeseed oil with methanol and KOH as a
catalyst in a capillary microreactor. Santikunaporn et al. [21] and Bitire et al. [4] used Box-Behnken
designs to study the influence of the residence time, molar ratio, and catalyst concentration on the
transesterification yield of used frying oil with methanol and KOH in a continuous mesoscale oscillatory
baffle reactor and the influence of temperature, reaction time and molar ratio on the transesterification of
parsley seed oil using methanol and KOH in a stirred stainless-steel reactor, respectively. Thakkar et al.
[22] reported the use of a central composite design to analyze the behavior of the reactive extraction
including the transesterification of castor seeds with methanol and potassium hydroxide. The investigated
factors were methanol to seeds mass ratio, mass fraction of catalyst, temperature, and reaction time. This
emphasizes that DoE is a promising approach for gaining knowledge on a specific process.

In the present study, we investigate the influence of the molar ratio and the total flow rate of the
continuous transesterification of biodiesel in a microreactor system. Currently, the industrial production of
biodiesel is mainly performed in large-scale batch production [23], and only recently the concept of
microreactors was introduced to this field [24]. One of the main advantages of microreactors is that they
can be scaled up readily by increasing the number of reactors that are run in parallel [23]. The two
selected process factors can readily be manipulated in an automated approach and thus are especially
suited for implementing an automated control strategy. The self-built micro reactor set-up consisted of
eight reactor segments with carved microchannels. Potassium hydroxide was used as the catalyst, and
methanol as the alcohol to process rapeseed oil. A DoE approach with a self-developed, comprehensive
design with five levels per factor was defined to examine the complex reaction behavior. For
quantification of the reaction product, attenuated total reflection–Fourier transform infrared spectroscopy
(ATR-FTIR) in the mid-IR range was applied. The industrial standard for FAME quantification according
to European norm EN 14214 [25] is gas chromatography (GC). However, GC involves extensive sample
preparation and is rather time-consuming [26]. ATR-FTIR efforts far less time and sample handling. The
major drawback of FTIR is that individual sample constituents are not resolved as clearly as by GC
during analysis. The raw material plant oil and the desired product FAMEs show very similar spectra,
with only a few distinctive absorbance bands that are overlapped by common signals [27]. Thus, the
spectral information must be further analyzed by multivariate data analysis. Different procedures were
successfully developed by many researchers [26–31], highlighting the feasibility of this method. In our
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study, we used ATR-FTIR in combination with partial least squares regression (PLS) to quantify the FAME
content in the samples generated according to the experimental design. Subsequently, statistical methods
were applied to derive a mathematical description of the transesterification process.

2 Materials and Methods

2.1 Chemicals and Reactants
Refined rapeseed oil was obtained from Fauth GmbH & Co. KG (Mannheim, Germany). The

composition of fatty acids in this oil is given in Table 1, and the average molar mass of triglycerides in
the oil was ca. 881.7 g/mol. Methanol (HPLC grade) was purchased from Fisher Scientific
(Loughborough, UK), and potassium hydroxide (KOH, in pellets) was bought from Merk KgaA
(Darmstadt, Germany).

2.2 Transesterification Reaction in Micro Reactor
Transesterification was performed in a self-built microreactor system based on individual components

supplied by FESTO SE & Co. KG (Esslingen, Germany). A scheme of this set-up is shown in Fig. 2.
The reactor itself consists of stainless-steel metal plates in that microchannels were carved. These were
stacked on top of each other and connected via perfluoro alkoxy alkane (PFA) tubes (inner diameter:
2 mm). Thereby segments that contain the reaction mixture, and heat-exchanger segments alternate with
each other. Via the heat exchange segments, the microreactor was kept at reaction temperature using
preheated water supplied by an external thermostat (JULABO GmbH, Seelbach, Germany). For the
reactor plates, two types of microchannels were used. One type was designed for intensified mixing by
micro mixing chambers (see segment number 6 in Fig. 2). The other type (reactor segments numbers 2,
4, and 8) consisted of long, straight channels to extend the flow path and define a suitable residence time.
PTFA plates were used as sealings for the reactor plates. A temperature sensor was implemented in the
bottom plate for temperature control.

