
Citation: Dietrich, F.; Louw, L.; Palm,

D. Blockchain-Based Traceability

Architecture for Mapping

Object-Related Supply Chain Events.

Sensors 2023, 23, 1410. https://

doi.org/10.3390/s23031410

Academic Editor: Jorn Mehnen

Received: 23 December 2022

Revised: 10 January 2023

Accepted: 13 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Blockchain-Based Traceability Architecture for Mapping
Object-Related Supply Chain Events
Fabian Dietrich 1,2,*, Louis Louw 1 and Daniel Palm 2,3

1 Department of Industrial Engineering, Stellenbosch University, 145 Banghoek Rd.,
Stellenbosch 7600, South Africa

2 ESB Business School, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
3 Fraunhofer Institute for Manufacturing Engineering and Automation, Alteburgstr. 150,

72762 Reutlingen, Germany
* Correspondence: fabian.dietrich@reutlingen-university.de

Abstract: Supply chains have evolved into dynamic, interconnected supply networks, which increases
the complexity of achieving end-to-end traceability of object flows and their experienced events.
With its capability of ensuring a secure, transparent, and immutable environment without relying
on a trusted third party, the emerging blockchain technology shows strong potential to enable end-
to-end traceability in such complex multitiered supply networks. This paper aims to overcome the
limitations of existing blockchain-based traceability architectures regarding their object-related event
mapping ability, which involves mapping the creation and deletion of objects, their aggregation and
disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper
proposes a novel ‘blueprint-based’ token concept, which allows clients to group tokens into different
types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting
conditions, which, for example, are necessary when mapping assembly processes. In addition, the
token concept contains logic for reflecting all conducted object-related events in an integrated token
history. Finally, for validation purposes, this article implements the architecture’s components in
code and proves its applicability based on the Ethereum blockchain. As a result, the proposed
blockchain-based traceability architecture covers all object-related supply chain events and proves its
general-purpose end-to-end traceability capabilities of object flows.

Keywords: blockchain; tokenisation; object traceability; EPCIS events

1. Introduction

Due to globalisation, supply chains have evolved from traditional linear supply chains
to static supply networks and have further evolved into complex interconnected supply
networks [1]. Such interconnected networks can exhibit complex buyer–supplier relation-
ships with both parties involved simultaneously, even competing in supply chains [1].
Furthermore, in contemporary interconnected supply chains, most products travel in a
non-predefined manner through a supply chain network, resulting in supply chains that
can emerge unpredictably over time [2].

In addition to the structural complexities of contemporary supply chains, recent
trends increasingly put pressure on companies to increase their supply chain visibility
and to provide supply chain transparency to maintain their competitiveness [3]. Here, the
literature often uses the terms ‘supply chain visibility’ and ‘transparency’ interchangeably.
However, Barratt and Oke define supply chain visibility as “the extent to which actors
within [emphasis added] a supply chain have access to or share information which they
consider as key or useful to their operations and which they consider will be of mutual
benefit” [4]. In comparison, Sodhi and Tang define supply chain transparency as the extent
to which supply chain actors disclose information to all stakeholders, including the public,

Sensors 2023, 23, 1410. https://doi.org/10.3390/s23031410 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031410
https://doi.org/10.3390/s23031410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1485-8078
https://doi.org/10.3390/s23031410
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031410?type=check_update&version=2

Sensors 2023, 23, 1410 2 of 29

consumers, and investors [3]. Thus, supply chain visibility enables companies to provide
supply chain transparency [2].

For companies, traceability represents the essential prerequisite for enabling supply
chain visibility [3,5], which in turn represents the prerequisite for providing supply chain
transparency [2]. The term traceability and the use of traceability systems originated in
food supply chains and have spread from there to various industries [6–8]. Olsen and Borit
define traceability “as the ability to access any or all information relating to that which
is under consideration, throughout its entire life cycle, by means of recorded identifica-
tions” [7]. According to the GS1 Global Traceability Standard, traceability information can
relate to the origin of materials and parts, processing history, and distribution and loca-
tion. Interconnected traceability systems map objects through their object-related supply
chain events [2], also referred to as object-related ‘visibility events’ [9]. Such event-based
mapping approaches belong to the discrete mapping domain, capturing event data in
discrete milestones [10]. The counterpart of discrete mapping approaches is continuous
mapping, which collects data at predefined time intervals. However, compared to the
more widespread discrete mapping approaches, continuous mapping is used mainly in
specific tracking solutions, such as continuous humidity sensor measurements in food
supply chains [10].

“At the heart of any traceability system is the identification of traceable objects” [2].
The international standard IEC 62507 specifies basic requirements for systems to identify
objects [11]. Here, the standard distinguishes between physical and abstract objects. The
GS1 Global Traceability Standard shares this distinction between objects, except that it
refers to abstract objects as digital objects [9]. Based on these two international standards,
this paper uses the following definition of objects:

1. Physical objects. Refers to physical objects “which are handled in physical handling
steps of an overall business process involving one or more organisations” [9]. This
includes objects such as products, items, and physical documents and explicitly
excludes human individuals [11].

2. Abstract objects. Refers to digital objects which participate in business processes
involving one or more organisations. This includes objects such as digital trade items,
digital documents, and electronic certificates [9].

Information systems must map objects in their information world to enable object
traceability [12]. According to the IEC 62507 standard, the identification number refers to
an object or a group of objects (for example, in assemblies consisting of several compo-
nents [13]) and links to the metadata. The metadata contains all the relevant information
to describe an object or a group of objects. On a system level, metadata includes data
components, which “may be simple real numbers, text strings, vectors of real numbers
and other values, sets in real vector spaces, functions from real vector spaces to other data
spaces, or complex combinations of these” [14]. Furthermore, traceability systems typically
connect objects’ virtual representations via radio frequency identification (RFID) tags or
quick response (QR) codes to their physical counterparts [15].

The traceability of objects requires mapping data related to the occurred supply chain
events [2], also referred to as object-related ‘visibility events’ [9]. An object-related supply
chain event “is the record of the completion of a specific business process step acting
upon one or more objects” [9]. Here, the Electronic Product Code Information Services
(EPCIS) standard—which represents the most frequently applied standard in industrial
traceability systems [10]—defines the following core supply chain events: Object creation
and deletion, object aggregation and disaggregation, object transformation, and object
transaction events [9]:

1. Object event [9]. Object events initially link objects to their identifiers (IDs) on a system
level and include simple observations of objects identified in the event. In addition,
object events allow the possibility to create a number of objects of the same object class.
In addition to the creation of objects, object events can delete objects, which results in
these objects not existing on a system level for further events after their deletion.

Sensors 2023, 23, 1410 3 of 29

2. Aggregation/disaggregation event [9]. Aggregation events create a new identifiable
‘containing’ entity that contains a set of objects. Until their possible disaggregation,
aggregated objects, physically and on a system level, occupy the same location at the
same time. Consequently, aggregation events include the possibility of disaggregating
previously aggregated objects, whereas the ‘containing’ objects become independent
objects again, and the ‘containing’ entity dissolves.

3. Transformation event [9]. Transformation events fully or partially consume objects as
inputs and produce outputs of new object classes. Like this, objects can ‘transform’
into new objects without experiencing changes regarding their modular composition.

4. Transaction event [9]. Transaction events associate or disassociate objects with business
transactions. Therefore, transaction events enable the mapping of objects’ changes
in ownership.

The increasing requirements regarding a higher need for supply chain visibility and
transparency have led to the rapidly growing efforts of companies to map out their supply
chains [16]. Nevertheless, it is still common practice that companies only have visibility
of their direct suppliers and customers—also known as the ‘one step up-one step down
model’ [2]—eventually leading to overall limited knowledge of their supply chains [16].

Alternatively, companies can rely on traditional centralised systems to ensure trace-
ability throughout their supply chains, which bundle the traceability data across all parties
in a central repository [2]. However, globalised interconnected supply chains, with each
party having a particular interest in increasing the supply chain visibility and providing
transparency, cannot rely on focal companies enforcing a system for their whole supply
chain. Therefore, as the first discussions of the German Federal Ministry for Economic
Affairs and Energy with various companies of different industry sectors and regions imply,
an exclusive commitment to a central system is challenging to achieve [17].

Consequently, companies proceeded with cumulative traceability approaches, where
each party stores the traceability data centrally but pushes them to the next party in parallel
with the product flow [2]. Such a cumulative traceability approach does not require an
exclusive commitment to a superordinate central system; however, it results in novel
challenges, particularly for downstream parties, when receiving and processing large
traceability data volumes [2]. To overcome these challenges, the ‘Plattform Industrie 4.0′

initiative summarises several international standardisation approaches to define a common
standard for the information exchange of objects between partners in value chains, also
known as Asset Administration Shell (AAS) [18]. Here, the AAS represents a standardised
digital representation of an asset aiming to facilitate interoperability when pushing asset-
related data from one company’s system to another company’s system [18].

The advantage of the AAS not currently requiring a superordinate central system
also results in its weaknesses in a traceability context. Since no central system monitors
the parties’ compliance with the standardised formats, evaluations of the approach show
that applying the AAS increases the semantics’ complexity, leading to data inconsisten-
cies [19,20]. Furthermore, the problem of data inconsistencies compounds due to the fact
that no central entity ensures the global uniqueness of identifiers, applying to both the
identification of objects and of experienced services or events [18]. Therefore, in large and
complex supply chains, these data inconsistencies eventually result in big data problems
instead of facilitating object traceability [20].

In 2016, Abeyratne and Monfared published the first concept adopting an emerging
technology—blockchain technology—in manufacturing supply chains as a potential solu-
tion for solving their end-to-end traceability problems [21]. Blockchain technology, which
was first introduced by the pseudonym Satoshi Nakamoto in 2008 [22], nowadays repre-
sents the most famous representative of the distributed ledger technology (DLT) family [23].
A DLT describes a “multi-party system in which all participants reach consensus over a
set of shared data and its validity in the absence of a central coordinator” [24]. Here, the
primary difference between blockchain and other forms of DLT relates to the storage of
data [23,25]. “In a blockchain, data is stored as groups, or ‘blocks’, of information. New

Sensors 2023, 23, 1410 4 of 29

transactions can only add information to the ‘chain’ of past transactions; it is impossible
to delete or modify information previously stored ‘on the chain’ because blocks are repli-
cated across multiple ledgers” [25]. Taking into account the development of blockchain
technology with the various consensus algorithms available [26], this paper extends the
DLT definition of Hansen [24] with blockchain-specific characteristics and provides the
following definition of blockchain technology:

Blockchain technology is a multi-party system in which all participants or an agreed
fraction of participants reach a consensus over shared transaction data summarised in
linked data blocks and their validity, resulting in a linear and immutable chain of data
blocks without requiring a central coordinator.

In particular, blockchain technology’s capabilities of providing a superordinate system
without requiring a trusted third party while still ensuring a secure, transparent, and
immutable environment with globally unique ‘digital profiles’ brought it onto the map as a
potential solution to the problem of achieving end-to-end traceability in complex multitiered
supply networks [21,27,28]. As a review and bibliometric analysis conducted by Fang, Fang,
Hu, and Wan reveal, over the years, technology-wise, the term ‘blockchain’ has become
the most frequently used keyword related to supply chain management [29]. Accordingly,
various blockchain-based traceability solutions have arisen, making blockchain technology
arguably the “most promising technology for providing traceability-related services in
supply chain [abbreviation deleted] networks” [30]. However, the current blockchain-
based solution landscape implies that each traceability problem requires an individual
architecture design and blockchain platform [30]. As exploitation of blockchain-based
traceability solutions indicates, most architectures, particularly the food supply chain and
medical supply chain, show simple architecture designs that can only map single objects
throughout the supply chain and lack the ability to cover all supply chain events defined
by EPCIS [31].

In considering the requirements for dynamic, interconnected supply networks and
the previously mentioned limitations of current solutions to ensure end-to-end traceability,
the following problem arises: To the best of the authors’ knowledge, no general-purpose
blockchain-based architecture for dynamic, interconnected supply networks exists to ensure
the traceability of object flows and their experienced supply chain events: creation and
deletion, aggregation and disaggregation, transformation, and transaction.

Therefore, the following primary research question (PRQ) aims to solve the identified
problem by developing a blockchain-based traceability architecture:

PRQ How can a blockchain-based traceability architecture be constructed which meets the general-
purpose requirements of dynamic, interconnected supply networks and ensures the end-to-end
traceability of object-related supply chain events?

In addition, the following secondary research questions (SRQ) support answering the
PRQ and prove the architecture’s applicability and completeness.

SRQ1What are the limitations of existing blockchain-based traceability solutions described in
the literature?

SRQ2 What are the architectural requirements for an end-to-end traceability solution for dynamic,
interconnected supply networks?

SRQ3How can the architecture’s components be implemented in code to enable its practical applica-
bility in a blockchain-based traceability solution?

