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Foreword

The Fourteenth International Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA 2022), held between May 22 – 26, 2022, continued a series of international events
covering a large spectrum of topics related to advances in fundamentals on databases, evolution of
relation between databases and other domains, data base technologies and content processing, as well
as specifics in applications domains databases.

Advances in different technologies and domains related to databases triggered substantial
improvements for content processing, information indexing, and data, process and knowledge mining.
The push came from Web services, artificial intelligence, and agent technologies, as well as from the
generalization of the XML adoption.

High-speed communications and computations, large storage capacities, and load-balancing for
distributed databases access allow new approaches for content processing with incomplete patterns,
advanced ranking algorithms and advanced indexing methods.

Evolution on e-business, ehealth and telemedicine, bioinformatics, finance and marketing,
geographical positioning systems put pressure on database communities to push the ‘de facto’ methods
to support new requirements in terms of scalability, privacy, performance, indexing, and heterogeneity
of both content and technology.

We take here the opportunity to warmly thank all the members of the DBKDA 2022 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to DBKDA 2022. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DBKDA 2022 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that DBKDA 2022 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the fields of databases,
knowledge and data applications.

We are convinced that the participants found the event useful and communications very open.
We also hope that Venice provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city
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GmbH, Austria
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Abstract—In this paper, we will present the idea of applying the 
hybrid intelligence technologies in data privacy. This new 
paradigm joins artificial intelligence (AI) with human 
intelligence, and allows to support creation of user-oriented 
cryptographic procedures. Such protocols will apply selected 
users’ preferences in protocols dedicated for increasing data 
privacy. 

Keywords-Hybrid Intelligence; data privacy; cryptograpic 
protocols. 

I.  INTRODUCTION 
Modern cryptographic algorithms may be oriented on 

particular person or group of users. To achieve such feature, it 
can be implemented using selected AI techniques. There are 
many contributions presenting security approaches focused on 
particular users e.g., defining personalized cryptographic 
protocols [1][2], which can implement personal features or 
special AI techniques to select unique parameters. Among 
such techniques we can also find solutions, in which artificial 
intelligence allows to extract behavioral features or cognitive 
skills [3][4]. Application of AI procedures allows to define a 
new area of IT security called cognitive cryptography [5]. 

Nowadays we can also observe development of new 
hybrid, i.e., human-AI solutions in security technologies. This 
means that also in IT security will be possible to introduce 
hybrid human-AI approaches, which can be focused to 
guarantee the high security level, and oriented for selected 
users. Such solutions allow to extend traditional security 
procedures towards more extensive and optimized analysis of 
security parameters (or features), and creation of security 
procedures strongly connected with particular persons. 
Extensive semantic analysis can be supported by AI solutions, 
which allow to select the optimal personal parameters or 
features for created user-oriented security protocols. 

Below will be described areas of application of such 
hybrid procedures, which can be defined for security 
purposes. 

 

II. HYBRID APPROACHES IN SECURITY PROTOCOLS  
The most important areas of application of hybrid security 

protocols are the following: 
• Secure information sharing with privileges 

• Knowledge-based authentication protocols 
• Visual cryptography  
• Personalized behavioral security procedures 

 
In such areas we can define user-oriented security 

procedures, which involve AI procedures. AI techniques 
perform optimization tasks, especially important in selection 
of parameters, or during evaluation of features implemented 
in security protocols. For example, when we try to define a 
personalized security protocol we often apply personal 
features or characteristics. Considering different biometric 
patterns as well as other specific users features we can 
evaluate for a particular person a very large feature vector with 
many personal characteristics. Having such personal record, 
we can easily select a some of the most distinctive personal 
features which can later be involved in personalized or user-
oriented protocol.  

Considering the above mentioned areas of application, we 
can define the most important features of such protocols as 
follows. 

In secure information sharing, hybrid intelligence can be 
applied in such manner that user preferences or personal 
features will have influence on selection of the sharing 
algorithm, and starting parameters like number of parts, 
privileges etc. The way of parts distribution can be dependent 
on AI procedures, which allow to perform division of secret 
information over several layers.  