The rapeseed oil and the methanol/catalyst mixture were supplied continuously by two separate HPLC
pumps (model: Azura P 4.1S, Knauer Wissenschaftliche Geräte GmbH, Berlin, Germany) from two storage
vessels. The flow rate of the reactants and the thermostat were controlled by a control unit (FESTO SE & Co.
KG, Esslingen, Germany) consisting of a programmable logic controller, analog I/O devices, and a human-
machine interface. The process parameters can be set manually via a touch screen.

Table 1: Composition of fatty acids in the rapeseed oil (triglycerides) certified by the vendor

Fatty acid Portion in rapeseed oil [%]

C16:0 Palmitic acid 4.5

C18:0 Stearic acid 1.7

C18:1 Oleic acid 65.2

C18:2 Linoleic acid 18.4

C18:3 α-Linolenic acid 6.8

C20:0 Arachidic acid 0.8

C20:1 Eicosenoic acid 1.2

Others 1.4
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The reaction temperature was set to 60°C. To prevent the formation of gas bubbles, a pneumatic valve
was placed at the microreactor exit (not shown in Fig. 2) which allowed to increase process pressure. To
measure and control the pressure, a pressure sensor unit was installed right before the valve and a
pressure controller was part of the control unit. For all experiments, the pressure was set to 500 mbar.

All components of the reactor plant were connected via 2 mm ID PFA tubes.

2.3 Design of Experiment
To characterize the transesterification reaction yield in the microreactor a design of experiment was

applied. The effects of two process factors on the FAME mass fraction in the non-polar phase of the
reaction product were investigated as a measure of process yield. The first factor was the molar ratio
between the reactants, representing a measure of methanol excess in chemical equilibria. The second
factor was the total flow rate, which mainly governs residence time and mixing intensity.

For the robust characterization of the reactor behavior during transesterification of rapeseed oil, a custom
experimental design was chosen in which the design space was divided into four equivalent quadrants. For
each quadrant, a full factorial design with additional center points (performed as duplicates) was conducted.
The design space (i.e., the distribution of the experimental settings for all runs) is shown in Fig. 3 in terms of
coded and actual experimental levels. Each experiment is assigned a run number representing the randomized
run order in which the experiments were performed. Some combinations of experimental settings were
performed twice or even four times as indicated in Fig. 3. Overall, each factor was varied on five
different levels allowing for quantitative evaluation of non-linear effects.

The statistical analysis of the results was performed using the software package Design Expert 12 (Stat-
Ease, Minneapolis, US). Before analysis, the data were preprocessed using the logit transformation to match
the natural boundaries of FAME mass fraction, which are 0% and 100% (m/m).

Figure 2: Scheme of the microreactor set up. The reactor consisted of a stack of micro-structured metal
plates with suitable engravings. Heat exchanger/thermostat plates (plates 1, 3, 5, and 7) and reaction
plates (in plates 2, 4, and 8 straight flow channels and in plate 6 micro mixing chambers were engraved)
were placed in alternating order. The reactants were supplied by two HPLC pumps that were controlled
by a control unit. A water thermostat was used to keep the reactor temperature constant at 60°C. At the
end of the reactor, samples were taken manually and purified directly after sampling by centrifugation,
decantation of the polar phase, and repeated rinsing with deionized water
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In addition to the test statistics derived from ANOVA and the regression analysis such as numerical
values and statistical significances of factor effects, the error probabilities, and the response surface model
coefficients, the parameter errors of the resulting model parameters pi were estimated. Here, the square
root of the diagonal elements of the inverse of the Fisher information matrix (FIM) is suggested as the
measure of parameter uncertainty according to the Cramer-Rao lower bound [32]:

var pið Þ � FIM pð Þ�1
h i

ii
(1)