This paper aims to propose a novel blockchain-based traceability architecture to
overcome the limitations of existing solutions. For this purpose, Section 2 first describes
the research methodology adopted in this study. After this, Section 3 analyses existing
advanced blockchain-based traceability architectures regarding limitations in terms of their
mapping abilities. Following this, the architecture development takes place in Section 4.
Subsequently, Section 5 evaluates the proposed architecture based on a prototype to assess
its practical applicability. Finally, this paper concludes the research results by answering the

Sensors 2023, 23, 1410 5 of 29

research questions, pointing out the unique contributions, summarising the architecture’s
current limitations, and suggesting recommendations for further research.

2. Research Methodology

This paper aims to develop a novel blockchain-based traceability architecture. The
innovativeness of such design calls for conducting the research according to the design
science research strategy. “Design science research involves the creation of new knowledge
through the design of novel or innovative artifacts (things or processes) and analysis of
the use and/or performance of such artifacts along with reflection and abstraction—to
improve and understand the behavior of aspects of Information Systems” [32]. In this
paper, the blockchain-based traceability architecture represents the artefact to be developed.
According to the design science research strategy, the development of such an artefact
incorporates five process steps: Awareness of the problem, suggestion, development,
evaluation, and conclusion [32].

Section 1 raises the awareness of traceability problems in contemporary supply chains
with emergent characteristics based on recent publications and an initial exploration of
the literature. Here, the study extends the methodology of Vaishnavi and Kuechler [32] by
constructing design science research questions according to Hoang Thuan, Drechsler, and
Antunes [33], aiming to support solving the initial problem statement.

Section 3 provides a theoretical knowledge foundation regarding related works in the
supply chain and blockchain technology domain and defines essential terms. Furthermore,
this section emphasises the research gap to ensure the paper’s uniqueness by pointing out
the limitations of existing blockchain-based traceability architectures.

In Section 4, the development of the architecture takes place. Here, an architecture
describes “the set of structures needed to reason about the system, which comprise software
elements, relations among them, and properties of both” [34]. This does not include its
implantation in code; however, its design and logic can lead to code that is correct with
respect to the specified architecture [35]. For the development processes, this paper adopts
parts of the architecture development framework of Vogel et al. [36]. As is common
in software development, architecture development begins with deriving architectural
requirements [37]. Requirements “provide the key input to the software architecture
design” [38]. This study derives the architectural requirements from the fundamental
supply chain structures, the characteristics of traceability systems, and the available object-
related traceability standards. According to the process flow of the design science research
strategy, this paper suggests an initial architecture design based on the derived requirements
and subsequently works out the artefact’s detailed structure and components.

Following the architecture development, this research evaluates the developed ar-
chitecture based on a prototype. Prototyping-based evaluation methods belong to the
most commonly used techniques in the industry when evaluating novel software archi-
tectural designs and may uncover aspects that other evaluation methods are not able to
identify [39]. Here, according to Gregor and Hevner’s design science research theory,
this paper aims to develop an ‘instantiated artefact’ representing a fully operational soft-
ware [40]. Therefore, this paper evaluates the applicability of all architecture components
in code and applies a prototypical implementation in an experimental setting to ensure
their implementation ability.

Subsequent to the prototyping-based evaluation, the paper concludes the research
results and points out their unique contribution by answering the research questions and
stating the key findings. Finally, the architecture’s current limitations are summarised and
recommendations are suggested for further research.

3. Limitations of Existing Blockchain-Based Traceability Architectures

A systematic review of the literature by Chang and Chen [41] reviewed potential
blockchain applications and their development status in the supply chain management
domain to identify future trends. The authors identify that the vast majority of blockchain-

Sensors 2023, 23, 1410 6 of 29

based publications address traceability and transparency issues in supply chains [41]. A
further review by Dasaklis et al. [30] focuses on the implementation state of blockchain-
enabled traceability solutions. The authors point out that even though blockchain-enabled
traceability implementations encompass various supply chain domains, they currently lack
advanced and functional interfaces and validations in industrial settings, making it difficult
to assess the quality of the proposed solutions [30]. Furthermore, an initial exploration
of blockchain-based traceability solutions implies that most solutions only incorporate
architectures of low complexity with the ability to map single objects without compositional
changes [42]. However, these low-complexity architectures have already proven to increase
supply chain visibility and effectively reduce operational costs in industrial settings. For
example, during a 12-month trial, the blockchain-based container tracking solution ‘Trade-
Lens’ by Maersk and IBM showed a reduction in the shipment transit time by 40% and
demonstrated the potential for some supply chain partners to reduce the efforts required to
locate a container from ten steps and five people to one step and one person [43].

When further investigating the traceability solutions identified in the systematic
literature reviews regarding their ability to map supply chains of high complexity with
objects experiencing compositional changes, the literature dominantly references three
advanced traceability architectures by Westerkamp et al. [44], Watanabe et al. [45], and
Kuhn et al. [46]. These advanced traceability architectures utilise the tokenisation of objects
and provide token ecosystems that allow users to conduct object-related supply chain
events in an arbitrary sequence. In addition, these solutions describe logic to aggregate
tokens with individual token IDs and ‘merge’ them into a new token, which allows on-chain
mapping of compositional changes, for example, when assembling components.

In general, blockchain tokens are “blockchain-based abstractions that can be owned
and that represent assets, currency, or access rights” [47]. Since tokens can reflect various
states of their representatives and interact with each other, these token-based blockchain
architectures allow linking object-related supply chain event data providing traceable
production information along the supply chain [44].

Figure 1 shows a functionality overview of the most relevant ERC (Ethereum request
for comments) token standards. The figure adapts the general structure and illustration
format of Wang et al. [48] by correcting the relationships according to the current speci-
fications of the ERC-20, ERC-721, and ERC-1155 token standards [49–51]. The following
paragraph summarises the token standards’ key characteristics:

1. ERC-20. The ERC-20 represents the first fungible token (FT) standard. Its functions
initially define the total token supply and provide a simple logic to transfer tokens
from one address to another [49].

2. ERC-721. The ERC-721 represents the first non-fungible token (NFT) standard. Its
functions initially create a token with a unique identifier and provide a simple logic
to transfer the unique tokens from one address to another [50].

3. ERC-1155. The ERC-1155 represents the first multi-token standard. Its functions
initially define NFT types, which allow the creation of a group of FTs of the same type
and provide a simple logic to transfer NFTs and FTs from one address to another [51].
If only one token of a particular type exists, it shows similar characteristics to the
NFTs of the ERC-721 [51].

Sensors 2023, 23, 1410 7 of 29Sensors 2023, 23, 1410 7 of 30

Figure 1. Overview of Ethereum token standards and their functionality (adapted from [48.])

Taking into account the object-related supply chain events specified by EPCIS and
the capabilities of the applied token standards, an investigation of the advanced traceabil-
ity architectures reveals the following limitations when being applied in dynamic, inter-
connected supply chains involving complex objects with the ability to experience compo-
sitional changes:
1. Governance concept. The architecture proposed by Kuhn et al. [46] represents the only

architecture incorporating a governance concept managing the parties involved.
However, the governance is part of the selected blockchain platform, with the trace-
ability architecture exclusive to the complete blockchain. Therefore, it is not possible
to transfer the governance concept’s logic to blockchain platforms that are not exclu-
sive to the architecture and require the administration of parties involved on an ap-
plication level.

2. Token deletion. The advanced architectures do not describe the possibility of an ex-
plicit token deletion without requiring a functional workaround. For example, the
traceability architectures by Westerkamp et al. [44] and Watanabe et al. [45] provide
logic for ‘consuming’ tokens. Here, consumed tokens receive a mark indicating their
state to avoid the reusability of consumed tokens in further token recipes. Kuhn et al.
[46] describe a similar logic but refer to the consumption of tokens as the ‘burning’ of
tokens. Even though the logic to consume or burn tokens intentionally serves as func-
tionality to avoid the reusability of tokens, for example, after assembling processes,
this logic also allows the creation of a token recipe to remove tokens from the supply
chain. Although none of these three architectures further describe this procedure, a
recipe that consumes or burns its input tokens supposedly results in a new, albeit
useless, ‘waste token’. Therefore, strictly speaking, this logic does not allow the dele-
tion of tokens in the sense of EPCIS [9].

3. Token aggregation. Kuhn et al. [46] point out the ill-suited capabilities of the ERC-721
NFT standard when mapping objects with great variety and assembly complexity.
As a solution, Kuhn et al. [46] adopt the ERC-1155 token standard; however, this only
allows minting FT batches of the same type. Therefore, the ERC-1155 solves the prob-
lem of the ERC-721 when applying it to batches of fungible assemblies of various
fungible components, such as those incorporated by the electrical and electronic sys-
tem case study of Kuhn et al. [46]. However, when mapping multiple non-fungible
assemblies of the same type with non-fungible inputs of the same type, the ERC-1155
results in the same limitations as the ERC-721.

Figure 1. Overview of Ethereum token standards and their functionality (adapted from [48]).

Taking into account the object-related supply chain events specified by EPCIS and
the capabilities of the applied token standards, an investigation of the advanced trace-
ability architectures reveals the following limitations when being applied in dynamic,
interconnected supply chains involving complex objects with the ability to experience
compositional changes:

1. Governance concept. The architecture proposed by Kuhn et al. [46] represents the
only architecture incorporating a governance concept managing the parties involved.
However, the governance is part of the selected blockchain platform, with the trace-
ability architecture exclusive to the complete blockchain. Therefore, it is not possible
to transfer the governance concept’s logic to blockchain platforms that are not ex-
clusive to the architecture and require the administration of parties involved on an
application level.

2. Token deletion. The advanced architectures do not describe the possibility of an explicit
token deletion without requiring a functional workaround. For example, the traceabil-
ity architectures by Westerkamp et al. [44] and Watanabe et al. [45] provide logic for
‘consuming’ tokens. Here, consumed tokens receive a mark indicating their state to
avoid the reusability of consumed tokens in further token recipes. Kuhn et al. [46] de-
scribe a similar logic but refer to the consumption of tokens as the ‘burning’ of tokens.
Even though the logic to consume or burn tokens intentionally serves as functionality
to avoid the reusability of tokens, for example, after assembling processes, this logic
also allows the creation of a token recipe to remove tokens from the supply chain.
Although none of these three architectures further describe this procedure, a recipe
that consumes or burns its input tokens supposedly results in a new, albeit useless,
‘waste token’. Therefore, strictly speaking, this logic does not allow the deletion of
tokens in the sense of EPCIS [9].

3. Token aggregation. Kuhn et al. [46] point out the ill-suited capabilities of the ERC-721
NFT standard when mapping objects with great variety and assembly complexity.
As a solution, Kuhn et al. [46] adopt the ERC-1155 token standard; however, this
only allows minting FT batches of the same type. Therefore, the ERC-1155 solves the
problem of the ERC-721 when applying it to batches of fungible assemblies of various
fungible components, such as those incorporated by the electrical and electronic
system case study of Kuhn et al. [46]. However, when mapping multiple non-fungible
assemblies of the same type with non-fungible inputs of the same type, the ERC-1155
results in the same limitations as the ERC-721.

Sensors 2023, 23, 1410 8 of 29

4. Token disaggregation. Among the advanced architectures, only the architecture de-
veloped by Watanabe et al. [45] describes a mechanism for token ‘forking’. The
architectures of Westerkamp et al. [44] and Kuhn et al. [46] merely include a logic
for ‘splitting’ token batches, which describes distributing a share of a token batch
to different owners. Westerkamp et al. [44] even view the absence of an ability for
token disaggregations to be a limitation of their architecture and refer to a possible
example of packaging processes, which require the extraction of the original good
when unpacking [44]. Even though the ‘forking’ described by Watanabe et al. [45]
forks a token into two tokens, these forked tokens receive new identifiers and new
smart contract addresses, which does not ‘restore’ the previously aggregated tokens
and, therefore, does not solve the limitation mentioned by Westerkamp et al. [44],
representing a disaggregation according to EPCIS [9].

4. Architecture Development

The paper’s architecture uses elements of the general structure of decentralised appli-
cations (dApps) as a fundamental frame for the proposed architecture. This includes the
interplay of interfaces, smart contracts, and the underlying blockchain.

Even though the literature often uses the terms ‘smart contract’ and ‘dApp’ inter-
changeably, the fundamental difference is that dApps have a user interface while smart
contracts and tokens do not [52]. Smart contracts in a blockchain context represent software
scripts deployed on the blockchain [53], while “dApps within a dApp ecosystem comprise
a user interface and one or more smart contracts which interact with a blockchain [empha-
sis deleted]” [52]. As is common for blockchain-based traceability architectures, linking
physical objects to their token representatives relies on RFID tags or QR codes and readers
as supporting infrastructure [44,46]. Since the architecture intends to be a dApp that uses
the underlying blockchain only as an operating system, involved parties require only a
blockchain account (typically managed by a wallet provider) and must not provide server
infrastructure to run blockchain nodes.