Knowledge-based authentication protocols can be 
oriented for particular user or group of persons [6]. In such 
techniques, expertise knowledge and experiences can be 
considered, and authentication protocol will be related with 
thematic visual patterns. Personal features may be related to 
expertise areas connected with particular user. Having 
selected the thematic areas AI approaches allow to efficiently 
select or find visual patterns, which can be presented to user 
during security procedures.  

Visual cryptography is one of the most important areas of 
application of hybrid intelligence security protocols. Such 
techniques allow to split visual secret information into several 
different parts. Usually personal recognition abilities are 
connected with perception function, and decide when 
particular user is able to recognize original secret. With such 
techniques will be possible to establish personal perception 
thresholds evaluated for different users. Perception levels can 
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also be dependent on user’s knowledge and experiences. In 
such protocols, knowledge and expectations define human 
factors, but perception abilities can be evaluated by AI 
procedures. 

Personalized behavioral security procedures allow to 
define a special type of security protocols, in which different 
movement feature can be considered [7]. It may contain very 
simple procedures for personal key generation or more 
complex protocols oriented for creation behavioral locks. 
Here we can consider different types of human body 
movements starting from palm gestures to more complex 
human motion patterns registered while doing special 
exercises [1]. 

In all described areas, the methodology of using hybrid 
intelligence is the same. To create hybrid human-AI security 
protocol, firstly the set of personal parameters should be 
defined. Having defined personal features, the selection of 
appropriate and unique features can be performed with 
application of AI methods. The selection of optimal features 
is usually a very complex task especially in situation when a 
very large feature vector is available. In such cases, AI 
approaches allow to quickly select the optimal feature set. 
Important advantage of application of AI techniques is 
possibilities to consider constantly changing parameters, 
which can have different values over the time. 

 

III. CONCLUSIONS 
In this paper, we presented possible areas of application of 

hybrid intelligence techniques used in security protocols. 
More specifically, the way of application of personal features 
in advance security solution were described. Additionally, 
selection of the most important personal parameters can be 
performed with application of AI procedures.  

The most important features of hybrid intelligence security 
methods are efficiency, and personalization towards 
application by particular person. Such techniques allow to 
consider different personal features, and changing parameters 
associated with users. Hybrid intelligence methods will enrich 
the cognitive cryptographic approaches defined to join 
security methods with semantic features or personal 
parameters [8][9]. 
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Abstract—In the last two decades, computing and storage
technologies have experienced enormous advances. Leveraging
these recent advances, Artificial Intelligence (AI) is making
the leap from traditional classification use cases to automation
of complex systems through advanced machine learning and
reasoning algorithms. While the literature on AI algorithms and
applications of these algorithms in automation is mature, there is
a lack of research on trustworthy AI, i.e., how different industries
can trust the developed AI modules. AI algorithms are data-
driven, i.e., they learn based on the received data, and also
act based on the received status data. Then, an initial step in
addressing trustworthy AI is investigating the plausibility of the
data that is fed to the system. In this work, we study the state-of-
the-art data plausibility check approaches. Then, we propose a
novel approach that leverages machine learning for an automated
data plausibility check. This novel approach is context-aware, i.e.,
it leverages potential contextual data related to the dataset under
investigation for a plausibility check. Performance evaluation
results confirm the outstanding performance of the proposed
approach in data plausibility check.

Index Terms—Artificial intelligence, Machine learning, Plausi-
bility check, Anomaly detection

I. INTRODUCTION

Due to the rapid development of information technology and
manufacturing process, traditional manufacturing enterprises
have been transformed to the digital and smart factories [1].
This improvement leads to the emerging complex systems with
thousands of components and sub-systems, in which contin-
uous monitoring of these systems is of crucial importance.
From the data analytic point of view, this means surveillance
of large amounts of time series data in order to ensure the
correctness of the data and run data plausibility checks. So,
regarding the huge amounts of data, human monitoring of data
is not feasible, which conducts us to the automated plausibility
check using machine learning and data mining approaches [2].