The Fisher information matrix was calculated according to

FIMij ¼ 1

r2
XN

k¼1

@f xk; pð Þ
@pi

@f xk; pð Þ
@pj

(2)

where r2 is the variance of the measurement error that is estimated to be normally distributed throughout the
design space and was 0.262284 (in coded and preprocessed values) here. N is the number of experiments in
the design xk and f is the model function. While the above-mentioned equation might appear rather complex,
in the present case the calculation of the parameter estimation errors is not challenging. So, f is with respect to
the parameters a simple linear function (whereas some pi with ANOVA p > 0.05 might be omitted in the final
model):

f x; pð Þ ¼ p0 þ p1Aþ p2Bþ p3ABþ p4A
2 þ p5B

2 (3)

The partial derivative of f to one of these parameters results in just the factor to this parameter:

@f x; pð Þ
@pi

¼ xi; xi ¼ 1; A; B; AB; A2; B2
� �T

(4)

Figure 3: Experimental design applied for the characterization of the transesterification of rapeseed oil in a
microreactor set-up. Each factor was varied on five levels. The design space is divided into four equivalent
quadrants (as shown by dashed lines) and a full factorial design with replicated center points was conducted
for each quarter
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e.g.

@f

@p1
¼ A (5)

In the last step, the parameter estimation errors (square root of the diagonal elements of the inverse of the
FIM) were divided by the absolute value of the parameter to receive the relative value as a more intuitive
measure of error magnitude.

The parameter errors were calculated by a self-written script using MATLAB R2018b.

2.4 Transesterification Experiments
Before the synthesis, the potassium hydroxide was dissolved in methanol. Here, a concentration was

chosen, that results in a mass ratio of 1% (m/m) of KOH in relation to the rapeseed oil during an
experiment with a molar ratio of methanol to oil of 6:1. Catalyst concentration was not adjusted during
experiments with different molar ratios because only factor effects that can be readily automatically
controlled were investigated here.

The experiments were conducted in the randomized run order as depicted in the experimental design
plan (Fig. 3). After specifying the factor level settings for each experiment, transesterification was
allowed to proceed for 45 min to give the system time to achieve a steady state. Afterward, samples were
removed for further analysis and the factor level settings were changed accordingly for the next run. The
microreactor rig worked automatically and no further manual actions were needed until one of the raw
material storage vessels ran empty. In the end, the system was flushed to prevent corrosion and gum
formation. For this, in the first step methanol with dissolved potassium hydroxide was used to remove
rapeseed oil and FAME and in the second step, pure methanol was applied to remove traces of potassium
hydroxide.

2.5 Sampling, Sample Preparation, and Off-Line FTIR Spectroscopic Analysis
During the runs of the experimental design, samples were taken after the equilibration of the system.

Their phases were separated, the non-polar phase was rinsed with deionized water and the mass fraction
of FAME in the non-polar phase was determined using an offline ATR-FTIR spectrometer. Samples were
taken after 45 min of running the experiment at a specific combination of factor levels. For each
experimental setting, two samples were retrieved by collecting two times 1 mL in 1.5 mL tubes at the
microreactor outlet. These samples were centrifuged over 2.5 min at 10,000 g directly after sampling to
stop the transesterification reaction by phase separation and subsequent removal of the heavier glycerol/
methanol/catalyst phase. Furthermore, remnants of catalyst and polar reactants were removed by washing
the nonpolar phase with 0.5 mL of deionized water, intense mixing, centrifugation (2.5 min at 10,000 g),
and removal of the water phase. This washing step was conducted three times. The resulting samples
were stored in glass vials with screw caps to prevent evaporation of FAMEs.

ATR-FTIR absorbance spectra were recorded using an ATR-FTIR spectrometer System 2000 FT-IR
(Perkin Elmer, Waltham, USA) equipped with a DuraScope ATR accessory (SensIR Technologies,
Danbury, US) in the range of 4000–650 cm−1 with a spectral resolution of 4 cm−1 and averaging
16 scans. Plain air was used as a reference. For quantification, a PLS calibration model based on
preliminary experiments was applied. For the calculation of this calibration, model samples had been
produced at the microreactor rig. These were analyzed spectroscopically with at-line ATR-FTIR and
validated via gas chromatography equipped with a flame ionization detector (GC-FID) at an external lab.
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2.6 PLS Quantification
For FAME quantification multivariate PLS regression was used to find a correlation between ATR-FTIR

absorbance spectra and FAME mass fraction. Therefore, the software package PLS_Toolbox 8.7
(Eigenvector Research Inc. Manson, US) for MATLAB R2018b (The MathWorks Inc. Natick, US) was used.