The following section initially derives the architectural requirements. Subsequently,
the development of the governance and token concept takes place.

4.1. Requirement Derivation

This paper derives the architectural requirements from fundamental supply chain
structures, characteristics of traceability systems, available object-related traceability stan-
dards, and limitations of available advanced blockchain-based traceability architectures.
The following list enumerates the architecture’s fundamental requirements (R):

1. R1. The general structure of traceability systems consisting of participating parties and
objects at their heart provided by the GS1 Global Traceability Standard [2] requires
the architecture to map this fundamental structure.

2. R2. Each party has a specific role in the value-adding process [54] and must be
identifiable to ensure trust [2], which requires the architecture to identify each party
and provide a clear assignment of rights.

3. R3. Interconnected supply chains can experience structural transactions at any time [1]
and require the architecture to allow certain parties a dynamic adding and removing
of parties.

4. R4. Objects in traceability systems must be identifiable [11] and can experience
creations and deletions, aggregations and disaggregations, transformations, and
transactions [9], which require the architecture to identify each object and enable the
mapping of their object-related events.

5. R5. In emergent supply chains, objects travel in a non-predefined manner through
supply chains [2], which requires the architecture to allow objects to experience events
in arbitrary sequences.

6. R6. Companies must gain supply chain visibility and offer supply chain transparency.

Sensors 2023, 23, 1410 9 of 29

7. throughout the entire supply chain [3], which requires the architecture to ensure a
traceable event history throughout objects’ entire life cycles.

Figure 2 shows the initial architecture design suggestion based on the derived ar-
chitectural requirements. As shown, the initial design includes a governance concept for
mapping the supply chain structure with a token concept embedded therein for mapping
object-related supply chain events.

Sensors 2023, 23, 1410 9 of 30

7. throughout the entire supply chain [3], which requires the architecture to ensure a
traceable event history throughout objects’ entire life cycles.
Figure 2 shows the initial architecture design suggestion based on the derived archi-

tectural requirements. As shown, the initial design includes a governance concept for
mapping the supply chain structure with a token concept embedded therein for mapping
object-related supply chain events.

Figure 2. Architectural requirements and initial design suggestion.

4.2. Development of a Governance Concept
The governance concept develops functions defining the supply chain structure-re-

lated administrative capabilities of the dApp and manages all parties registered to the
dApp in a party memory. The functions of the governance concept include possibilities to
add and remove parties as well as to edit their structure-related administrative and object-
related operative rights.

4.2.1. Adding Parties
According to the architectural requirements, it is essential for the responsible author-

ity (or authorities) to ensure the deanonymisation of each party involved and remove par-
ties with negative behaviour from the application so as not to violate the overall integrity
of the traceability dApp. Therefore, the architecture’s smart contract requires a govern-
ance concept, which defines the corresponding logic for adding and removing partiers.
Here, the study refers to the function set, summarising supply chain structure-related
functions as the governance set. Additionally, the governance set includes a data memory
managing all parties registered to the dApp—the party memory. Before deploying the gov-
ernance set, the code must contain or define an initial account administrator with the abil-
ity to add further accounts to the party memory. In this architecture, as typical for many
dApps, the deploying account becomes the initial administrator.

The GS1 Global Traceability Standard states that a traceability system requires link-
ing each party that plays a role in the chain of custody or ownership of a supply chain to
a unique identifier and storing crucial party-related data [2]. Typically, this contains data
such as contact data and data describing the respective supply chain’s respective roles.
With its accounts consisting of a public and private key, blockchain technology already

Figure 2. Architectural requirements and initial design suggestion.

4.2. Development of a Governance Concept

The governance concept develops functions defining the supply chain structure-related
administrative capabilities of the dApp and manages all parties registered to the dApp in a
party memory. The functions of the governance concept include possibilities to add and
remove parties as well as to edit their structure-related administrative and object-related
operative rights.

4.2.1. Adding Parties

According to the architectural requirements, it is essential for the responsible authority
(or authorities) to ensure the deanonymisation of each party involved and remove parties
with negative behaviour from the application so as not to violate the overall integrity of
the traceability dApp. Therefore, the architecture’s smart contract requires a governance
concept, which defines the corresponding logic for adding and removing partiers. Here,
the study refers to the function set, summarising supply chain structure-related functions
as the governance set. Additionally, the governance set includes a data memory managing
all parties registered to the dApp—the party memory. Before deploying the governance set,
the code must contain or define an initial account administrator with the ability to add
further accounts to the party memory. In this architecture, as typical for many dApps, the
deploying account becomes the initial administrator.

The GS1 Global Traceability Standard states that a traceability system requires linking
each party that plays a role in the chain of custody or ownership of a supply chain to a
unique identifier and storing crucial party-related data [2]. Typically, this contains data
such as contact data and data describing the respective supply chain’s respective roles. With
its accounts consisting of a public and private key, blockchain technology already ensures
the uniqueness of accounts and the traceability of each account’s blockchain interaction.

Sensors 2023, 23, 1410 10 of 29

However, as Kuhn et al. describe, it is not only necessary to link each public key to data
defining a supply chain party but also to display it understandably [46].

Here, dApps offer two possible solutions: Either an off-chain storage stores the data
and the interface links them with the corresponding public key or the smart contract stores
the data on-chain. Since the deanonymisation of supply chain parties represents a crucial
requirement of the traceability dApp, the study’s architecture suggests storing crucial
party-related data on-chain in the party memory of the governance set. On the one hand,
data such as contact data and role descriptions are relatively small in storage size. On
the other hand, this ensures an immutable link between public keys and party-related
information, regardless of the interface used.

4.2.2. Removing Parties

Removing data entries from the blockchain refers to the general smart contract logic
described by Hu et al. [55]. Accordingly, removing a party updates the governance set and
removes the respective party from the party memory. This change affects all blocks after the
‘removal-transaction’ confirmation. However, while removed parties no longer have access to
the dApp’s functions in current blocks, deprecated blocks still prove their past participation.

4.2.3. Editing Rights

Each party has a specific role in the supply chain’s value-adding process, which re-
quires a clear assignment of rights. Smart contracts generally allow a functional coupling of
any function to certain requirements. The study’s architecture proposes a rights distinction
according to its general structure to reduce the number of functional dependencies. There-
fore, the architecture distinguishes between administrative supply chain structure-related
rights and operative object-related rights.

1. Structure-related rights. Structure-related rights allow parties to add and remove other
parties as well as to edit their rights at any time.

2. Object-related rights. Object-related rights allow added parties to perform the creation
and deletion of objects and, in between, the execution of an arbitrary sequence of
transactions, transformations, aggregations, and, in the case of previous aggregations,
the execution of disaggregations.

As stated in Section 4.2.1, after the dApp’s deployment, the deploying account becomes
the initial administrator and, therefore, has full access to all functions. Subsequently, the
administrator can edit the rights of all involved parties at any time.

4.3. Development of a Token Concept

Identifiable and traceable objects are at the heart of traceability systems [2]. It, there-
fore, follows that a blockchain-based traceability system rests upon traceable asset tokens.
Therefore, as an initial step, it requires the development of a token concept that provides a
fundamental structure to allow the integration of all object-related supply chain events.

Existing dApp architectures, such as the approach from Westerkamp et al. [44], show
that NFTs based on the ERC-721 demonstrate strong capabilities when identifying objects
in supply chains. However, they have weaknesses when the minting of a token depends
on the fulfilment of conditions containing other tokens. Westerkamp et al. [44] refer to
such smart contracts containing minting conditions as ‘token recipes’. In supply chains,
this weakness typically becomes evident when mapping batch productions that involve
assembling parts. The nature of the problem is that it is impossible to predict tokens’
addresses; therefore, conditions of a token smart contract can only include required tokens
subsequent to their minting. This issue is of no consequence for assemblies produced in
lot size one. However, this problem considerably increases the mapping complexity for
producing non-fungible assembly batches aggregating inputs of the same type since every
assembly requires deploying an individual recipe contract.

The ERC-1155 standard described by Radomski et al. [51] and adopted by the supply
chain mapping architecture of Kuhn et al. [46] solves this problem to some extent; however,

Sensors 2023, 23, 1410 11 of 29

only for fungible batches aggregating fungible components. The ERC-1155 standard allows
the minting of non-fungible token types, which allows the minting of a group of FTs of
the same type (see Section 2). Therefore, the ERC-1155 standard sets the foundation for
including token types as minting conditions in the token recipe when mapping tokens
represent assemblies. Therefore, compared to the ERC-721 standard, the ERC-1155 standard
simplifies the mapping complexity for fungible assembly batches aggregating fungible
inputs of the same type since, in this scenario, one token recipe can mint multiple assembly
tokens. However, when mapping multiple non-fungible assemblies of the same type with
non-fungible inputs of the same type, the ERC-1155 reaches the same limitations as the
ERC-721.

Thus, no token standard and logic allows an efficient mapping of non-fungible assem-
bly batches of the same type, aggregating non-fungible inputs of the same type. Figure 3
illustrates the required interplay of NFTs and minting conditions for assembly processes.
As the example shows, it essentially requires a token concept that allows the minting of
batches of NFTs of the same type with one smart contract. Like this, it is possible to include
the inputs’ NFT types as minting conditions, and one token type recipe can mint multiple
non-fungible assembly tokens of its type.

Sensors 2023, 23, 1410 11 of 30

producing non-fungible assembly batches aggregating inputs of the same type since every
assembly requires deploying an individual recipe contract.

The ERC-1155 standard described by Radomski et al. [51] and adopted by the supply
chain mapping architecture of Kuhn et al. [46] solves this problem to some extent; how-
ever, only for fungible batches aggregating fungible components. The ERC-1155 standard
allows the minting of non-fungible token types, which allows the minting of a group of
FTs of the same type (see Section 2). Therefore, the ERC-1155 standard sets the foundation
for including token types as minting conditions in the token recipe when mapping tokens
represent assemblies. Therefore, compared to the ERC-721 standard, the ERC-1155 stand-
ard simplifies the mapping complexity for fungible assembly batches aggregating fungi-
ble inputs of the same type since, in this scenario, one token recipe can mint multiple as-
sembly tokens. However, when mapping multiple non-fungible assemblies of the same
type with non-fungible inputs of the same type, the ERC-1155 reaches the same limitations
as the ERC-721.

Thus, no token standard and logic allows an efficient mapping of non-fungible as-
sembly batches of the same type, aggregating non-fungible inputs of the same type. Figure
3 illustrates the required interplay of NFTs and minting conditions for assembly processes.
As the example shows, it essentially requires a token concept that allows the minting of
batches of NFTs of the same type with one smart contract. Like this, it is possible to include
the inputs’ NFT types as minting conditions, and one token type recipe can mint multiple
non-fungible assembly tokens of its type.

Figure 3. Required interplay of NFTs and minting conditions for assembly processes.

The architecture proposes adopting a new token concept that allows minting batches
of NFTs of the same type to solve the batch production problem. Therefore, the architec-
ture extends the idea behind token recipes containing the minting conditions for NFTs
and integrates this functionality in non-fungible blueprints for NFT types. This paper de-
fines the emerging token blueprints as follows:

A blueprint defines the minting conditions for non-fungible tokens necessary to mint
multiple non-fungible tokens of its token type. Like non-fungible tokens, each blueprint
is unique and has an owner. However, unlike non-fungible tokens, blueprints cannot
change their owner.
Similar to ERC-721-based tokens, only the pair of smart contract addresses and blue-

print IDs make the blueprint’s token type globally unique. The NFTs, on the other hand,
require the combination of smart contract addresses, blueprint IDs, and token IDs for their
global uniqueness. Therefore, with its ability to group NFTs into unique token types, the
proposed blueprint-based token concept aims to overcome the limitations of the existing
NFT standards, ERC-721 and ERC-1155. Figure 4 shows the positioning of the proposed
blueprint-based tokens in the NFT standard landscape.

Figure 3. Required interplay of NFTs and minting conditions for assembly processes.

The architecture proposes adopting a new token concept that allows minting batches
of NFTs of the same type to solve the batch production problem. Therefore, the architecture
extends the idea behind token recipes containing the minting conditions for NFTs and
integrates this functionality in non-fungible blueprints for NFT types. This paper defines
the emerging token blueprints as follows:

A blueprint defines the minting conditions for non-fungible tokens necessary to mint
multiple non-fungible tokens of its token type. Like non-fungible tokens, each blueprint
is unique and has an owner. However, unlike non-fungible tokens, blueprints cannot
change their owner.

