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Abstract 

Parallel grippers offer multiple applications thanks to their flexibility. Their application field ranges from aerospace and automotive 
to medicine and communication technologies. However, the application of grippers has the problem of exhibition wear and errors 
during the execution of their operation. This affects the performance of the gripper. In this context, the remaining useful life (RUL) 
defines the remaining lifespan until failure for an asset at a particular time of operation occurs. The exact lifespan of an asset is 
uncertain, thus the RUL model and estimation must be derived from available sources of information. This paper presents a method 
for the estimation of the RUL for a two-jaw parallel gripper. After the introduction to the topic, an overview of existing literature 
and RUL methods are presented. Subsequently, the method for estimating the RUL of grippers is explained. Finally, the results are 
summarized and discussed before the outlook and further challenges are presented. 
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1. Introduction 

Mechanical grippers are responsible for repetitive processes to support manufacturing or production work cells. 
Repetitive processes are executed hundreds of times per day. In case of unexpected downtime or out-of-specification 
action, where a recalibration becomes necessary, this directly impacts on the quality of the products and the efficiency 
of the production processes. Therefore, to ensure consistent quality, avoid production downtime, and prevent hazards 
and safety risks at downstream processes, information on maintenance usage is of importance. This information is 
typically provided by original equipment manufacturers in static intervals, where the RUL is indicative of the 
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maintenance requirements in any given state. This provides a basis for short- and long-term decisions about the 
maintenance or repair strategy. The RUL also supports the scheduling of future actions to avoid catastrophic events 
and thus, supports extending the life cycle. The presented research aims to gain information about the wear behavior 
of the investigated two-jaw parallel gripper via experimental data. The study sought to address three key objectives: 
1) Present and classify applications based on existing literature, 2) Identify a health indicator to measure wear behavior 
and 3) Identify failure modes and associated failure thresholds. The motivation of this research is to present a 
developed method for RUL estimation of a two-jaw parallel gripper by using experimental data. Okoh et al. [1] define 
the RUL as „the time remaining for a component to perform its functional capabilities before failure“, although the 
definition of the useful life depends on the operating characteristics and their manufacturing background [2]. The 
concept of the RUL is used in statistics literature and operational research [3]. More application areas are found in 
econometrics, material science, and biostatistics [3].The research paper contains four chapters. Chapter one presents 
the problem statement, the research objectives, and motivation. Chapter two contains a classification of existing 
approaches to RUL estimation as well as examples of applications. Chapter two concludes with an explanation of the 
importance of deep learning applications in the context of PHM. In chapter three the RUL method is presented and 
explained in more detail. The experimental setup and the exploratory data analysis are also presented. Chapter four 
summarizes and presents further challenges.  

2. Classification of RUL estimation approaches 

The emerging importance of RUL estimation is evident from the recent work of scholars, such as Ahmadzadeh and 
Lundberg [2], Si et al. [3], Cho and Parlar [4], Dragomir et al. [5], and Peng et al. [6]. The classification of the 
according models divides into four approaches: physical-model based, data-driven based, experimental-based, and 
hybrid-model based approaches [2], [7]. In the following subsections the models are briefly explained. 

 
2.1. Physical-model based approach 

 
According to Skima et al. [8], the physical-model-based approach deals with the estimation of the RUL by using 

mathematical or physical models to describe the physics of the component and the degradation phenomena. The 
physical-model based approach builds upon a detailed understanding of the gripper’s physics [2]. As the models 
calculate mathematical parameters, which describe the developmental functioning of formation and expression (so-
called functional mapping), this approach presents results with higher accuracy than the data-driven approach. The 
initialization for a physical model is the formulation according to physical equations. With regards to the expected 
aim of the model, appropriate variables are considered. The equations are then solved using numerical methods. The 
problem with this model variant is its accurate and precise application to the real world. Engel et al. [9] state several 
practical concerns about the accuracy, precision, and confidence of these estimation results. These issues are limiting 
the usability of physical-model based methodologies. In contrast, successful applications are presented in 
Oppenheimer and Loparo [10], as a physical model is developed to estimate machine conditions, in combination with 
fault strength-to-life models based on crack growth law [2], [10]. Benmoussa and Djeziri [11] presented an application 
for the RUL prediction of gears with a fatigue tooth crack build upon a gear meshing stiffness identification model. 
Further, Watson et al. [12] proposed a physical model-based approach to estimate the RUL of a dynamic high-power 
dry clutch system by using a wear prediction model. 