Before modeling, the absorbance spectra were preprocessed with baseline correction (Whittaker filter,
λ = 10e7, p = 0.001) and mean centering. Furthermore, the spectral regions of 3651–3066 cm−1 and
1055–998 cm−1 were excluded from data analysis, due to interferences by methanol. For calibration
samples from former experiments were analyzed by ATR-FITR and GC-FID. The ATR-FTIR data were
used as X-data while the FAME mass fractions determined by GC-FID were included as Y-data. The
model with two latent variables was used for further investigations because it resulted in a satisfactory
explanation of the variance in the data set and the inclusion of further latent variables did not improve
model quality any further.

This model was applied to quantify the FAME mass fraction in the samples collected during the runs of
the experimental plan. The mean of the two samples taken per run was calculated and used for statistical
analysis.

3 Results and Discussion

3.1 FAME Quantification with FTIR Spectroscopy
This study aims to investigate the effects of process factors on the yield of the transesterification of

rapeseed oil to produce FAMEs (that can be used as biodiesel) in a microreactor set up. Therefore, a
series of experiments was conducted according to a factorial design of experiment. During the single runs
of the design, physical samples were taken and the mass fraction of FAME in the non-polar phase was
determined by the combination of ATR-FTIR spectroscopy with a multivariate PLS regression model
based on calibration with GC-FID reference data. The values for the yield were used as the response
values for statistical analysis to model the reactor behavior.

The absorbance spectra of the samples are shown in Fig. 4. These are highly similar with only slight
variations in their spectroscopic features. In general, some overlapping absorption bands are observed
around 2900 cm−1, one separated band at ∼1745 cm−1, and several highly overlapping bands in the
fingerprint region below 1500 cm−1. The bands around 2900 cm−1 can be assigned to symmetrical and
asymmetrical -CH2 and -CH3 stretching vibrations of the fatty acid chains and alcohols bound together in
the esters. The isolated band at 1745 cm−1 results from the carbonyl stretching vibration of the ester
groups. In addition, a weak, but broad absorbance band is observed at 3600 cm−1 that might be assigned
to -OH vibrations [31].

From previous experiments it is known, that the non-polar phase of the samples might consist of FAME,
unreacted rapeseed oil, and residual mono- and diglyceride intermediates (IUPAC names: mono-O-
acylglycerol and di-O-acylglycerol, respectively). The main portion of other reactants (methanol, glycerol,
catalyst) is removed during sample purification. Although the amounts of oil and FAME may vary
strongly between the samples, most bands in the spectra are nearly identical. Small but distinct
differences can be found in the fingerprint region: e.g., the shoulders at 1434 and 1196 cm−1 as well as
overlapping bands at 1378, 1120, and 1096 cm−1 (see the bottom-right graph of Fig. 4). The absorbance
bands at 1434 and 1196 cm−1 can be assigned to vibrations of methyl -CH3 bound to an oxygen atom
and (methyl)carbon–oxygen (H3C-O-) bending vibration, respectively [27,31]. Thus, they are
characteristic for the methyl ester group of FAMEs since they are not present in rapeseed oil. The
presence of these bands indicates FAME-rich samples. The oil consists of triglycerides, that show
-CH-CH2-O and (-CH2)2-CH-O vibrations around 1100 cm−1 that are characteristic for the glycerol
backbone. Thus, these signals are much more prominent in the absorbance spectrum of rapeseed oil-rich
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samples. Furthermore, the carbonyl band shows a slight shift from 1744 cm−1 (oil) to 1742 cm−1 (FAME).
This is visible in the lower-left graph of Fig. 4.

