
Characterization of bipolar membranes and their application in acid-base batteries as electrochemical energy storage

B.Sc. Emina Kurtovic, B.Sc. Maximilian Merkel, B.Sc. Stephan Pflumm, B.Sc. Anastasia Bittner, B.Sc. Tobias Braun, Prof. Dr. Carl-Martin Bell School of Applied Chemistry, Reutlingen University – M.Sc. Applied Chemistry and M.Sc. Process Analysis and Technology Management

Aim of the project

Today, renewable energies are becoming increasingly important. This requires new storage systems, preferably electrochemical ones. Here such a system is investigated for stationary use. This work deals with the identification of a functional and nonhazardous combination of bipolar membrane (BPM), electrolyte and electrode redox pair to design a single cell acid-base flow battery^[1].

1.

1

- **1**

Milestones

- Characterization of different BPMs by current voltage curves (CVCs) to identify selectivity and water splitting efficiency
- Charging: formation of acid and base by using suitable BPMs
- Discharging: Design of experiments to determine the optimum performance of the acid-base flow battery

Results & discussion

Figure 1: Model of a bipolar membrane as chemical capacitor

Figure 2: Schematic characterization and charging setup

Table 1: Limiting current density and slope in water splitting area of different BPMs in 1 mol·L⁻¹ and 2 mol·L⁻¹ KCl. Values obtained of **characterization** of different BPMs by two Ag/AgCl (3 mol·L⁻¹ KCl) without Haber-Luggin-capillaries

Evaluation criteria	Limiting current density [mA·cm ⁻²]		Slope in water splitting area [mA·cm ⁻² ·V ⁻¹]	
Membrane	1 mol·L ⁻¹ KCl	2 mol·L ⁻¹ KCl	1 mol·L ⁻¹ KCl	2 moŀL⁻¹ KCl
fumasep® FBM	1.0	1.3	35.4	51.2
Neosepta® BP-1	1.3	3.0	49.1	73.9
MEGA BPM	7.5	26.0	12.4	20.1
BPM 221019 I	n/a	1.7	n/a	52.0
BPM 040619 II-T	1.5	3.0	38.4	55.3
BPM 040619 II-PP	1.7	3.1	33.3	52.5
BPM 220519 I	n/a	4.5	n/a	40.8
BPM 181019 III	n/a	4.0	n/a	49.0