Similar to ERC-721-based tokens, only the pair of smart contract addresses and blueprint
IDs make the blueprint’s token type globally unique. The NFTs, on the other hand, re-
quire the combination of smart contract addresses, blueprint IDs, and token IDs for their
global uniqueness. Therefore, with its ability to group NFTs into unique token types, the
proposed blueprint-based token concept aims to overcome the limitations of the existing
NFT standards, ERC-721 and ERC-1155. Figure 4 shows the positioning of the proposed
blueprint-based tokens in the NFT standard landscape.

Sensors 2023, 23, 1410 12 of 29Sensors 2023, 23, 1410 12 of 30

Figure 4. Positioning of blueprint-based tokens in the NFT standard landscape.

4.3.1. Integrating Object Events
As summarised in Section 1, object events consist of two sub-events: creation and

deletion. When transferred to a blockchain-based architecture, this requires the function-
ality of minting tokens and their deletion. Therefore, on a system level, object events de-
termine the beginning and the end of mapping objects throughout their life cycle and set
the structural data frame for all object-related supply chain events mapped by the archi-
tecture.

Since every token stems from a blueprint, the creation of blueprints marks the pre-
condition for minting tokens. Hence, the architecture requires the governance set library
to be extended with an additional blueprint set. The blueprint set contains all blueprint-
related functions and manages all existing blueprints in a database structure—the blue-
print memory. Clients can create unique blueprints and define the characteristics of their
represented object type. Since, unlike tokens, blueprints cannot change their owner, the
initiator of a blueprint automatically becomes its owner and thus has access to its func-
tions.

With available blueprints, accounts have the possibility to mint tokens. This requires
the architecture to have a third library—the token bucket. The token bucket includes all
token-related functions and, similar to the other libraries, stores and manages available
tokens in a token memory.

Fundamentally, as the architecture’s token concept indicates, tokens are the logical
results of their blueprint and its minting conditions. Here, the architecture utilises a hash-
ing mechanism to ensure the uniqueness of blueprints and tokens. Figure 5 illustrates the
hashing mechanism used for minting NFTs of the same type. As indicated, blueprints are
a logical result of its data input and the blockchain’s timestamp, while the token ID is a
logical result of its blueprint and the blockchain’s timestamp. Consequently, one blueprint
can create multiple NFTs of the same type, each having a unique timestamp and token ID.

Figure 4. Positioning of blueprint-based tokens in the NFT standard landscape.

4.3.1. Integrating Object Events

As summarised in Section 1, object events consist of two sub-events: creation and
deletion. When transferred to a blockchain-based architecture, this requires the functionality
of minting tokens and their deletion. Therefore, on a system level, object events determine
the beginning and the end of mapping objects throughout their life cycle and set the
structural data frame for all object-related supply chain events mapped by the architecture.

Since every token stems from a blueprint, the creation of blueprints marks the precon-
dition for minting tokens. Hence, the architecture requires the governance set library to be
extended with an additional blueprint set. The blueprint set contains all blueprint-related
functions and manages all existing blueprints in a database structure—the blueprint memory.
Clients can create unique blueprints and define the characteristics of their represented
object type. Since, unlike tokens, blueprints cannot change their owner, the initiator of a
blueprint automatically becomes its owner and thus has access to its functions.

With available blueprints, accounts have the possibility to mint tokens. This requires
the architecture to have a third library—the token bucket. The token bucket includes all
token-related functions and, similar to the other libraries, stores and manages available
tokens in a token memory.

Fundamentally, as the architecture’s token concept indicates, tokens are the logical
results of their blueprint and its minting conditions. Here, the architecture utilises a hashing
mechanism to ensure the uniqueness of blueprints and tokens. Figure 5 illustrates the
hashing mechanism used for minting NFTs of the same type. As indicated, blueprints are
a logical result of its data input and the blockchain’s timestamp, while the token ID is a
logical result of its blueprint and the blockchain’s timestamp. Consequently, one blueprint
can create multiple NFTs of the same type, each having a unique timestamp and token ID.

Sensors 2023, 23, 1410 13 of 29Sensors 2023, 23, 1410 13 of 30

Figure 5. Hashing mechanism for creating NFTs of the same type.

In order to delete tokens, this paper’s architecture utilised the same mechanism for
removing parties from the governance set. Therefore, the functionality of deleting tokens
removes tokens from the token bucket, which updates the token memory and affects all
blocks after the ‘removal-transaction’. However, the blockchain’s immutability ensures
that deprecated blocks with a deprecated state of the token bucket still prove the tokens’
past existence. In addition, the blockchain’s metadata can always reveal the address that
triggered the token deletion transaction.

4.3.2. Integrating Aggregation/Disaggregation Events
While minting tokens represents object events without conditions, strictly speaking,

on a system level, the aggregation of tokens represents object events under the fulfilment
of object-related minting conditions. As described in the token recipes by Westerkamp et
al. [44], object-related minting conditions define the input tokens for minting token aggre-
gations. The immutability of blockchain technology ensures that it is impossible to create
token aggregations without owning the input tokens specified in the minting conditions.

In EPCIS [9], aggregation events result in a new entity containing the input objects.
From this moment on, aggregated objects, physically and on a system level, occupy the
same location at the same time. The architecture aims to map this exact situation in a token
data structure, particularly to facilitate the traceable disaggregation of tokens in later
stages. Therefore, while the previous approaches by Westerkamp et al. [44], Watanabe et
al. [45], and Kuhn et al. [46] ‘consume’ or ‘burn’ the required tokens when aggregating
them into a new token, this architecture proposes an alternative aggregation mechanism.

For this mechanism, the architecture extends the token bucket with another
memory—the token container. Instead of consuming or burning tokens, triggering an ag-
gregation initiates pushing the required tokens from an account’s token memory to the
token container before creating the aggregated token and placing it in the account’s token
memory. Subsequently, the emerging aggregated token ID references its containing to-
kens.

Figure 6 illustrates the required request and transaction flow for aggregating tokens
in the token bucket. As indicated, before aggregating tokens, the request flow must first
clarify an account’s access rights specified in the governance set, the availability of the
blueprint in the blueprint set, and the availability of all required tokens in the token bucket.
Subsequently, the account can trigger the transaction and add the aggregated token ac-
cording to the described aggregation mechanism.

Figure 5. Hashing mechanism for creating NFTs of the same type.

In order to delete tokens, this paper’s architecture utilised the same mechanism for
removing parties from the governance set. Therefore, the functionality of deleting tokens
removes tokens from the token bucket, which updates the token memory and affects all
blocks after the ‘removal-transaction’. However, the blockchain’s immutability ensures
that deprecated blocks with a deprecated state of the token bucket still prove the tokens’
past existence. In addition, the blockchain’s metadata can always reveal the address that
triggered the token deletion transaction.

4.3.2. Integrating Aggregation/Disaggregation Events

While minting tokens represents object events without conditions, strictly speaking, on
a system level, the aggregation of tokens represents object events under the fulfilment of
object-related minting conditions. As described in the token recipes by Westerkamp et al. [44],
object-related minting conditions define the input tokens for minting token aggregations.
The immutability of blockchain technology ensures that it is impossible to create token
aggregations without owning the input tokens specified in the minting conditions.

In EPCIS [9], aggregation events result in a new entity containing the input objects.
From this moment on, aggregated objects, physically and on a system level, occupy the
same location at the same time. The architecture aims to map this exact situation in a token
data structure, particularly to facilitate the traceable disaggregation of tokens in later stages.
Therefore, while the previous approaches by Westerkamp et al. [44], Watanabe et al. [45],
and Kuhn et al. [46] ‘consume’ or ‘burn’ the required tokens when aggregating them into a
new token, this architecture proposes an alternative aggregation mechanism.

For this mechanism, the architecture extends the token bucket with another memory—
the token container. Instead of consuming or burning tokens, triggering an aggregation
initiates pushing the required tokens from an account’s token memory to the token con-
tainer before creating the aggregated token and placing it in the account’s token memory.
Subsequently, the emerging aggregated token ID references its containing tokens.

Figure 6 illustrates the required request and transaction flow for aggregating tokens
in the token bucket. As indicated, before aggregating tokens, the request flow must first
clarify an account’s access rights specified in the governance set, the availability of the
blueprint in the blueprint set, and the availability of all required tokens in the token
bucket. Subsequently, the account can trigger the transaction and add the aggregated token
according to the described aggregation mechanism.

Sensors 2023, 23, 1410 14 of 29Sensors 2023, 23, 1410 14 of 30

Figure 6. Request and transaction flow for aggregating tokens.

When disaggregating previously aggregated tokens, this paper’s architecture pro-
poses a mechanism that restores previously aggregated tokens and thus ensures con-
sistent traceability of children tokens. An initiated disaggregation deletes the parent token
from the token memory, which breaks the reference to its children token. This, in turn,
pushes the children tokens from the token container back to the token memory. For the
deletion of the parent token, this architecture integrates the same deleting mechanism de-
scribed in Section 4.3.1 in the disaggregation function.

Figure 7 summarises the mechanism of the token bucket to aggregate and disaggre-
gate tokens. As illustrated, the aggregated tokens remain in the token container. However,
they are not accessible in the token memory to experience individual events and instead
become a fixed component of their superordinate aggregated token and its experienced
events. Therefore, in a simplified way, aggregated tokens in the token container refer to
their parent token as their owner instead of a public key. The disaggregating mechanism
simply reverses this process and restores the previously aggregated tokens.

Figure 7. (a) Token aggregation mechanism; (b) Token disaggregation mechanism.

Figure 6. Request and transaction flow for aggregating tokens.

When disaggregating previously aggregated tokens, this paper’s architecture proposes
a mechanism that restores previously aggregated tokens and thus ensures consistent
traceability of children tokens. An initiated disaggregation deletes the parent token from
the token memory, which breaks the reference to its children token. This, in turn, pushes
the children tokens from the token container back to the token memory. For the deletion of
the parent token, this architecture integrates the same deleting mechanism described in
Section 4.3.1 in the disaggregation function.

Figure 7 summarises the mechanism of the token bucket to aggregate and disaggregate
tokens. As illustrated, the aggregated tokens remain in the token container. However,
they are not accessible in the token memory to experience individual events and instead
become a fixed component of their superordinate aggregated token and its experienced
events. Therefore, in a simplified way, aggregated tokens in the token container refer to
their parent token as their owner instead of a public key. The disaggregating mechanism
simply reverses this process and restores the previously aggregated tokens.

Sensors 2023, 23, 1410 14 of 30

Figure 6. Request and transaction flow for aggregating tokens.

When disaggregating previously aggregated tokens, this paper’s architecture pro-
poses a mechanism that restores previously aggregated tokens and thus ensures con-
sistent traceability of children tokens. An initiated disaggregation deletes the parent token
from the token memory, which breaks the reference to its children token. This, in turn,
pushes the children tokens from the token container back to the token memory. For the
deletion of the parent token, this architecture integrates the same deleting mechanism de-
scribed in Section 4.3.1 in the disaggregation function.

Figure 7 summarises the mechanism of the token bucket to aggregate and disaggre-
gate tokens. As illustrated, the aggregated tokens remain in the token container. However,
they are not accessible in the token memory to experience individual events and instead
become a fixed component of their superordinate aggregated token and its experienced
events. Therefore, in a simplified way, aggregated tokens in the token container refer to
their parent token as their owner instead of a public key. The disaggregating mechanism
simply reverses this process and restores the previously aggregated tokens.

Figure 7. (a) Token aggregation mechanism; (b) Token disaggregation mechanism. Figure 7. (a) Token aggregation mechanism; (b) Token disaggregation mechanism.

Sensors 2023, 23, 1410 15 of 29

4.3.3. Integrating Transformation Events

Characteristically, data related to an object’s type remains static, while the individual
objects themselves can transform when experiencing state changes, for example, regarding
their quality, approvals, or processing [46]. Unlike aggregations, which result in a new
token with a new identifier, transformations maintain the same identifier and only update
the token-related metadata [45]. Transferring this general structure of token transforma-
tions to the paper’s architecture requires a mechanism to update the tokens’ metadata.
The possibility for each token to experience transformation events also demonstrates the
requirement of the paper’s token concept that each token has individual metadata and not
merely a copy of the blueprint’s metadata, usually representing static data describing the
token type.

At first, in its initial state (state i), a token receives the metadata defined when minting
it. Afterwards, in state i+1, the token experiences a transformation resulting in a change
regarding its metadata. From this moment on, the current state of the token memory
always links the token ID to the updated metadata. Similar to the party or token deletion
mechanism, only the latest blocks reflect the tokens’ current metadata. However, deprecated
blocks still show tokens’ past metadata.

