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Abstract: Production systems are becoming increasingly complex, which means that the main task of
industrial maintenance, ensuring the technical availability of a production system, is also becoming
increasingly difficult. The previous focus of maintenance efforts on individual machines must give
way to a holistic view encompassing the whole production system. Against this background, the
technical availability of a production system must be redefined. The aim of this publication is to
present different definition approaches of production systems’ availability and to demonstrate the
effects of random machine failures on the key figures considering the complexity of the production
system using a discrete event simulation.
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1. Introduction

Production systems are becoming increasingly complex. Digital solutions, increased
levels of automation, smaller batch sizes, special customer requirements, and new forms
of organization make interactions between individual machines and systems increasingly
important [1]. An important factor in mastering the complexity and contributing to the
efficiency of a production system is maintenance. The goal of maintenance is to ensure
the production system’s operational readiness by maximizing the equipment’s availability
while reducing costs and limiting the necessary maintenance interventions during pro-
ductive times [2]. To maximize the production system’s availability, it is not sufficient
to determine the technical availability of individual machines. The interactions between
machines and the production system systems must be included. Averaging the individual
downtimes of the machines may give an overview of the availability but neglects the effects
of downtimes on the production system. A shutdown of an insignificant or redundant
machine is not as important as a bottleneck machine failure. To be as efficient as possible,
these impacts must be considered to enable maintenance to use its limited resources where
they are most needed in a production system [3]. To achieve this, the focus has to change
from key figures looking at the availability of individual machines to key figures with a
holistic approach [4]. The aim of this publication is to provide transparency and present
the difference between key figures focusing on the availability of machines and on the
availability of the production system.

In order to achieve this transparency, first, a literature overview on the availability
evaluation of machines and production systems is presented. Based on this overview, two
main definitions are presented to be compared within a simulated production system vary-
ing in complexity. The results of the simulations are presented, evaluated, and discussed. In
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the conclusion, the results are summarized and compared to an availability measurement
in a real-life production environment. Based on that, it is recommended which key figure
should be used depending on the situation and which areas should be further investigated.

2. Materials and Methods
2.1. Literature Review

When looking for indicators to evaluate production performance or the availability
of production systems, the overall equipment efficiency, or OEE, indicator is well known,
which was introduced by Nakajima in the context of the total productive maintenance
framework [5]. This indicator is composed of an availability, a performance, and a quality
indicator, thus providing an overview of the efficiency. For the calculation of availability, it
refers only to planned production time and thus excludes planned maintenance measures
from the evaluation [6]. Nevertheless, the OEE metric has gained acceptance, is widely
used and recognized [7], and includes a description of availability, which is partly adopted
to evaluate maintenance. There is no generally accepted definition for the key figure
availability. Even current publications that refer to Nakajiama’s original source vary. In
their 2022 study on predictive capabilities of OEE, Dobra and Jósvai consider the impact of
all losses on the availability [8]. For their OEE case study in a spinning unit, Murgugesan
et al. use a definition of availability consisting only of equipment failures, setup, and
adjustment time [9]. A recent comparative study of OEE measurement systems contrasts
several types of OEE and thus availability measurement and calculation options [7].

Even in publications that focus not on OEE but solely on availability, there is no consen-
sus. In some cases, only times for machine malfunctions and inspection times are included
in the availability calculations [10], and other papers are not clear on which calculation
method they use for availability. In a case study within the bag production industry, only
machine failures are included [11], but the description points out that according to [12],
availability is composed of delays due to maintenance and material supply.

In addition to the different ways availability is calculated for a single machine, there
are also different opinions on how availability should be calculated for a production
system. Nachiappan and Anantharaman have summarized the different viewpoints in
their publication: either the average of the individual machine availabilities is used without
looking at their interactions, or the environment of the production system is included [4].
Multiple approaches to predicting or measuring the availability, including the interactions
of machines, are presented in the thesis by Sun [13], well summarized by Bourouni in
his availability analysis of an osmosis plant [14]. In Bourouni’s analysis, the two most
commonly used approaches are compared, and the reliability block diagram seems to be
best suited to analyzing the availability of (complex) systems. Instead of just averaging
or multiplying the individual availabilities of the machines, the type of linkage specifies
how the availability of the machine is to be included in the calculation. Comprising buffers
and combinations of intermediate products in the calculation, the throughput analysis
for which Li et al. published an overview [15] is another possibility. Here, the amount of
products manufactured by the system is monitored, including deviations. However, the
availability of the individual machines is normally included as a variable in this analysis.