 
2.2. Experimental-based approach 

 
By performing experiments, the knowledge about the lifetime of components improves. This approach has been a 

widely used method since the mechanization of industry [2]. Heuristic, probabilistic and stochastic tools are 
considered to describe the degradation phenomenon and the component life cycle. The input variables are constructed 
by data and the knowledge accumulated by experience [13]. Redtenbacher [14] was among the first to recognize this. 
Zhou et al. [15] proposed a method for light-emitting diode driver degradation of critical components, through their 
performance parameters. Sutrisno et al. [16] selected experimental data from multiple ball bearings measures. The 
data set consists of training and testing data for a constructed algorithm. A predicting algorithm linked to the data 
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from the training bearings to estimate the RUL of the test bearings is presented. Chen et al. [17] used experimental 
data from a helicopter gearbox with a carrier plate crack to assess the health state of the Adaptive neuro-fuzzy inference 
system (ANFIS) predictor. Medjaher et al. [18] used data from an accelerated experiment of bearings to verify a 
method combining the physical-model based and data-driven based approaches. 

 
2.3. Data-driven approach 
 

Data-driven prognostics uses sensor data in models to describe the degradation behavior [18]. This approach is 
useful when a large quantity of data needs to be fitted into logical information about the RUL. Within this approach, 
the accuracy of the RUL estimation depends on the quantity and quality of the input data [2]. They are based on 
statistical and learning techniques, such as numerical algorithms and algorithms from the machine learning and data 
mining domain. Other, more advanced algorithms include Neural networks (NN), Decision trees (DT), and Support 
vector machines (SVM) [2]. Shifat et al. [19] presented a data-driven RUL estimation framework for brushless direct 
current motors. Fault characteristics of motor current and generator power are combined using a Kalman filter to 
estimate the RUL. Natarajan et al. [20] used the Bayesian inference of Linear Regression to estimate the RUL of lead-
acid batteries. 

 
2.4. Hybrid-model based approaches 

 
In general, hybrid prognostic approaches benefit from combining other approaches to overcome the individual 

approaches’ drawbacks. For example, Hansen et al. [21] presented an approach, which combines sensor-based 
information and model-based information. Results obtained from this approach are claimed to be more reliable and 
accurate [7], [22]. Wang et al. [23] proposed a hybrid model by using the vibration data of rolling element bearings to 
predict their RUL. A data-driven model such as the relevance vector machine regression and the Fréchet distance is 
applied to further improve the accuracy and convergence by obtaining experimental results. Galar et al. [24] used a 
hybrid approach to estimate the RUL for a railway system by using the data from rolling stock and data from the 
trackside to develop the physics of failure as well as support vector machines (SVM).  
 
2.5. Failure Mode and Effect Analysis in RUL estimation approaches 

 
A Failure Mode and Effect Analysis (FMEA) represents a system and risk analysis with the goal of optimization 

through error prevention for a product or process to be developed. Furthermore, it offers the possibility to build up a 
knowledge repository for failure types and corresponding protective measures. The first mention of FMEA was in the 
1980s US Armed Forces Military Procedures document MIL-P-1629A [25]. In the context of RUL estimation, FMEA 
supports the identification of different failure types, where the non-useful lifetime has reached. Utah and Jung [26] 
identified solenoid-operated valve (SOV) fault conditions based on an FMEA and estimated the RUL using a deep 
neural network (DNN). Christian et al. [27] presented a model for failure prediction and RUL estimation of an anode 
voltage regulator system at an ion implantation accelerator. An FMEA was conducted to identify five failure modes. 
Failure data is then simulated and evaluated using a Random Forest Classifier (RFC) and Hidden Makarov Model 
(HMM). 