4.3.4. Integrating Transaction Events

Committing transactions of tokens is an integral element of every token standard.
Therefore, this architecture adopts the established transfer function of the existing NFT
standards ERC-721 and ERC-1155 [50,51] and integrates it into the token bucket. As
described in Section 4.3.1, when minting a token, the account triggering the transaction
becomes the first assigned owner of the token. The same applies to tokens resulting from a
token aggregation, as described in Section 4.3.2. Transaction events allow token owners
to transfer tokens from their account to another, permitting the new owner to execute all
types of supply chain events. Since the token memory of the token bucket stores tokens
in a database structure, a token transfer represents an update of the owner column. This
results in a similar mechanism to transforming tokens, except that the transfer transaction
updates the tokens’ owner instead of the metadata.

4.3.5. Integrating a Token History

“Although the existing token standards focus on secure input and interface design,
they do not consider an efficient way of conducting history searches” [45]. Therefore, it
requires searching the blockchain’s metadata to acquire visibility regarding tokens’ histories,
typically by means of a blockchain transaction explorer. Consequently, the traceability
complexity can increase drastically depending on the lengths of tokens’ life cycles on the
blockchain and the entanglement of their experienced object-related event sequences [45].
This contrasts traceability systems’ actual objective and requirements to ensure objects’
composition and processing traceability [2].

To overcome these traceability challenges, Watanabe et al. [45] propose extending
tokens with a ‘pointer’ referring to their previously experienced object event to facilitate the
accessibility of tokens’ histories. Kuhn et al. [46], on the other hand, propose an additional
dApp designed explicitly for reconstructing tokens’ histories in a smart contract. The
present paper’s architecture combines these two approaches and proposes making the
tokens’ history an integral part of the token bucket. In this way, minting a token generates
a copy of the token in an additional database structure—the token history. In the token
history, each object-related event subsequent to the token minting points to the previously
experienced event. Therefore, minting a token merely sets the starting reference of the
token history and, without other object-related events, represents the only data entry in the
array. In this context, the illustration of aggregation and disaggregation events requires
alternative forms of presentation.

In particular, to map the history of children tokens after a disaggregation event, the
token history requires a new logic to ensure their traceability since the parent token is no

Sensors 2023, 23, 1410 16 of 29

longer a reference point for further events. Therefore, this paper’s architecture proposes
generating a ‘disaggregation object’ in the token history which references the children
tokens after their disaggregation. This ensures that whenever the history of a token
references a disaggregation object, the child token is not part of an aggregation anymore
and can again experience an individual event history. Accordingly, future events reference
the previous child token instead of the disaggregation event. Figure 8 shows an example of
the token history reference mechanism when aggregating and disaggregating tokens.

Sensors 2023, 23, 1410 16 of 30

In particular, to map the history of children tokens after a disaggregation event, the
token history requires a new logic to ensure their traceability since the parent token is no
longer a reference point for further events. Therefore, this paper’s architecture proposes
generating a ‘disaggregation object’ in the token history which references the children to-
kens after their disaggregation. This ensures that whenever the history of a token refer-
ences a disaggregation object, the child token is not part of an aggregation anymore and
can again experience an individual event history. Accordingly, future events reference the
previous child token instead of the disaggregation event. Figure 8 shows an example of
the token history reference mechanism when aggregating and disaggregating tokens.

Figure 8. Token event history reference mechanism.

5. Prototyping-Based Evaluation
A recent comparison between dApp-capable blockchain platforms shows that the

Ethereum blockchain represents the most advanced blockchain platform, responsible for
84.5% of all deployed dApps across the platform candidates [52]. Accordingly, this paper
uses the Ethereum blockchain and the Ethereum-specific development tools and environ-
ments for the dApp architecture’s prototypical implementation. Therefore, the architec-
ture prototype uses Truffle Suite (v5.5.13) as the development environment for the dApp
and deploys the smart contracts on a local Ganache Ethereum Blockchain (v7.1.0). As com-
mon for Ethereum dApps, the smart contracts use the Solidity programming language
with the compiler Solc-JS (v.0.8.8) and NodeJS (v15.14.0) as the JavaScript runtime envi-
ronment for Truffle Suite. For the interaction with the local Ganache Ethereum blockchain
and the smart contract, the prototypical dApp uses the Ethereum JavaScript API Web3JS
(v1.3.5) and MetaMask as the wallet provider. For the frontend development, the proto-
typical dApp uses ReactJS (v17.0.2) and TailwindCSS (v3.1.8) as the user interface design
framework.

Currently, the Ethereum blockchain limits the smart contract size to 24,576 bytes [56].
Due to the complexity of the dApp’s architecture and the number of required functions,
this limit prevents the implementation of the complete logic in one smart contract. Alter-
natively, the Ethereum blockchain allows smart contracts to be split into several libraries,
outsourcing certain functions. When applied to the proposed dApp architecture, this re-
quires outsourcing the three components’ governance set, blueprint set, and token bucket,
each in its own smart contract. The supply chain smart contract serves as a connector for
all three libraries, maintaining the structure of the original architecture.

Figure 8. Token event history reference mechanism.

5. Prototyping-Based Evaluation

A recent comparison between dApp-capable blockchain platforms shows that the
Ethereum blockchain represents the most advanced blockchain platform, responsible for
84.5% of all deployed dApps across the platform candidates [52]. Accordingly, this paper
uses the Ethereum blockchain and the Ethereum-specific development tools and environ-
ments for the dApp architecture’s prototypical implementation. Therefore, the architecture
prototype uses Truffle Suite (v5.5.13) as the development environment for the dApp and
deploys the smart contracts on a local Ganache Ethereum Blockchain (v7.1.0). As common
for Ethereum dApps, the smart contracts use the Solidity programming language with the
compiler Solc-JS (v.0.8.8) and NodeJS (v15.14.0) as the JavaScript runtime environment for
Truffle Suite. For the interaction with the local Ganache Ethereum blockchain and the smart
contract, the prototypical dApp uses the Ethereum JavaScript API Web3JS (v1.3.5) and
MetaMask as the wallet provider. For the frontend development, the prototypical dApp
uses ReactJS (v17.0.2) and TailwindCSS (v3.1.8) as the user interface design framework.

Currently, the Ethereum blockchain limits the smart contract size to 24,576 bytes [56].
Due to the complexity of the dApp’s architecture and the number of required functions,
this limit prevents the implementation of the complete logic in one smart contract. Alter-
natively, the Ethereum blockchain allows smart contracts to be split into several libraries,
outsourcing certain functions. When applied to the proposed dApp architecture, this
requires outsourcing the three components’ governance set, blueprint set, and token bucket,
each in its own smart contract. The supply chain smart contract serves as a connector for
all three libraries, maintaining the structure of the original architecture.

In order to evaluate the architecture components’ practical applicability holistically,
the evaluation uses an example of a supply chain. This describes a simple process where a
manufacturer receives a delivery from a transport company, which includes a component
from its supplier. Subsequently, the manufacturer unpacks the delivery, deletes the delivery
box, and processes the component from the supplier. Finally, the manufacturer assembles

Sensors 2023, 23, 1410 17 of 29

the processed component along with one of their in-house components. Figure 9 illustrates
the example supply chain utilised to demonstrate the dApp’s workflow.

Sensors 2023, 23, 1410 17 of 30

In order to evaluate the architecture components’ practical applicability holistically,
the evaluation uses an example of a supply chain. This describes a simple process where
a manufacturer receives a delivery from a transport company, which includes a compo-
nent from its supplier. Subsequently, the manufacturer unpacks the delivery, deletes the
delivery box, and processes the component from the supplier. Finally, the manufacturer
assembles the processed component along with one of their in-house components. Figure
9 illustrates the example supply chain utilised to demonstrate the dApp’s workflow.

Figure 9. Example of a supply chain used to demonstrate the dApp’s workflow.

Before starting the process, the dApp administrator must register all parties involved
in the dApp. In the supply chain example case, the manufacturer deploys the smart con-
tracts and, therefore, has the initial rights to add further parties. As indicated, the interface
aims to deanonymise a party’s public key and assign initial rights to it. To promote clarity,
each party receives a role in the supply chain. The administrator can add new roles and
assign them to the party if a role does not exist.

Listing 1 shows the source code for adding parties. Fundamentally this function al-
lows a party with the rights to add other parties to insert a public key, the partyAddress,
and deanonymise it by adding information such as the name, contact data, and role. In
addition, the added party receives an assignment of initial rights. Here, as proposed by
the architecture, the prototype differs between administrative structure-related rights and
operative object-related rights.

Listing 1. Source code for adding parties.

1 function addParty(
2 string memory partyName,
3 string memory partyContact,
4 string memory roleName,
5 string memory roleColor,
6 address partyAddress,
7 bool operativeRights,
8 bool administrativeRights
9) public onlyPartiesWithAdministrativeRights {
10 Party memory party = Party(
11 partyAddress,
12 partyName,
13 partyContact,

Figure 9. Example of a supply chain used to demonstrate the dApp’s workflow.

Before starting the process, the dApp administrator must register all parties involved in
the dApp. In the supply chain example case, the manufacturer deploys the smart contracts
and, therefore, has the initial rights to add further parties. As indicated, the interface aims
to deanonymise a party’s public key and assign initial rights to it. To promote clarity, each
party receives a role in the supply chain. The administrator can add new roles and assign
them to the party if a role does not exist.

Listing 1 shows the source code for adding parties. Fundamentally this function
allows a party with the rights to add other parties to insert a public key, the partyAddress,
and deanonymise it by adding information such as the name, contact data, and role. In
addition, the added party receives an assignment of initial rights. Here, as proposed by
the architecture, the prototype differs between administrative structure-related rights and
operative object-related rights.

Listing 1. Source code for adding parties.
1 function addParty(
2 string memory partyName,
3 string memory partyContact,
4 string memory roleName,
5 string memory roleColor,
6 address partyAddress,
7 bool operativeRights,
8 bool administrativeRights
9) public onlyPartiesWithAdministrativeRights {
10 Party memory party = Party(
11 partyAddress,
12 partyName,
13 partyContact,
14 roleName,
15 roleColor,
16 basicCreationRights,
17 canAddParty
18);
19 parties.insertParty(party);
20 }

Sensors 2023, 23, 1410 18 of 29

The next step requires all added parties to create new blueprints of their respective
parts. Here, the assembly creation requires component 1 and component A ownership, and
the blueprint defines these two components as minting conditions. All existing blueprints
are globally visible to all registered accounts when defining the minting conditions. Here,
the unique blueprint ID of each available blueprint ensures the exact conclusion of the
correct blueprints in the requirements. For example, including the blueprint of component
1 translates to the requirement of owning a token created with the component 1 blueprint.

The function of creating blueprints represents the key element of the blueprint set.
Listing 2 shows the respective source code. For the unique blueprint ID creation, the
function hashes the token type name, its metadata, and the creation timestamp. As a
hashing algorithm, the function uses the Ethereum typical keccak-256. Like the SHA-256,
the keccak-256 results in 64 bytes in a hexadecimal number. In addition, the function allows
the inclusion of other blueprints as minting conditions.

Listing 2. Source code for creating blueprints.
1 function createBlueprint(
2 BlueprintItSet storage self,
3 address key,
4 string memory token,
5 string memory description,
6 string memory partyName
7) public returns (bytes32, Blueprint memory) {
8 uint256 creationTimestamp = block.timestamp;
9 bytes32 blueprintId = keccak256(
10 abi.encode(token, description, creationTimestamp)
11);
12 Blueprint memory createdBlueprint = Blueprint(
13 blueprintId,
14 token,
15 description,
16 supplierName,
17 creationTimestamp
18);
19 self.supplierBlueprints[key].push(createdBlueprint);
20 self.allBlueprints.push(createdBlueprint);
21 return (blueprintId, createdBlueprint);
22 }

In order to mint tokens and perform token aggregations, all parties require to access
the createToken function. Listing 3 shows the source code of the createToken function. This
function represents an essential element of the token bucket and the dApp in general.
It allows the minting of new tokens and includes the possibility of minting tokens with
minting conditions. Therefore, the function summarises the minting and aggregation of
tokens in one logic. As the logic of the architecture suggests, the creation of tokens requires
the respective blueprints. In case of aggregation, the function pushes the aggregated
tokens into the token container of the token bucket, creates a new token ID, and deletes the
aggregated tokens from the token memory. In addition, the function adds the creation data
to the token history.