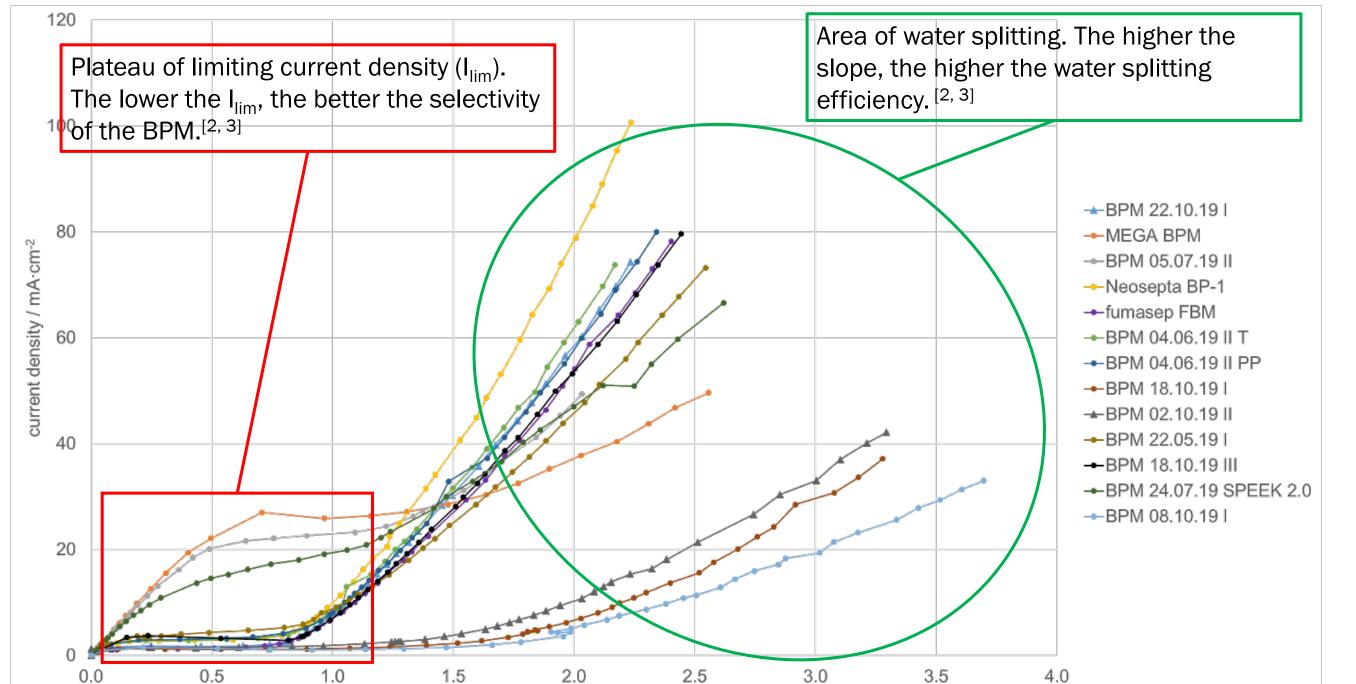
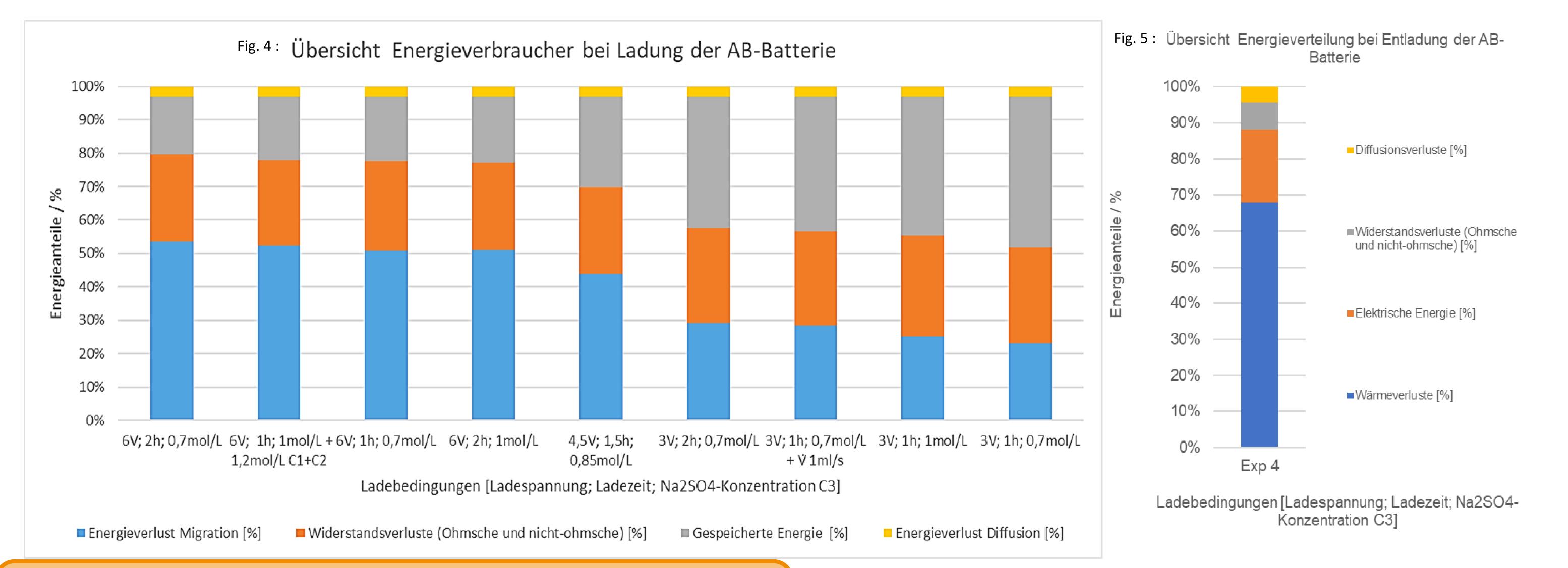



Figure 3: Characterization of different BPMs by CVCs in 2 M KCI

Conclusion & outlook

- Large differences in the performances of the characterized BPMs
- Low power density (0.5 kW·m⁻³) and energy density (0.9 kWh·m⁻³) of acid-base flow battery in comparison to other battery types (e.g. Redox flow, Li-ion or lead batteries)^[4]
- Relevant energy losses in charging due to electromigration through anion exchange membrane of protons
- Large energy loss in discharging through heat formation in bipolar membrane I neutralization reaction

Battery type		Evaluation criteria		
		Power density [kW·m ⁻³]	Energy density [kWh·m ⁻³]	
Acid-base flow battery	This work	0.5	0.9	
	Xia [29]	0.75	/	
Vanadium redox flow battery [4]		/	20-60	
Lead-acid battery [4]		/	25-65	
Li-ion battery [4]		/	190-375	

Table 2: Comparison of the properties of different battery types available

- ^[1] J. Xia, G. Eigenberger, H. Strathmann, and U. Nieken, "Flow battery based on reverse electrodialysis with bipolar membranes: Single cell experiments," Journal of Membrane Science, vol. 565, pp. 157–168, DOI: 10.1016/j.memsci.2018.07.073, 2018
- ^[2]A. M. Ashrafi, N. Gupta, and D. Neděla, "An investigation through the validation of the electrochemical methods used for bipolar membranes characterization," Journal of Membrane Science, vol. 544, DOI: 10.1016/j.memsci.2017.09.026, 2017
- ^[3] T. T. Bejerano, E. Korngold, and R. Messalem, "New bipolar membrane setup for high current densities," Desalination and Water Treatment, vol. 56, no. 6, pp. 1421-1426, DOI: 10.1080/19443994.2014.950339, 2015
- ^[4] M. Sterner and I. Stadler, Energiespeicher Bedarf, Technologien, Integration. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, ISBN: 978-3-662-48892-8