 
2.6. Deep learning in RUL estimation approaches 
 

Deep learning (DL) has attracted strong interest in Prognostics and Health Management (PHM) applications, due 
to its high processing power, automated feature learning capability, and problem-solving ability [28]. Several 
publications concur that models using DL approaches perform more accurately than those without any DL integration 
[29–31]. The potential, challenges, and future directions for DL in PHM have been published by Fink et al. [32]. 
Reviews of deep learning applications in PHM have been provided by Wang et al. [33], Zhang et al. [28], and Zhang 
et al. [34]. With the main interest in estimating the RUL, the implementation of DL supports the ability to process 
massive amounts of condition monitoring data automatically [28]. Furthermore, DL provides the ability to 
automatically extract useful features from high-dimensional, heterogeneous data sources [28]. DL also has the ability 
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to learn functional and temporal relationships between and within the time series of condition monitoring signals [28]. 
The most widely used DL architectures in the PHM domain are considered the restricted Boltzmann machine (RBM), 
auto-encoder (AE), convolutional neural network (CNN), and recurrent neural network (RNN) [28].  

3. Proposed RUL method 

The proposed method investigates the two-jaw parallel gripper model 2F-85 from ROBOTIQ. The gripper has a 
single actuator and is under-actuated. Further specifications are the maximum stroke of 85 mm, a maximum gripping 
force of 230 N, and a maximum payload of 5 kg. An overview of the gripper structure is shown in figure 1.  

 
 
 
 
 
 
 
 
 
 
 
The gripper has two fingers, where each of the fingers has two joints (two phalanxes per finger). The gripper 

fingers are able to engage in five points of contact with an object [35]. The two fingers of the gripper set the system 
boundary, since these are involved in the gripping action of the process the gripper performs. The proposed RUL 
estimation method is shown in figure 2. The hybrid method is based on the experimental-based and data-driven 
approach. Skima et al. [8] have developed a hybrid method in which grippers at microelectromechanical (MEMS) 
system-level have been investigated for degradation. This hybrid method mathematically calculates the nominal 
behavior of the gripper and derives the degradation from it. Based on this method, the proposed method has been 
developed. The continuous reference to the pre-experiment and experiment distinguishes the proposed method. The 
following subsections provide a detail explanation based on an experimental setup. 

 
3.1. Pre-experiment 
 

The pre-experiment determines the possible failure modes (FM) for the gripper. In this case, a failure mode and 
effects analysis (FMEA) identifies the different FM for a sampling process (Appendix A). The FM and their effects 
are summarized in table 1. 

 
 
 Table 1. FMEA excerpt.  

Nomenclature Failure Mode System Function Potential Failure Mode 

Fig. 2. Proposed method for the RUL estimation of parallel gripper 

Fig. 1. Investigated gripper [32] 
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F1 Open Gripper Delayed movement of gripper fingers 

F2 Open Gripper Stunted movement of gripper fingers 

F3 Open Gripper No movement of gripper fingers 

F4 Close Gripper Delayed movement of gripper fingers 

F5 Close Gripper Stunted movement of gripper fingers 

F6 Close Gripper No movement of gripper fingers 

 
Table 1 shows that the potential FM identified are delayed, stunted or no movement of the gripper fingers. The 

FMEA excludes alignment and movement of the gripper unit. The following approach delimits the RUL determination 
by selecting the failure modes F3 and F4.  