Sensors 2023, 23, 1410 19 of 29

Listing 3. Source code for creating tokens.
1 function createToken(
2 TokenMap storage self,
3 address key,
4 Blueprint memory blueprintData,
5 uint256 creationTimestamp,
6 bytes32 tokenId,
7 string memory tokenDescription,
8 Token[] memory tokensToMerge
9) public {
10 require(bucketContainTokens(self, tokensToMerge));
11 bytes32 blueprintId = blueprintData.blueprintId;
12 bytes32[] memory aggregatedTokensIds = new bytes32[](
13 tokensToMerge.length
14);
15 string memory tokenName = blueprintData.token;
16 Token memory token = Token({
17 tokenId: tokenId,
18 blueprintId: blueprintId,
19 tokenName: tokenName,
20 tokenDescription: tokenDescription,
21 tokenCreator: blueprintData.blueprintCreator,
22 creationTimestamp: creationTimestamp
23 });
24 for (uint256 i = 0; i < tokensToMerge.length; i++) {
25 self.containedTokens[tokenId].push(tokensToMerge[i]);
26 aggregatedTokensIds[i] = tokensToMerge[i].tokenId;
27 deleteToken(self, key, tokensToMerge[i].tokenId, true);
28 }
29 insertToken(self, key, token);
30 insertHistoryData(
31 self,
32 tokenId,
33 tokenName,
34 tokenDescription,
35 msg.sender,
36 msg.sender,
37 creationTimestamp,
38 aggregatedTokensIds,
39 TokenHistoryState.Creation
40);
41 }

In the example supply chain, the manufacturer must disaggregate component 1 from
the delivery box. The function to disaggregate tokens is another key element of the
architecture since it represents a major distinction compared to previous architectures.
Listing 4 shows the source code for disaggregating tokens. As the functions indicate, the
disaggregation reverses the aggregation processes and moves the previously aggregated
tokens from the token container back to the token memory and, therefore, back to the
inventory of the triggering account. Subsequently, the function calls the deleteToken function
in the token bucket and deletes the aggregation token from the token memory. Finally, the
function adds a disaggregation object to the disaggregated tokens in the token history.

Sensors 2023, 23, 1410 20 of 29

Listing 4. Source code for disaggregating tokens.
1 function disaggregateToken(
2 TokenMap storage self,
3 Token memory token,
4 Token[] memory tokens,
5 address key
6) public {
7 bytes32 tokenId = token.tokenId;
8 require(contains(self, key, tokenId));
9 uint256 disaggregationTimestamp = block.timestamp;
10 bytes32[] memory disaggregatedTokenIds = new bytes32[](tokens.length);
11 for (uint256 i = 0; i < tokens.length; i++) {
12 Token memory disaggregatedToken = tokens[i];
13 disaggregatedTokenIds[i] = disaggregatedToken.tokenId;
14 insertToken(self, key, disaggregatedToken);
15 }
16 deleteToken(self, key, tokenId, false);
17 insertHistoryData(
18 self,
19 tokenId,
20 token.tokenName,
21 token.tokenDescription,
22 msg.sender,
23 msg.sender,
24 disaggregationTimestamp,
25 disaggregatedTokenIds,
26 TokenHistoryState.Disaggregation
27);
28 }

The manufacturer aggregated the transformed component 1 with component A in
the final step. Since the architecture proposes storing the token composition and history
on-chain, the data structure allows accessing each token’s entire composition and history
directly via the interface.

Figure 10 shows the respective interface for accessing the token history. The inter-
face displays the immutable history of the example of the event flow of component 1.
As illustrated, this includes the exact timestamps of all experienced events in chronolog-
ical order, as well as the parties involved. Here, the interface reduces the blockchain-
typical designations, such as public key strings, and uses the registered parties’ names
to promote comprehensibility. A key element of the token history is that even though
component 1 experienced an aggregation and a disaggregation, as the token IDs indicate
(0x98d. . .), the transformation subsequent to the disaggregation happens to the same token
as before the aggregation. This not only facilitates the traceability of complex supply
chain event flows but also highlights the architecture’s capability to restore tokens when
conducting disaggregations.

Sensors 2023, 23, 1410 21 of 29
Sensors 2023, 23, 1410 21 of 30

Figure 10. Interface for accessing the token history.

6. Results
This paper proposes a blockchain-based traceability architecture that integrates a

governance concept and a novel token concept to overcome the limitations of the existing
architectures. Here, the governance concept serves to deanonymise parties and manage
the supply chain structure by adding and removing parties as well as editing their appli-
cation rights. The novel token concept introduces token ‘blueprints’, which allow clients
to mint multiple tokens of different token types, where each token of the same type is non-
fungible. Furthermore, blueprints can define minting conditions necessary to mint token
aggregations that require the ownership of components, for example, when mapping as-
semblies. This structure facilitates the integration of functions in the architecture, which
allows for conducting all object-related supply chain events: creations and deletions, ag-
gregations and disaggregations, transformations, and transactions. In addition, the token
concept contains logic for an integrated token history, which ensures accessible on-chain
traceability of all object-related events and, therefore, the end-to-end traceability of their
physical or abstract representatives. Therefore, compared to available advanced block-

Figure 10. Interface for accessing the token history.

6. Results

This paper proposes a blockchain-based traceability architecture that integrates a
governance concept and a novel token concept to overcome the limitations of the existing
architectures. Here, the governance concept serves to deanonymise parties and manage the
supply chain structure by adding and removing parties as well as editing their application
rights. The novel token concept introduces token ‘blueprints’, which allow clients to
mint multiple tokens of different token types, where each token of the same type is non-
fungible. Furthermore, blueprints can define minting conditions necessary to mint token
aggregations that require the ownership of components, for example, when mapping
assemblies. This structure facilitates the integration of functions in the architecture, which
allows for conducting all object-related supply chain events: creations and deletions,
aggregations and disaggregations, transformations, and transactions. In addition, the token
concept contains logic for an integrated token history, which ensures accessible on-chain
traceability of all object-related events and, therefore, the end-to-end traceability of their
physical or abstract representatives. Therefore, compared to available advanced blockchain-
based traceability architectures, the proposed architecture enables a holistic coverage of

Sensors 2023, 23, 1410 22 of 29

the object-related supply chain events defined by EPCIS and incorporates a governance
concept as an integral component of the dApp. Table 1 compares the available advanced
blockchain-based traceability architectures with the architecture proposed in this article.

Table 1. Comparison of advanced blockchain-based traceability architectures.

Architecture
Object Event Aggregation Event Transfor-mation

Events
Transaction

Events
Governance

Concept
Token

Concept

Create Delete Aggregate Disaggregate

Westerkamp et al. [44] x x x x ERC-721

Watanabe et al. [45] x x x x ERC-721

Kuhn et al. [46] x x x x x ERC-1155

Article’s contribution x x x x x x x Blueprint-
based

As the prototyping-based evaluation shows, Ethereum’s programming language,
Solidity, enables the practical applicability of all developed components. Furthermore, the
Web3 user interface connected to the MetaMask wallet allows access to all smart contracts’
functions. By means of a supply chain example, it is possible to visually demonstrate
the functioning of novel components, such as token blueprints and the integrated token
history. However, it is necessary to outsource functions in smart contract libraries to
prove not only the practical applicability of individual components but also to combine
them holistically in a complete blockchain-based traceability solution. Therefore, due to
Ethereum’s current smart contract size limitation of 24576 bytes, the prototype splits the
functions of the governance set, blueprint set, and token bucket, each into its own smart
contract library. A central supply chain smart contract connects all three libraries and
maintains the architecture’s original structure.

The necessity to split smart contracts into libraries enforces a complexity dilemma
for dApps with extensive relationships and functional dependencies caused by the quasi-
Turing completeness of Ethereum dApps. The quasi-Turing completeness of Ethereum
dApps results from the fact that the underlying blockchain’s transaction size limits the
number of computational steps for executing the smart contracts machine [47]. Conse-
quently, the transactional input can exceed not only the possible transaction size but also
the computational steps caused by transactional queries. Figure 11 illustrates the dApp
complexity dilemma.

Sensors 2023, 23, 1410 23 of 30

Figure 11. The dApp complexity dilemma.

As Figure 11 illustrates, the number of transactional queries and the transactional
input size both increase the transaction size and limit the possible dApp complexity. Since
the architecture’s complex update and request relationship eventually increase the re-
quired transactional queries, the prototype in its current form already exploits Ethereum’s
possible dApp complexity, even though the actual transaction inputs in the example sup-
ply chain are relatively small. For example, adding a more granular rights allocation for
each function—instead of generalising the rights to administrative structure-related and
object-related operative rights—inevitably increases the functional dependencies and,
therefore, the required transactional queries, which exceeds Ethereum’s current transac-
tion size limit.

7. Discussion
This section summarises the paper’s key findings by answering the defined research

questions.
PRQ How can a blockchain-based traceability architecture be constructed which meets the gen-

eral-purpose requirements of dynamic, interconnected supply networks and ensures end-to-
end traceability of object-related supply chain events?

The paper’s architecture applies the fundamental structure of Web3 applications: in-
terfaces, smart contracts, and an underlying blockchain platform serving as the operating
system. It is composed of its smart contract structure’s three components; the governance
set, blueprint set, and token bucket. Here, the governance set includes functions defining
the supply chain structure-related administrative capabilities of the dApp architecture.
Therefore, compared to previous approaches, which typically rely on permissioned block-
chain settings to ensure dApp governance, the proposed architecture’s governance con-
cept is an integral component of the dApp. The functions of the governance set include
the possibility to add and remove parties as well as to edit their structure-related admin-
istrative and object-related operative rights.

Furthermore, the architecture entails a blueprint set, allowing clients to create owna-
ble and unique token blueprints, thus introducing a novel concept that defines minting
conditions for NFTs necessary to mint multiple NFTs of the same token type. In this way,
the novel concept of blueprints solves the limitations of the current ERC-1155 token stand-
ard, which only allows minting multiple FTs of the same token type.

The token bucket, which defines the object-related operative capabilities of the dApp,
represents the architecture’s final component. The token bucket contains functions allow-

Figure 11. The dApp complexity dilemma.

Sensors 2023, 23, 1410 23 of 29

As Figure 11 illustrates, the number of transactional queries and the transactional
input size both increase the transaction size and limit the possible dApp complexity. Since
the architecture’s complex update and request relationship eventually increase the required
transactional queries, the prototype in its current form already exploits Ethereum’s possible
dApp complexity, even though the actual transaction inputs in the example supply chain
are relatively small. For example, adding a more granular rights allocation for each
function—instead of generalising the rights to administrative structure-related and object-
related operative rights—inevitably increases the functional dependencies and, therefore,
the required transactional queries, which exceeds Ethereum’s current transaction size limit.

7. Discussion

This section summarises the paper’s key findings by answering the defined
research questions.

PRQ How can a blockchain-based traceability architecture be constructed which meets the general-
purpose requirements of dynamic, interconnected supply networks and ensures end-to-end
traceability of object-related supply chain events?

The paper’s architecture applies the fundamental structure of Web3 applications: in-
terfaces, smart contracts, and an underlying blockchain platform serving as the operating
system. It is composed of its smart contract structure’s three components; the gover-
nance set, blueprint set, and token bucket. Here, the governance set includes functions
defining the supply chain structure-related administrative capabilities of the dApp archi-
tecture. Therefore, compared to previous approaches, which typically rely on permissioned
blockchain settings to ensure dApp governance, the proposed architecture’s governance
concept is an integral component of the dApp. The functions of the governance set in-
clude the possibility to add and remove parties as well as to edit their structure-related
administrative and object-related operative rights.

Furthermore, the architecture entails a blueprint set, allowing clients to create ownable
and unique token blueprints, thus introducing a novel concept that defines minting condi-
tions for NFTs necessary to mint multiple NFTs of the same token type. In this way, the
novel concept of blueprints solves the limitations of the current ERC-1155 token standard,
which only allows minting multiple FTs of the same token type.

The token bucket, which defines the object-related operative capabilities of the dApp,
represents the architecture’s final component. The token bucket contains functions allowing
the creation and deletion, aggregating and disaggregating, transforming, and transferring
of tokens. Therefore, compared to the previous architectures, the proposed architecture
covers all object-related supply chain events defined by the EPCIS standard. Furthermore,
since previous architectures cannot directly perform token disaggregations, the proposed
architecture establishes a sub-component of the token bucket, the token container, which
stores all tokens that are part of token aggregations. Instead of referencing an owning
account, tokens in the token container reference their aggregation token. When disaggre-
gating tokens, the logic deletes the token aggregation and pushes its containing tokens
back to the account’s inventory. This ensures a mechanism allowing the restoration of pre-
viously aggregated tokens. Finally, the token bucket has an integrated token history, which
ensures accessible on-chain traceability data of all object-related events and, therefore, the
end-to-end traceability of their physical or abstract representatives.

SRQ1What are the limitations of existing blockchain-based traceability solutions described in
the literature?

The vast majority of existing solutions deal with low-complexity architectures allowing
the traceability of single objects without the ability to map compositional changes. However,
the three advanced blockchain-based traceability architectures developed by Westerkamp
et al. [44], Watanabe et al. [45], and Kuhn et al. [46] show certain general-purpose capabilities
that can map compositional changes. First, the Westerkamp architecture applies the ERC-
721 NFT standard as an architectural means and introduces ‘token recipes’ to map token

Sensors 2023, 23, 1410 24 of 29

aggregations. The Watanabe architecture applies the same ERC-721-based logic and extends
tokens with ‘pointers’ to each token to the state of the past tokens to facilitate traceability.
Lastly, the Kuhn architecture applies the ERC-1155 hybrid token standard and incorporates
a governance concept based on a permissioned Ethereum blockchain. However, the applied
architectural means show limitations regarding their ability to map all object-related supply
chain events and an integrated governance concept. The limitations regarding object-
related supply chain events specifically involve the deletion of tokens and aggregation
and disaggregation.