To summarize the evaluation of calculation methods for the availability of production
systems, it can be stated that there is no uniform method and that the most common key
figures differ. It is not clear which variables are included in the availability of an individual
machine or how they are combined into an overall availability measurement, even though
there are promising approaches.

2.2. Definitions and Assumptions

The availability of a production system is determined by different methods in practice.
The first method is to calculate the individual machine availabilities of a production system
as the percentage of actual uptime compared to the scheduled time. In a second step, the
availability of the production system is calculated as the average of the individual machines’
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availabilities. In this paper, this definition is called machine-based availability. The second
method to determine the availability of a production system is based on counting the output
of products within a reference time. This key figure is called output-based availability and
is defined as the percentage of the possible output within the machine uptime and the
theoretical maximal possible scheduled output. For this definition, the possible output is
only reduced by the products not produced due to maintenance-related machine downtime.

To examine how the two definitions of availability perform for different complex
production systems, the definition of complexity needs to be addressed. Alkan et al.
published a literature review in 2018 on the topic of complexity in production systems in
which they summarize the different types of complexity [16]. The symptoms of complexity
presented by Alkan et al. were compared with ways to measure complexity and published
in another literature review by Vidal et al. in 2022 [17]. Filtering through a maintenance
perspective, both cite system configuration and material flow patterns as important factors
of complexity, with Vidal et al. going further and identifying them as main causes.

For this reason, the complexity of these two factors is varied for this study using
simulation. For system configuration, machine redundancies and combinations of inter-
mediate products are used. In order to make different systems comparable, a production
line without branches was defined to have a complexity level of 0. For each linkage by
redundancy, one complexity level is subtracted; for each linkage by combination, one level
is added. The principle is shown in Figure 1.
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Figure 1. Complexity level definition for production systems used for the simulation.

2.3. Structure of the Simulation

In order to compare the definitions, different production variants were simulated using
SimPy, a discrete-event simulation framework based on Python [18]. All parameters were
kept constant, and only the buffer size and the system structure were changed. Continuous
production (24/7) was simulated in one-minute increments for an operating year. The
production system contains 24 machines, each of which is scheduled to fail an average of
eight times per year with a uniformly distributed random failure duration between 10 and
30 h. For the machine failures, the Python random module is used to check whether the
machine is functional or currently down due to a failure before a product is processed. In
order to be able to produce a product, the buffers in front of the machine must hold at least
one intermediate product, and the buffer behind the machine cannot be full. Initially, all
buffers are at half (rounded down) of their maximum capacity. The production time for
each production step in the simulation is 12 min, and for redundant machines a multiple of
12, to reach the same production speed as non-redundant steps.

System structures were simulated with a complexity level of −15 to 15 and buffer
sizes of 1 to 1280 each, with increasing intervals between buffer sizes. A buffer size of one
is equivalent to a direct connection between two machines. The maximum buffer size of
1280 was chosen to simulate a buffer covering the maximum expected downtime. In the
results, the relative buffer size is used to relate the buffer size to the average downtime.
The relative buffer size is defined as the actual buffer size divided by the expected product
loss for an average downtime. The simulation was repeated 30 times for each combination
in order to dampen possible outliers with the help of average values.

3. Results

The simulation results for the two key figures, machine-based availability (blue) and
output-based availability (green), are shown in Figure 2. Figure 2a,c shows the two avail-
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ability values for different relative buffer sizes of a production system with a complexity
level of 0. The distribution and variance of the 30 simulation runs for each combination
are indicated by the filled-in area. The machine-based availability initially drops from
98.6% to 98.1% as the relative buffer size increases and stays more or less constant from
two to the maximum. Output-based availability, on the other hand, rises sharply from an
initial 70% until it reaches about 98.1% availability at about a relative buffer size of six and
one-half. For larger buffer sizes, it behaves like machine-based availability and continues
at a constant level.

Eng. Proc. 2022, 24, 20 4 of 7 
 

 

The relative buffer size is defined as the actual buffer size divided by the expected product 
loss for an average downtime. The simulation was repeated 30 times for each combination 
in order to dampen possible outliers with the help of average values. 

3. Results 
The simulation results for the two key figures, machine-based availability (blue) and 

output-based availability (green), are shown in Figure 2. Figure 2a,c shows the two avail-
ability values for different relative buffer sizes of a production system with a complexity 
level of 0. The distribution and variance of the 30 simulation runs for each combination 
are indicated by the filled-in area. The machine-based availability initially drops from 
98.6% to 98.1% as the relative buffer size increases and stays more or less constant from 
two to the maximum. Output-based availability, on the other hand, rises sharply from an 
initial 70% until it reaches about 98.1% availability at about a relative buffer size of six and 
one-half. For larger buffer sizes, it behaves like machine-based availability and continues 
at a constant level. 