Due to the strong overlapping of characteristic bands and only small changes of intensive bands a
univariate calibration is prone to noise and interference, e.g., by intermediates or byproducts. In such a
case it is advantageous to not only rely on single bands but exploit the spectral information over a wide
range of wavelengths. Consequently, a multivariate PLS regression model was applied here. This model
was retrieved by regression of ATR-FTIR spectra of samples collected from the microreactor rig with the
FAME mass fraction determined by GC-FID (further details are given in Appendix A). The calibration
model showed high quality with a coefficient of determination R² of 0.995 and root mean square errors of
cross-validation of 1.9% (m/m). The regression vector of this model is shown in Fig. 5. Here the regions
3651–3066 cm−1 and 1055–998 cm−1 were excluded due to spectral interferences with methanol during
calibration.

While regression coefficients of or close to zero do not contribute to the quantification, some suggestions
about spectral features that are influencing the calculations can be drawn from the regression vector. High
values (positive and negative) are observed around 1745, 1435, 1196 cm-1 and in the region between
1170 and 1070 cm-1. These match well with characteristic spectral features of FAME and triglycerides:
At 1745 cm-1–the carbonyl stretching vibration shows a strong band shift resulting in the sharp changes
between negative to positive regression coefficients; at 1435 and 1196 cm-1 the characteristic methyl ester
vibrations appear which are characteristic for FAME; and the region 1170–1070 cm-1, which is
characteristic of the glycerol backbone-oxygen (for vibrations of triglycerides). In the wavelength ranges
characteristic for FAME, the regression coefficients are positive, while they are negative in the

Figure 4: ATR-FTIR absorbance spectra of the non-polar phase of samples taken at the microreactor at the
different factor level combinations of the statistical experimental design plan for process characterization of
the transesterification of rapeseed oil for biodiesel synthesis. The upper diagram shows the whole spectrum in
the region of 4000–650 cm−1. The lower diagrams show relevant sections of the spectrum; on the left, the
spectral region from 1770–1710 cm−1 is depicted, which is characteristic for the carbonyl stretching
vibration. On the right, the spectral fingerprint region from 1500–900 cm−1 is depicted
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triglyceride-specific ranges. Thus, this quantification method relies on actual spectral features of the analytes,
and consequently, robust results can be expected.

The PLS model was applied to quantify the FAME mass fraction from the ATR-FTIR spectra of the
samples collected during the single runs of the experimental plan. The results are given in Table 2. For a
low total flow rate and low molar ratio, a minimum FAME mass fraction of 30.2% (m/m) was observed.
With increasing total flow rate and molar ratio, the mass fraction increases up to a maximum of
91.9% (m/m) at a high molar ratio and medium total flow rate (91.0% (m/m) for both factor levels high).
For proper modeling, a statistical analysis of these results was done.

Figure 5: Regression vector of the PLS model with two latent variables used for FAME quantification from
ATR-FTIR spectra. Wavelength regions, where strong interference with methanol bands was observed, were
not used for the regression model. The regression coefficients show values deviating from zero in wavelength
ranges that show absorbance bands specific for the analyzed reactants. Thus, the calibration is based on the
spectral features of the analytes

Table 2: Results of FAMEmass fraction quantified from ATR-FTIR spectra recorded from samples from the
experimental design. The levels of the varied process factors are given as well

Run
A = Total flow rate B = Molar ratio methanol:Rapeseed oil FAME mass

fraction [% (m/m)]
Actual [mL/min] Coded Actual Coded

Run01 17.5 0.5 3.75 −0.5 62.4

Run02 20 1 2 −1 32.0

Run03 10 −1 5.5 0 70.6

Run04 15 0 5.5 0 62.0

Run05 10 −1 2 −1 10.1

Run06 20 1 5.5 0 80.2

Run07 10 −1 5.5 0 65.1

Run08 15 0 9 1 91.9

Run09 12.5 −0.5 3.75 −0.5 30.2

Run10 15 0 9 1 90.1

Run11 12.5 −0.5 3.75 −0.5 39.8
(Continued)
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3.2 Statistical Process Characterization and Modelling
To characterize and eventually model the reactor behavior the results from the FAME quantification

were statistically analyzed. According to an experimental plan, two process factors were varied
systematically according to Table 2:

1. The total flow rate of the reactants: when the total flow is increased, the residence time of the reactants
inside the reactor decreases, which on the one hand might in turn lead to lower degrees of conversion.
On the other hand, higher flow rates might also change the flow profile in a way that intensified
mixing and increased interphase area via higher turbulence in the microchannels is the result.
This would enhance the conversion rate. In the experiments, the total flow rate was varied from
10–20 mL/min.