SRQ2What are the architectural requirements for an end-to-end traceability solution for dynamic,
interconnected supply networks?

As typical for traceability systems, dynamic, interconnected networks also require
parties and objects at their heart. The architecture must clearly identify each party and
assign role-related rights. Furthermore, since interconnected supply chains are subject to
structural transitions at any time, the architecture must ensure that parties are integrated
seamlessly but must also have the capability to remove them if necessary. In addition to
the structural requirements, interconnected supply chains place requirements regarding
the objects. These require the clear identification of physical and abstract objects as well as
the capability to map all object-related supply chain events, which involves their creation
and deletion and, in between, the execution of transactions, transformations, aggregations,
and, in the case of previous aggregations, the execution of disaggregations. Due to the
emergent characteristics of contemporary interconnected networks, objects travel in a
non-predefined manner through supply chains which requires the architecture to allow
objects to experience events in an arbitrary sequence. Finally, to ensure the architecture’s
traceability feature, the architecture requires the provision of a traceable end-to-end event
history throughout an object’s life cycle.

SRQ3How can the architecture’s components be implemented in code to enable its practical applica-
bility in a blockchain-based traceability solution?

The prototyping-based evaluation proves the practical applicability of all architectural
components by utilising a local Ethereum platform with Ethereum-specific development
tools and environments. Furthermore, it is possible to implement the component’s update
and request relationships in a blockchain-based traceability solution. However, due to
Ethereum’s current smart contracts’ size limitation of 24576 bytes, it is necessary to out-
source functions in smart contract libraries. Here, the prototype uses libraries according to
the architecture’s structure and establishes libraries for the governance set, the blueprint
set, and the token bucket. Finally, a central supply chain smart contract maintains the
architecture’s original logic and queries the functions outsourced in the respective libraries.

Since the quasi-Turing completeness of the underlying blockchain limits the number
of computational steps for executing smart contracts, smart contract functions that contain
functional dependencies, such as calling other functions or requesting data, increase the
size of transactions from a computative standpoint. Therefore, not only can the transac-
tional input exceed the possible transaction size, but also the computational steps caused
by transactional queries. Consequently, the necessity to outsource functions in smart
contract libraries enforces a complexity dilemma for dApps with extensive relationships
and functional dependencies, such as the proposed blockchain-based traceability solution.
The complexity dilemma describes a dilemma where the number of transactional queries
and the transactional input size both increase the transaction size and limit the possible
dApp complexity. Even though the transactional input size of all transactions conducted
within the prototype-based evaluation is relatively small, the architecture’s functional
dependencies and relationships eventually require querying data, such as account rights
or blueprint and token availability. This ultimately increases the necessary transactional
queries and thus increases the computational steps for executing smart contracts. Conse-
quently, the prototype in its present state exploits the currently possible dApp complexity
of Ethereum dApps.

Sensors 2023, 23, 1410 25 of 29

8. Summary of Unique Contributions

This section summarises and lists the paper’s unique research contributions resulting
from answering the research questions.

1. Integrated governance concept. Compared to previous advanced blockchain-based
traceability architectures, the proposed architecture incorporates a governance concept
as an integral component of the dApp. The governance concept includes all functions
necessary to manage the supply chain’s structure. This makes the dApp independent
of the underlying blockchain access settings since it allows an operation in both
permissionless and permissioned settings. Thus, the blockchain platform serves solely
as an operating system determining the framework conditions for smart contracts and
smart contract interactions but does not actively need, for example, to deanonymise
parties and allow their participation.

2. Blueprint-based token concept. The proposed blueprint-based token concept introduces
a novel NFT logic that overcomes the limitations of available ERC-721 and ERC-1155
token standards, which previous supply chain traceability architectures commonly
applied for reflecting supply chain objects. Compared to available token standards, the
introduced blueprints enable minting multiple NFTs of the same type. This facilitates
mapping token aggregations since minting conditions can include the type instead of
a specific token ID. Therefore, instead of requiring a smart contract recipe for each
assembly, one blueprint can mint multiple non-fungible assembly tokens of its type.

3. Coverage of object-related supply chain events. The proposed blockchain-based traceabil-
ity architecture covers all supply chain events defined by EPCIS. In particular, the
proposed architecture includes new mechanisms to aggregate and disaggregate to-
kens. For this to be possible, the architecture pushes aggregated tokens into an owned
memory, the ‘token container’. Simplified, instead of referring to an owning public
key, aggregated tokens refer to an ‘owning’ token aggregation. The disaggregation
function pushes the previously aggregated tokens from the token container back to
the token memory and deletes the token aggregation. This mechanism ensures that
previously aggregated tokens are restored and maintain their unique identifiers, rep-
resenting a cornerstone for mapping sequences of aggregations and disaggregation,
as is necessary for delivery supply chains.

4. Prototypical implementation. The paper provides a fully operational prototype that
covers all functionalities specified in the blockchain-based traceability architecture.
However, due to the architecture’s complexity and Ethereum’s current transaction
limit, the prototypical implementation reveals a dApp complexity dilemma. This
describes, for the first time, that complex dApps requiring extensive functional de-
pendencies not only experience limitations regarding their transactional inputs (for
example, storing images on-chain) but also face limitations regarding their possible
computational steps when executing transactional queries.

9. Conclusions and Recommendations

The blockchain-based traceability architecture developed in this paper provides an
environment that reflects objects with globally unique tokens without requiring a central
coordinator. At the same time, the proposed architecture shows completeness regarding
the mapping of object-related supply chain events defined by EPCIS and proves general-
purpose capabilities applicable to manufacturing and logistics scenarios. This, in particular,
includes new mechanisms to aggregate and disaggregate tokens. Here, blockchain’s im-
mutability ensures data consistency across all participating parties, for example, when
defining aggregation conditions for mapping assembly processes, resulting in the abil-
ity to ensure consistent reflections of tokens’ histories of their arbitrarily experienced
sequences of supply chain events. These elements represent important cornerstones in
making blockchain’s end-to-end traceability capabilities accessible for complex supply
chains containing objects that can experience compositional changes. Thus, the architecture
overcomes the shortcomings of current blockchain-based traceability solutions. How-

Sensors 2023, 23, 1410 26 of 29

ever, specific scenarios may require an extension of its capabilities. Therefore, as the final
step, the paper summarises the architecture’s current limitations and anticipates topics for
further research.

1. Blockchain scalability. The paper’s dApp architecture proves the technical feasibility
of a blockchain-based architecture allowing a holistic mapping of object-related core
events. This serves as an example of blockchain’s strong and incomparable capabilities
regarding objects’ traceability in dynamic, interconnected supply networks. However,
the architecture’s prototypical implementation already exploits the currently possible
dApp complexity of permissionless environments in a supply chain management
context. Most certainly, further research is necessary to drastically improve blockchain
technology’s scalability to provide blockchain-based operating systems with the
capacity to deploy dApps creating traceability ecosystems with industrial relevance.
This includes all blockchain’s major elements, such as block size, transaction fees,
transaction size, transactional throughput, and smart contract size.

2. Complexity dilemma. The prototypical implementation focuses on proving the archi-
tecture’s practical applicability. Consequently, the prototype exploits Ethereum’s
possible dApp complexity in its current version. Extending the possible dApp com-
plexity correlates strongly with the previously stated limitation regarding improving
blockchain’s general scalability. However, optimising the architecture’s components
in terms of algorithm efficiency and reducing functional dependencies may lower
its required computational resources. Further research is necessary to evaluate the
proposed concept mathematically and identify resource-intensive inefficiencies.

3. Legal possession. The architecture displays only the current owner of objects but not
their legal possession. In cases where the legal owner is crucial for the application
scenario (e.g., in leasing business models), an extension may be necessary. Here,
one solution could be to extend the wallet functionality and introduce two types of
token transactions, changes of ownership and legal possession. In general, blockchain
tokens and their transparent and immutable traceability cannot currently replace
legally binding documents since legal authorities do not yet accept the technology as a
legal basis. Further research may investigate the capabilities of blockchain technology
regarding its suitability for objects’ legally-binding proof of possession.

4. Standardised interfaces for objects. The architecture allows adding metadata as individual
input data strings and, therefore, generalises the inputs for all objects, making it
vulnerable to incorrect input and inconsistent data formats. Since research regarding
cumulative approaches such as the AAS aims to create standardised interfaces and
data formats for each object type, it may be possible to combine the two approaches
efficiently. A possible combined solution could rely on the blockchain-based dApp
architecture as a superordinated data structure and attach object-related data using
the standardised interfaces of the AAS.

5. Object durability. The architecture assumes that even after several transformations,
a disaggregation of an assembly into its components is always possible. However,
there may be scenarios where transformations ‘destroy’ certain involved components.
Currently, the architecture can map such cases only by stringing disaggregation and
deletion events together. This requires a further investigation of the core object-related
supply chain events and a possible division into further sub-events.

6. On-chain/off-chain storage. The proposed architecture relies heavily on on-chain storage
since it represents the most efficient way to retrieve interrelated information strings,
such as the token history from the blockchain. However, such on-chain storage
designs burden the blockchain, which already has a limited capacity regarding its
block, transaction, and smart contract size. Therefore, further research is necessary to
evaluate the architecture’s components regarding their data load in industrial settings
over time, potentially requiring rearranging certain components in off-chain storages.
This offers another intersection with the research regarding centralised cumulative
approaches such as the AAS, possibly resulting in a hybrid architecture that utilises

Sensors 2023, 23, 1410 27 of 29

the AAS as standardised off-chain storage for sensitive and memory-intense data,
while the blockchain stores data with high consistency necessity on-chain, utilising
the logic of the proposed architecture.

7. Authority bubbles. The architecture’s authority concept applies globally to the whole
dApp. However, when objects leave one company’s ecosystem, it may be possible
that these objects enter a new ecosystem with new roles and permissions. This raises
the potential for exploring integrated ‘authority bubbles’ with a demarcated sphere of
influence in a decentralised ecosystem.

8. Case study evaluation. To address the previously mentioned limitations, it is necessary
to further evaluate the architecture with industrial case studies located in different
industries and domains, including emerging supply chain objectives in the sustain-
ability domain, such as circular economy approaches and the generation of objects’
carbon footprints.

Author Contributions: Conceptualisation, software validation, visualisation, writing—original draft
preparation, F.D.; writing—review and editing, supervision, L.L.; writing—review and editing,
supervision, D.P. All authors have read and agreed to the published version of the manuscript.

Funding: The article processing charge was funded by the Baden-Württemberg Ministry of Science,
Research and Arts and by Reutlingen University in the funding programme Open Access Publishing.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ivanov, D.; Dolgui, A. Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability.

A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 2020, 58, 2904–2915. [CrossRef]
2. GS1 Global Traceability Standard, version 2.0; GS1’s Framework for the Design of Interoperable Traceability Systems for Supply

Chains. GS1: Brussels, Belgium, 2017.
3. Sodhi, M.S.; Tang, C.S. Research Opportunities in Supply Chain Transparency. Prod. Oper. Manag. 2019, 28, 2946–2959. [CrossRef]
4. Barratt, M.; Oke, A. Antecedents of supply chain visibility in retail supply chains: A resource-based theory perspective.

J. Oper. Manag. 2007, 25, 1217–1233. [CrossRef]
5. Roy, V. Contrasting supply chain traceability and supply chain visibility: Are they interchangeable? Int. J. Logist. Manag. 2021, 32,

942–972. [CrossRef]
6. Schwägele, F. Traceability from a European perspective. Meat Sci. 2005, 71, 164–173. [CrossRef]
7. Olsen, P.; Borit, M. How to define traceability. Trends Food Sci. Technol. 2013, 29, 142–150. [CrossRef]
8. Smith, G.; Tatum, J.; Belk, K.; Scanga, J.; Grandin, T.; Sofos, J. Traceability from a US perspective. Meat Sci. 2005, 71, 174–193.

[CrossRef]
9. EPCIS. EPC Information Services (EPCIS) Standard. 2016. Available online: https://www.gs1.org/sites/default/files/docs/epc/

EPCIS-Standard-1.2-r-2016-09-29.pdf (accessed on 5 September 2022).
10. Konovalenko, I.; Ludwig, A. Event processing in supply chain management—The status quo and research outlook. Comput. Ind.