 
Figure 2. (a) Machine-based availability and (c) output-based availability over relative buffer size 
for complexity level 0; (b) Machine-based availability and (d) output-based availability over com-
plexity for relative buffer size 1. 

Figure 2b,d presents the two availability values for the relative buffer size of one for 
the different complexity levels of the production system. The machine-based availability 
increases very slightly from 98.15% to 98.25% as the complexity level increases. The out-
put-based availability behaves the opposite way and decreases from about 97% to just 
below 94% with an increasing complexity level. 

Figure 3 shows the averages for each simulated combination of buffer size and com-
plexity level. The z-axes for machine-based availability on the left (Figure 2a) and output-
based availability on the right (Figure 2b) are at different scales. The machine-based avail-
ability ranges between 98.0% and 98.7%, whereas the output-based availability ranges be-
tween 65% and 99%. The trends described are also evident in the overall presentation of 
the results. With small buffer sizes and high complexity, the two key figures run in oppo-
site directions. The machine-based availability increases, and the output-based availabil-

Figure 2. (a) Machine-based availability and (c) output-based availability over relative buffer size for
complexity level 0; (b) Machine-based availability and (d) output-based availability over complexity
for relative buffer size 1.

Figure 2b,d presents the two availability values for the relative buffer size of one for
the different complexity levels of the production system. The machine-based availability
increases very slightly from 98.15% to 98.25% as the complexity level increases. The output-
based availability behaves the opposite way and decreases from about 97% to just below
94% with an increasing complexity level.

Figure 3 shows the averages for each simulated combination of buffer size and com-
plexity level. The z-axes for machine-based availability on the left (Figure 2a) and output-
based availability on the right (Figure 2b) are at different scales. The machine-based
availability ranges between 98.0% and 98.7%, whereas the output-based availability ranges
between 65% and 99%. The trends described are also evident in the overall presentation of
the results. With small buffer sizes and high complexity, the two key figures run in opposite
directions. The machine-based availability increases, and the output-based availability
decreases. This trend stops at a complexity level of 0 (linear production without redundan-
cies), where both availabilities do not change significantly due to further increases in the
complexity level.
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4. Discussion

At first glance, the results for machine-based availability are unexpected. Because
each machine was scheduled to have the same failure time for each simulation run, one
might expect the machine-based availability to be independent of the buffer size and
complexity level. The results show a clear trend towards a positive effect of more complex
systems and smaller buffer sizes on the machine-based availability. This can be explained
by the simulation setup. A machine can only fail when it is producing. If a machine is
idle because no intermediate products are available or the next buffer is full, the machine
cannot fail. Therefore, it does not reach its expected eight downtimes, leading to a higher
machine-based availability indicator. The trends seen in the results for the output-based
availability are to be expected. Machine failures in more complex systems and smaller
buffer sizes lead to fewer products being produced. It is noteworthy that from complexity
level 0 (production line without redundancy), further complexity does not have such a
strong impact.

It becomes clear that the machine-based availability and the output-based availability
only assume similar values for production systems with very large buffers. For all other
systems, the key figures differ by up to 28%. Even if the buffers are large enough to
cushion an average disruption completely, the key figures still differ by up to four percent
depending on the complexity level.

Calculating the two availabilities for a real manufacturing facility with nine production
stations, most with redundant machines and relative buffer sizes between stations of about
1/20, similar differences in the metrics were found, confirming the trend of the results.
The machine-based availability was several percentage points higher compared to the
output-based availability. During the measurements, it was hard for the employees to
calculate the output-based availability because for each missed product, the cause needed
to be investigated to determine whether it was maintenance-related or not. Even though
this method may lead to more detailed results, it is much more difficult to use it in a real
production environment.

5. Conclusions

This paper first highlights how important the availability of production systems is as
a key figure for maintenance. Different options for calculating availabilities are discussed,
and, using an event-based simulation, the two most relevant ones are examined and
compared. Differences of up to 28% can be found between the availability definitions for
the same system, depending on the buffer sizes and the production system’s complexity
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level. When measured in a real production environment, similar deviations between the
machine-based and output-based availability were found.

If the availability of the production system is used to assess maintenance, it must
be clear to those involved what variables are included in this metric. If the frequently
applied key figure of machine-based availability is used, the production systems presented
here would have an availability of over 98%, which suggests little need for action. Using
output-based availability as a key figure would highlight the need for maintenance action
but would also require significantly more measuring effort. Therefore, the more accurate
output-based availability as a key figure is more suitable for planning and optimization
and, without further research, less suitable for use in production environments.
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