 
3.2. Experimental setup 

 
Within the experimental setup, the gripper executes a predefined process repeatedly. The opening as well as the 

closing of the gripper finger, while maintaining the gripper and robot position, is defined as the experimental process. 
Such a simplified process is intended to ensure repeatability. The experiment collects data, which is used to represent 
the degradation behavior of the gripper. Various measurements can give an indication about the degradation behavior.  
Possible suggestions are force measurements, which are taken at a prescribed frequency during the predefined process. 
Significant deviation over the time indicates degradation behavior. Furthermore, there is the possibility of distance 
measurements, which measure the distance between the two fingers at a given frequency. Deviation from the 
specification data, indicates degradation behavior. A last suggestion is time measurement, where the duration of the 
process execution is measured. Here, the decrease in gripper movement speed is investigated. The considered 
measuring approach is strongly depending on the investigated use case. In the experimental setup, the applied force 
on a load cell is taken as a first degradation indication. The experimental setup is shown in figure 3.  

 
 
 
 
 
 
 
 
 

 
 
 
 
3.3. Sensor data collection  
  

Raw sensor data is collected from the load cell, which is recorded during the process iterations. The measured 
feature is acquired by saving the sensor readings into a comma delimited (CSV) file with the according timestamp. 
The process is done by a function in the Arduino IDE, which reads the saved sensor data, and inserts the data into a 
CSV file. The data cleaning takes place by detecting and handling missing values as well as outliers with the python 
pandas library. This results in a dataset, which represents the natural force degradation of the gripper. After the data 
cleaning, the data is transformed into a health indicator. To gain evidence about the force degradation in this use case, 
the mean value for the first 100 and last 100 measurements is calculated. The considered dataset provides 105890 raw 
load cell measurements. Initial data exploration is provided in figure 4.  

 
 

Arduino Uno 

Load Cell 10kg 

Gripper 2F-85 

Bread board 

Voltage amplifier 

Fig. 3. Experimental setup for initial force measurement 
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The initial data exploration shows that the data set is unimodal distributed. The skewness of the data is described 

by the equation (1). For the examined data set, the skewness results 2.6. A positive skewness far from 0 indicates an 
asymmetric and right-skewed distribution.  
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Comparing the scatter plots of the two samples, it is seen that within the last 100 measurements, less data points 

reach or exceed the peak of 40 as in the first 100 measurements. The visual observation is recognized in the mean 
value of the samples. The mean for the first 100 measurements is -0.496 and for the last 100 measurements -2.661. 
 
3.4. Failure state data 
 

The gripper executes the default process and is then manually set to the Failure Modes F3 and F4, see Fig. 5. In 
this state, the load cell continues to collect data, which describes the unhealthy stages. Based on the failure state data, 
the mean values for each stage are calculated, see Fig. 6. Each failure mode dataset consists of 200 recordings.  

     
    a               b 
 
 
 
 
 
 
 
 
To create a basis for comparison, the recordings are transformed into the mean values. The last 100 recordings are 

transformed into the health indicator. F3 results in a mean of -5.7069 and for F4 a mean of 586.458. 
 

         a             b 
 
 
 
 

 
 
 
 

 

Fig. 5. (a) F3 Mode; (b) F4 Mode 

Fig. 6.  (a) last 100 mean-value and scatter plot of F3; (b) last 100 mean-value and scatter plot of F4 

Fig. 4. (a) Force measurement distribution; (b) Mean-value and scatter plot for first 100 recordings; (c) Mean-value and scatter 
plot for last 100 recordings 
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Fig. 4. (a) Force measurement distribution; (b) Mean-value and scatter plot for first 100 recordings; (c) Mean-value and scatter 
plot for last 100 recordings 
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3.5. LSTM model and prediction 
  

The correct use of deep learning models improves the performance of RUL estimation (section 2.5). The use case 
concerns sensor data, which is time-sequenced with long time range dependencies. A Recurrent Neural Network 
(RNN) or Hidden Markov Model (HMM) can be used for RUL estimation with these data structures. However, both 
models present weaknesses, in cases of long periods of time series data being modelled [36].  In the use case given 
here, a Long Short-Term Memory (LSTM) network is appropriate since previous sequential data is used to predict the 
long-term degradation. Refer to Zheng et al. [37] for an in-depth explanation of the usage of LSTM networks in RUL 
estimation.  
 