2. The molar ratio of the reactants: methanol to triglycerides. Because transesterification involves
chemical equilibrium reactions (Fig. 1), the process yield can be increased by excessive usage of
one reactant. Usually, an excess of methanol is used. In the design space, the molar ratio of
methanol to triglyceride was varied from 2–9:1 (mole/mole) starting below the stoichiometric
ratio of three and is raised to an excess of three times the stoichiometric value.

Due to the complex structure of the microreactor involving different flow profiles (micromixing
chambers, straight rectangular milled channels, round-shaped tubes) and the nature of the reaction
involving three reaction steps and chemical equilibria, we expected non-linear behavior. In addition, the
reaction mixture tends to form two phases: methanol/glycerol/catalyst as the polar phase and rapeseed
oil/FAME as the non-polar one, where methanol shows good solubility in FAME-rich mixtures [12,33].
In addition, the intermediate mono- and diglycerides can act as surfactants that stabilize dispersions.

To approach this complicated system with a sufficiently large number of experiments in a methodically
appropriate way, it was decided to perform a customized design of experiments based on a factorial approach
with five levels for both factors. The number of experiments (and replicates) and the symmetric distribution of

Table 2 (continued)

Run
A = Total flow rate B = Molar ratio methanol:Rapeseed oil FAME mass

fraction [% (m/m)]
Actual [mL/min] Coded Actual Coded

Run12 12.5 −0.5 7.25 0.5 79.6

Run13 20 1 5.5 0 79.5

Run14 15 0 5.5 0 72.9

Run15 15 0 2 −1 11.8

Run16 20 1 9 1 91.0

Run17 17.5 0.5 7.25 0.5 83.4

Run18 15 0 5.5 0 73.1

Run19 15 0 2 −1 16.8

Run20 17.5 0.5 7.25 0.5 87.0

Run21 12.5 −0.5 7.25 0.5 81.9

Run22 15 0 5.5 0 71.8

Run23 10 −1 9 1 85.5

Run24 17,5 0.5 3.75 −0.5 64.7
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the experimental factor level settings across the design space permits response surface modeling of the process
based on non-linear factor effects and synergistic interaction effects. Before statistical analysis the response
values were preprocessed by logit-transformation to take into account the natural limits of 0% and 100% (m/m):

Logit FAME Mass Fractionð Þ ¼ ln
FAME Mass Fractionþ 0% m=mð Þ
100% m=mð Þ � FAME Mass Fraction

(6)

This data pre-treatment measure results in an improved model quality as shown by a higher coefficient of
determination and a lower F-value in the lack-of-fit test.

The results of the ANOVA are given in Table 3. Only statistically significant (ANOVA p-value < 0.05)
linear, non-linear, and interaction effect terms were included in the analysis. Thus, the term with the
coefficient A² (Total Flow Rate²) was omitted, because the ANOVA analysis resulted in a p-value of
0.384 (which lies above the significance level of 0.05). This indicates that this term is not required to
describe the reactor behavior, i.e., there is no non-linear dependence of FAME yield on the total flow rate.

Table 3: Results of the ANOVA of the experimental design. The response values were preprocessed using
the logit transformation to account for the upper and lower limits of mass fraction (0%–100% (m/m)).
Statistically not significant terms were not used in the response surface analysis

Sum of squares Degrees of freedom F-value p-value

Model 39.09 4 141.84 <0.0001

A–total flow rate 2.24 1 32.53 <0.0001

B–molar ratio 34.37 1 499.62 <0.0001

AB 0.3890 1 5.65 0.0281

B² 2.03 1 29.54 <0.0001

From ANOVA, the following model equation was retrieved to describe the microreactor behavior during
the transesterification of rapeseed oil:

Model Equation in terms of coded factors:

Logit FAME Mass Fractionð Þ ¼ 0:9557þ 0:4730 � Aþ 1:85 � B � 0:2940 � AB � 0:6848 � B2 (7)

The model equation in terms of coded factors allows direct comparison of the relative strength of factor
effects. Factor B (the molar ratio) has the strongest effect on the process. It is about 3 times larger than the
effect of the flow rate. In addition, there is a strong non-linear component (term B2). Moreover, the factor
molar ratio is involved in a statistically significant interaction with the flow rate, which means that the
effect of one process factor cannot be discussed without simultaneous consideration of the factor level
setting of the other process factor.

Model Equation in terms of actual values:

Logit FAME Mass Fractionð Þ ¼ � 6:454% m=mð Þ þ 0:1870
% m=mð Þ
mL=min

� Total Flow Rate

þ 1:397% m=mð Þ � Molar Ratio

� 0:01680
% m=mð Þ
mL=min

Total Flow Rate � Molar Ratio

� 0:05591% m=mð Þ � Molar Ratio2

(8)
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The coefficients of determination R²(adj.) = 0.9608 and R²(pred.) = 0.9505 indicate a good and robust fit
of the model with the measured values without overfitting. The p-value of 0.0833 in the lack-of-fit test also
shows that the non-linear two-factor interaction model is statistically significant. The standard deviation is
0.2623. Fig. 6 shows the FAME mass fraction as predicted by the model for the whole design space
visualized by a 3D response surface plot. The measured values (red dots in Fig. 6) are in good agreement
with the model. For calculation, the model equation in terms of actual values for the factors was used.

The absolute and relative parameter estimation errors calculated from the square root of the inverse of
the Fisher information matrix are given in Table 4. Here, all parameters except p3 with the factor AB show
acceptable relative parameter errors. The higher relative error of 42.1% of p3 is in accordance with the rather
high p-value of 0.0281 for the two-factor interaction effect calculated by ANOVAwhich indicates rather low
statistical significance. This supports the conclusion that synergetic interactions between the two varied
process factors are of only minor relevance for the FAME yield within the investigated factor level range.

3.3 Influence of the Process Factors
The effects of the investigated process factors on the quality attribute FAMEmass fraction are visualized

in the perturbation plot shown in Fig. 7. Obviously, with an increase in both molar ratio and flow rate, the
FAME mass fraction and consequently the yield increases. Here, at least within the investigated factor level
range, the effect of the total flow rate is much smaller than that of the molar ratio of methanol to triglycerides.

Figure 6: FAME mass fraction of the nonpolar phase produced with the microreactor set-up in dependence
on total flow rate and molar ratio as predicted by the response surface model. Red dots in the 3D surface plot
indicate the actual experimental values

Table 4: Absolute and relative parameter errors

Parameter pi Absolute error std pið Þ Relative error std pið Þ=pi [%]

p0; x0 ¼ 1 0.0535 5.6

p1; x1 ¼ A 0.0829 17.5

p2; x2 ¼ B 0.0829 4.5

p3; x3 ¼ AB 0.1236 42.1

p5; x5 ¼ B2 0.0900 13.1
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A higher extent of methanol shifts the chemical equilibria to the product side resulting in higher FAME mass
fractions, especially because the –1 level lies below the stoichiometric ratio. At high molar ratios with
resulting FAME yields approaching 100% (m/m), this effect diminishes leading to the curved shape of
the response behavior. The non-linear characteristic of this factor is best described by the second-order
polynomial model equation and logit transformation of the response values.