2019, 105, 229–249. [CrossRef]
11. IEC 62507; Identification Systems Enabling Unambiguous Information Interchange—Requirements—Part 1: Principles and

Methods. VDE: Frankfurt am Main, Germany, 2012.
12. Grangel, I.; Halilaj, L.; Coskun, G. Towards a semantic administrative shell for industry 4.0 components. In Proceedings of the In

Semantic Computing (ICSC), 2016 IEEE Tenth International Conference, Laguna Hills, CA, USA, 4–6 February 2016; pp. 230–237.
13. Cavalieri, S.; Mule, S.; Salafia, M.G. OPC UA-based Asset Administration Shell. In Proceedings of the IECON 2019—45th Annual

Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 2982–2989. [CrossRef]
14. Hansen, C.D.; Johnson, C.R. Visualization Handbook; Elsevier: Oxford, UK, 2004.
15. Jasmine, J.A.; Jenipher, V.N.; Jimreeves, J.S.R.; Ravindran, K.; Dhinakaran, D. A traceability set up using Digitalization of Data

and Accessibility. In Proceedings of the IEEE International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi,
India, 3–5 December 2020; Volume 3, pp. 907–910. [CrossRef]

16. Gross, T.; MacCarthy, B.L.; Wildgoose, N. Introduction to dynamics of manufacturing supply networks. Chaos Interdiscip. J.
Nonlinear Sci. 2018, 28, 093111. [CrossRef] [PubMed]

17. Federal Ministry for Economic Affairs and Energy. Structure of the Administration Shell—Continuation of the Development of the
Reference Model for the Industrie 4.0 Component; Spree Druck Berlin GmbH: Berlin, Germany, 2016.

http://doi.org/10.1080/00207543.2020.1750727
http://doi.org/10.1111/poms.13115
http://doi.org/10.1016/j.jom.2007.01.003
http://doi.org/10.1108/IJLM-05-2020-0214
http://doi.org/10.1016/j.meatsci.2005.03.002
http://doi.org/10.1016/j.tifs.2012.10.003
http://doi.org/10.1016/j.meatsci.2005.04.002
https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-2016-09-29.pdf
https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-2016-09-29.pdf
http://doi.org/10.1016/j.compind.2018.12.009
http://doi.org/10.1109/iecon.2019.8926859
http://doi.org/10.1109/iciss49785.2020.9315938
http://doi.org/10.1063/1.5053669
http://www.ncbi.nlm.nih.gov/pubmed/30278621

Sensors 2023, 23, 1410 28 of 29

18. Specification—Details of the Asset Administration Shell: Part 1—The Exchange of Information between Partners in the Value Chain of
Industrie 4.0; Plattform Industrie 4.0. Federal Ministry for Economic Affairs and Climate Action (BMWK): Berlin, Germany, 2022.

19. Deuter, A.; Imort, S. Product Lifecycle Management with the Asset Administration Shell. Computers 2021, 10, 84. [CrossRef]
20. Wei, K.; Sun, J.; Liu, R. A Review of Asset Administration Shell. In Proceedings of the IEEE International Conference on Industrial

Engineering and Engineering Management, Macao, China, 15–18 December 2019; pp. 1460–1465. [CrossRef]
21. Abeyratne, S.A.; Monfared, R.P. Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol.

2016, 5, 1–10. [CrossRef]
22. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 5 September 2022).
23. El Ioini, N.; Pahl, C. A Review of Distributed Ledger Technologies. Lect. Notes Comput. Sci. 2018, 11230, 277–288.
24. Hansen, P. Bitkom Position Paper on the European Commission’s Proposals on Markets in Crypto-Assets (MiCA) and a pilot

Regime for Market Infrastructures Based on Distributed Ledger Technology. 2020. Available online: https://www.bitkom.org/
sites/default/files/2021-01/bitkom_position_paper_on_mica_and_dlt_pilot_regime_20210111.pdf (accessed on 1 March 2022).

25. Coppi, G.; Fast, L. Blockchain and Distributed Ledger Technologies in the Humanitarian Sector; Overseas Development Institute:
London, UK, 2019.

26. Wan, S.; Li, M.; Liu, G.; Wang, C. Recent advances in consensus protocols for blockchain: A survey. Wirel. Networks 2020, 26,
5579–5593. [CrossRef]

27. Liu, Y.; Lu, Q.; Xu, X.; Zhu, L.; Yao, H. Applying Design Patterns in Smart Contracts: A Case Study on a Blockchain-Based
Traceability Application. Lect. Notes Comput. Sci. 2018, 10974, 92–106. [CrossRef]

28. Cole, R.; Stevenson, M.; Aitken, J. Blockchain technology: Implications for operations and supply chain management.
Supply Chain Manag. Int. J. 2019, 24, 469–483. [CrossRef]

29. Fang, H.; Fang, F.; Hu, Q.; Wan, Y. Supply Chain Management: A Review and Bibliometric Analysis. Processes 2022, 10, 1681.
[CrossRef]

30. Dasaklis, T.K.; Voutsinas, T.G.; Tsoulfas, G.T.; Casino, F. A Systematic Literature Review of Blockchain-Enabled Supply Chain
Traceability Implementations. Sustainability 2022, 14, 2439. [CrossRef]

31. Wang, L.; He, Y.; Wu, Z. Design of a Blockchain-Enabled Traceability System Framework for Food Supply Chains. Foods 2022,
11, 744. [CrossRef]

32. Vaishnavi, V.; Kuechler, W. Design Science Research in Information Systems; AIS: Langen, Germany, 2004; pp. 1–45.
33. Thuan, N.H.; Drechsler, A.; Antunes, P. Construction of Design Science Research Questions. Commun. Assoc. Inf. Syst. 2019, 44,

332–363. [CrossRef]
34. Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice, 3rd ed.; Addison-Wesley: Upper Saddle River, NJ, USA; Munich,

Germany, 2013.
35. Broy, M. The Leading Role of Software and Systems Architecture in the Age of Digitization. In The Essence of Software Engineering;

Springer: Cham, Switzerland, 2018; pp. 1–23. [CrossRef]
36. Vogel, O.; Arnold, I.; Chughtai, A.; Kehrer, T. Software Architecture—A Comprehensive Framework and Guide for Practitioners; Springer:

Berlin/Heidelberg, Germany, 2011.
37. Münch, T. System Architecture Design and Platform Development Strategies: An Introduction to Electronic Systems Development in the

Age of AI, Agile Development, and Organizational Change; Springer International Publishing: Cham, Switzerland, 2022.
38. Alebrahim, A. Bridging the Gap between Requirements Engineering and Software Architecture; Springer Fachmedien: Wiesbaden,

Germany, 2017. [CrossRef]
39. Sahlabadi, M.; Muniyandi, R.C.; Shukur, Z.; Qamar, F. Lightweight Software Architecture Evaluation for Industry: A Comprehen-

sive Review. Sensors 2022, 22, 1252. [CrossRef]
40. Gregor, S.; Hevner, A.R. Positioning and Presenting Design Science Research for Maximum Impact. MIS Q. 2013, 37, 337–355.

[CrossRef]
41. Chang, S.E.; Chen, Y. When Blockchain Meets Supply Chain: A Systematic Literature Review on Current Development and

Potential Applications. IEEE Access 2020, 8, 62478–62494. [CrossRef]
42. Dietrich, F.; Ge, Y.; Turgut, A.; Louw, L.; Palm, D. Review and analysis of blockchain projects in supply chain management.

Procedia Comput. Sci. 2021, 180, 724–733. [CrossRef]
43. Linnet, E.; Wagner, S. Maersk and IBM Introduce TradeLens Blockchain Shipping Solution. 2018. Available online:

https://newsroom.ibm.com/2018-08-09-Maersk-and-IBM-Introduce-TradeLens-Blockchain-Shipping-Solution (accessed on
29 November 2022).

44. Westerkamp, M.; Victor, F.; Küpper, A. Tracing manufacturing processes using blockchain-based token compositions.
Digit. Commun. Networks 2020, 6, 167–176. [CrossRef]

45. Watanabe, H.; Ishida, T.; Ohashi, S.; Fujimura, S.; Nakadaira, A.; Hidaka, K.; Kishigami, J. Enhancing Blockchain Traceability with
DAG-Based Tokens. In Proceedings of the International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July
2019; pp. 220–227. [CrossRef]

46. Kuhn, M.; Funk, F.; Zhang, G.; Franke, J. Blockchain-based application for the traceability of complex assembly structures.
J. Manuf. Syst. 2021, 59, 617–630. [CrossRef]

47. Antonopoulos, A.M.; Wood, G.A. Mastering Ethereum—Building Smart Contracts and DApps; O’Reilly Media: Tokyo, Japan, 2019.

http://doi.org/10.3390/computers10070084
http://doi.org/10.1109/IEEM44572.2019
http://doi.org/10.15623/ijret.2016.0509001
https://bitcoin.org/bitcoin.pdf
https://www.bitkom.org/sites/default/files/2021-01/bitkom_position_paper_on_mica_and_dlt_pilot_regime_20210111.pdf
https://www.bitkom.org/sites/default/files/2021-01/bitkom_position_paper_on_mica_and_dlt_pilot_regime_20210111.pdf
http://doi.org/10.1007/s11276-019-02195-0
http://doi.org/10.1007/978-3-319-94478-4_7
http://doi.org/10.1108/SCM-09-2018-0309
http://doi.org/10.3390/pr10091681
http://doi.org/10.3390/su14042439
http://doi.org/10.3390/foods11050744
http://doi.org/10.17705/1cais.04420
http://doi.org/10.1007/978-3-319-73897-0_1
http://doi.org/10.1007/978-3-658-17694-5
http://doi.org/10.3390/s22031252
http://doi.org/10.25300/MISQ/2013/37.2.01
http://doi.org/10.1109/ACCESS.2020.2983601
http://doi.org/10.1016/j.procs.2021.01.295
https://newsroom.ibm.com/2018-08-09-Maersk-and-IBM-Introduce-TradeLens-Blockchain-Shipping-Solution
http://doi.org/10.1016/j.dcan.2019.01.007
http://doi.org/10.1109/blockchain.2019.00036
http://doi.org/10.1016/j.jmsy.2021.04.013

Sensors 2023, 23, 1410 29 of 29

48. Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges, Cryptogra-
phy and Security. arXiv 2021. [CrossRef]

49. Vogelsteller, F.; Buterin, V. EIP-20: Token Standard, Ethereum Improvement Proposals, No. 20. 2015. Available online:
https://eips.ethereum.org/EIPS/eip-20 (accessed on 5 September 2022).

50. Entriken, W.; Shirley, D.; Evans, J.; Sachs, N. EIP-721: Non-Fungible Token Standard, Ethereum Improvement Proposals, No. 721.
2018. Available online: https://eips.ethereum.org/EIPS/eip-721 (accessed on 5 September 2022).

51. Radomski, W.; Cooke, A.; Castonguay, P.; Therien, J.; Binet, E.; Sandford, R. EIP-1155: Multi Token Standard, Ethereum Improve-
ment Proposals, No. 1155. 2018. Available online: https://eips.ethereum.org/EIPS/eip-1155 (accessed on 5 September 2022).

52. Leiponen, A.; Thomas, L.D.W.; Wang, Q. The dApp economy: A new platform for distributed innovation? Innovation 2021, 24,
125–143. [CrossRef]

53. Ante, L. Smart contracts on the blockchain—A bibliometric analysis and review, Blockchain Research Lab Working Paper 10.
Telemat. Inform. 2020, 57, 101519. [CrossRef]

54. Rudberg, M.; Olhager, J. Manufacturing networks and supply chains: An operations strategy perspective. Omega 2003, 31, 29–39.
[CrossRef]

55. Hu, Y.; Liyanage, M.; Mansoor, A.; Thilakarathna, K.; Jourjon, G.; Seneviratne, A. Blockchain-Based Smart Contracts—Applications
and Challenges. 2019. Available online: https://arxiv.org/pdf/1810.04699.pdf (accessed on 2 September 2022).

56. Buterin, V. EIP-170: Contract Code Size Limit. 2016. Available online: https://eips.ethereum.org/EIPS/eip-170 (accessed on
9 September 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.48550/arXiv.2105.07447
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
http://doi.org/10.1080/14479338.2021.1965887
http://doi.org/10.1016/j.tele.2020.101519
http://doi.org/10.1016/S0305-0483(02)00063-4
https://arxiv.org/pdf/1810.04699.pdf
https://eips.ethereum.org/EIPS/eip-170

	Introduction
	Research Methodology
	Limitations of Existing Blockchain-Based Traceability Architectures
	Architecture Development
	Requirement Derivation
	Development of a Governance Concept
	Adding Parties
	Removing Parties
	Editing Rights

	Development of a Token Concept
	Integrating Object Events
	Integrating Aggregation/Disaggregation Events
	Integrating Transformation Events
	Integrating Transaction Events
	Integrating a Token History

	Prototyping-Based Evaluation
	Results
	Discussion
	Summary of Unique Contributions
	Conclusions and Recommendations
	References