3.6. Failure threshold 

 
The failure threshold (FT) delimits the states of useful and not useful from each other. If the health indicator exceeds 

the threshold, corrective action must be taken on the gripper. The level at which the FT is determined in three different 
ways. The method of determination is used depends on what data is available. Either the lifetime data, run-to-failure 
data or threshold data is used. Lifetime data reflects the entire life cycle of the system under study. To estimate the 
RUL with lifetime data, proportional hazard models and probability distributions of component failure are used. Run-
to-failure data is historical data gained from systems with similar degradation behavior. For RUL estimation, similarity 
models such as regression or classification similarity learning is applied to the investigated system. Threshold data 
are prescribed values, which indicates the boundary before failure occurs. Time series models of condition indicators 
such as pressure, force or temperature are used to predict the point, where the condition indicator exceeds the threshold.  

 
3.7. RUL estimation approach 

 
The RUL estimation is obtained by the difference between the timestamp at the current system health and the 

timestamp of the system health when exceeding the threshold, see Fig. 7. In the presented use case, the lower threshold 
is set to -5 and the upper threshold is set to 550. Since it is assumed that the applied force is decreasing over time, the 
lower threshold needs to be considered for further research. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

4. Conclusion and Discussion 

In this paper, a method to estimate the RUL for a two-jaw parallel gripper has been presented based on 
experimental failure threshold data. The results of the study presented are in line with the research objectives. We 
have presented numerous examples of RUL estimation on industrial applications in the second chapter. As a health 
indicator, we have found that the arithmetic mean can be considered to stably record a change in wear behavior. Using 
FMEA analysis, we identified six failure modes. What influences the results of the study are factors such as the 
selection of the gripper as well as the selection of the measurement method and the experimental setup. Compared to 

Fig. 7. RUL estimation approach with health indicator 
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other studies, data acquisition in particular is a debatable issue. As presented in the research work of Christian et al. 
[27], data acquisition can also be done with simulated data such as via MATLAB. Other research work relies on 
publicly available datasets from industrial applications. This can achieve high resource savings. The advantage of an 
own experimental setup is the high level of control. Furthermore, the resulting conclusions are very specific. 

5. Further Challenges and Outlook 

As the discipline of RUL estimation is still evolving, there is a lack of success stories from lab experiments to real 
environment applications. Further challenges based on the proposed research are addressed as follows:  

(1) The data used are sufficient to derive initial indications. However, the realism of RUL estimation is improved 
with longer measurement series and the fusion of multiple sensor data to one or more health indicators. This is stated 
in numerous literature [18–21].  

(2) It is necessary to manage the uncertainty generated by the influence of external environmental variables and 
future work conditions such as process speed or future load profile. This impacts the RUL estimation since the external 
environment influences the condition monitoring variables and the degradation behavior. Furthermore, the operators 
in the work cells can extend the RUL by regulating these factors. Quantification of the uncertainty will help the RUL 
estimation and provide suggestions to operators.  

(3) The third challenge is the verification and validation of the RUL estimation result. Theoretical estimation 
algorithms developed must be verified and validated first in a high-fidelity environment before practical applications. 
However, how to build such an environment is a puzzle for every related researcher at all times.  

(4) The last challenge is how to realize accurate onboard RUL estimation. Plenty of RUL estimation approaches 
are intensive computation and require sufficient computing resources. It is a great challenge to reduce the computation 
of estimation algorithms on the premise of ensuring the accuracy and the confidence of results.  
 

More research work should focus on accelerating the progress of real-world application studies. In recent years, 
the progress of RUL estimation models increased, but there is still a lot of potentials. 

Appendix A. FMEA Sheet 
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