The increase of FAME mass fraction with increasing factor level setting of the total flow rate (factor A)
seems counterintuitive. One might expect that an increase in the flow rate is accompanied by a decrease in
residence time. Thus, the yield should be reduced, as was reported, e.g., by Sun et al. [20], who observed an
increase in the methyl ester yield when the residence time increases within their microcapillary reactor set-up.
Obviously, in the microreactor used in our set-up other effects, probably fluid dynamic phenomena, have a
counter-acting effect. Very likely, an increase in the flow rate leads to intensified blending in the micromixing
chambers of the reactor. E.g., Boer et al [34] reported, that the flow rate had a crucial impact on the flow
regime when they studied the fluid dynamics of later stages of a transesterification process. They
observed a stratified flow of the polar glycerol/methanol phase beneath the FAME/rapeseed oil phase at
low flow rates that changes to a dispersed flow regime (polar droplets in non-polar bulk phase) with
increasing flow rate. Also, Likozar et al. [24] reported some interesting findings in their study with a
continuous tubular reactor of a rather high inner diameter in which static mixers were implemented: In
contrast to the results reported by us, they observed a decrease in the FAME fraction when increasing the
flow rate. This was in agreement with computational simulations involving reaction kinetics, chemical
equilibria, and mass transfer. On the other hand, they stated, that higher shear stress could lead to the
transition of the heterogeneous (dispersed) system to a pseudo homogeneous operating regime, which
they observed during batch-wise transesterification. In the microreactor set-up studied here, low pressure
at the reactor inlet was observed during processing. This is a clear hint that internal friction occurred that
could cause a transition of the flow regime.

Figure 7: Perturbation plot describing the influence of the process factor A: total flow rate and B: molar ratio
on the FAME mass fraction of the nonpolar phase of the reaction product, as a measure of the yield of
biodiesel synthesis from rapeseed oil in the microreactor set-up
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These findings emphasize that the underlying physical and chemical phenomena are more complex than
just a simple correlation between residence time and total flow rate. This behavior is also reflected by the
presence of the two-factor interaction effect term between both factors investigated here in the response
surface model.

4 Conclusion

In summary, a well-suited virtual process model for biodiesel transesterification in a microreactor set-up
was derived for the factors molar ratio of the reactants and flow rate by analyzing the reaction product with
ATR-FTIR spectroscopy in combination with PLS regression and consecutive statistical analysis of an
experimental plan organized by a customized factorial experiment. A response surface model is presented
for the transesterification reaction of rapeseed oil with methanol to synthesize biodiesel in a continuous
microreactor set-up by a novel Design of Experiment approach. ATR-FTIR spectroscopy is used for
quantification of the reaction product FAME as a fast and reliable analytical technology. Due to the high
similarity of the analytes spectra, a multivariate PLS model was used for quantification. This shows high
regression coefficients in good accordance with actual absorbance bands that are specific to the analytes
and thus relays on actual spectroscopic features highlighting the robustness of the methodology. This
technique can be implemented as an inline process analytical technology in the future.

The statistical evaluation of the response showed a complicated behavior that can be described by a
second-order polynomial involving two-factor interaction effects of the two investigated factors, reactants
molar ratio and total flow rate. These factors can readily be adjusted in a fully automated approach giving
the opportunity to carefully control the reactor outcome. Furthermore, process characterization of the
microreactor behavior resulted that an increase in reactants’ total flow rate resulted in an increased
process yield. This is only scarcely observed in literature and is a consequence of an unusual flow
regime. Nonetheless, the methodology of throughout process characterization by varying easy-to-control
process variables and FTIR quantification can be transferred to numerous technical transesterification
processes.
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Appendix A Results of ATR-FTIR and GC-FID Analysis

For calibration of the ATR-FTIR spectrometer a data set was used, where ATR-FTIR and GC-FID were
used on samples from the same experiments. The ATR-FTIR absorbance spectra and results of GC-FID
quantification are given in Fig. A-1 and Table A-1, respectively. During regression exceptional high
errors resulted during model validation for prediction of Sample09 in any approach and consecutively, it
was treated as an outlier.
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Figure A-1: ATR-FTIR absorbance spectra used for PLS calibration to quantify FAME in the non-polar
phase of the transesterification reaction product. Samples from the same experiments were analyzed with
GC-FID in parallel at an external laboratory

Table A-1: Results of GC-FID analysis of samples from previous experiments that were used to calibrate the
ATR-FTIR spectrometer using PLS regression

Sample FAME mass fraction [% (m/m)]

01 47

02 75

03 89

04 40

05 87

06 33

07 46

08 85

10 47

11 89

12 75

13 49

14 66

15 27
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