Data plausibility describes the state when data seems rea-
sonable. Conversely, an anomaly or outlier is a data point
that is remarkably different from the remaining data. A pos-
sible approach for implementing outlier detection is to run
plausibility checks [3]. Rapid and efficient outlier detection
is critical for many applications including intrusion detection
systems, credit card fraud, sensor events, medical recognition,
law enforcement, etc [4]. Although outlier detection is an
intensively researched topic in the machine learning and

statistics community [5], there are still many open challenges
in practice. The first challenge is context dependence. For
example, a very high fluctuation rate in a company dataset
might be reasonable for a catering service, but not for a
construction company. Thus, the decision of whether a data
sample seems reasonable (i.e., it is not an outlier) often
depends on the context within which it appears. Second, the
high dimensionality of the dataset creates difficulties for data
plausibility check [6]. Since the number of features increases
in a high-dimensional dataset, the amount of data for accurate
generalization also raises, which results in data sparsity and
scattering. This data sparsity is because of inessential features
or irrelevant attributes that hide the correct anomalies. So,
anomaly detection is becoming a challenging task by increas-
ing the number of features and attributes in large datasets. In
addition to these challenges, there are some inherent issues
such as difficulties in the design of threshold between normal
and anomalous data, and much noise existence due to incorrect
measurements or sensor malfunctioning that may cause the
false notifications. On the other hand, data imbalance as the
common problem in anomaly detection approaches affects the
robustness of models, as very few outlier samples are available.

In order to address the aforementioned challenges, we
present a novel context-aware approach for an automated data
plausibility check, where there is a lack of research in the
literature. In this approach, machine learning techniques are
leveraged on top of semantic models, e.g., ontology, and
benefited from side information in the datasets. Semantic
data models like ontologies [7] facilitate the incorporation of
semantic information into the data. The focus of this work is
on multivariate outlier detection on the level of records (i.e.,
samples, rows) instead of single values. In this regard, the
main contributions of this work include:

1) Presenting a data plausibility check framework; includ-
ing test ontology, test data generator, and checkpoint;
and their message exchanges,

2) Disclosing three types of tests, to be deployed in the
test ontology, executed in the test generator, and used in
decision making in the checkpoint module. These tests
include:

a) Inter-feature check, checking features based on
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their relations leveraging an Machine Learning
(ML) module for prediction of a feature from some
related features (list of neighbors is given by the
test ontology from training)

b) Intra-feature check (1), checking a feature based
on its lags (previous values) using an ML module
for prediction based on the lags (number of lags is
given by the test ontology from training),

c) Intra-feature check (2), checking a feature leverag-
ing metadata and its long-term statistics (the type
of needed metadata and action on them is given by
the test ontology)

3) Presenting a comprehensive analysis of the performance
of the proposed solution on a propriety dataset and
drawing insights and conclusions from the analyses.

The rest of this paper is organized as follows: Section II
presents state-of-the-art anomaly detection techniques. Sec-
tion III presents the data and models used to solve the problem.
Section IV describes our solution for solving the problem.
Simulation results and discussion are presented in Section V.
In Section VI, the findings of this work are presented in a
brief but succinct manner.

II. RELATED WORK
Anomaly detection, as the concept of identifying patterns

or data points that are significantly different from the ex-
pected behavior, has been widely studied. State-of-the-art
using anomaly detection algorithms can be categorized as
following [8]:

Classification Based: This algorithm strives to discern nor-
mal data instances from the abnormal ones in the given dataset
space by using a trained model. It is categorized into one-
class and multi-class models. In one-class models, a distin-
guished threshold is learned to label data points outside of this
threshold as anomalies instances [9]. In multi-class models,
multiple classifiers are trained. A data point is recognized as
an anomaly if none of the classifiers can label it as the normal
instance [10]. Neural networks, Bayesian networks, support
vector machines, and rule-based utilize different classification
algorithms to build their classifiers.

Nearest Neighbor Based: In this technique, normal data
points are in compact neighborhoods, while anomalous data
points are far from their nearest neighbors. This technique
needs a distance or similarity measurement between two data
points in order to recognize which data points are far from
or different from other points. For continuous features, Eu-
clidean distance is used, and for categorical features, a simple
matching coefficient is a common option. In multivariate
data points, the combination of computed distance for each
feature is usually leveraged. The nearest neighbor technique
is categorized into two groups regarding how they compute
the anomaly score: 1) The distance of a data point to its kth

nearest neighbor is used as the anomaly score, e.g., k-nearest
neighbor approach [11]. 2) The relative density of each data
point is computed as the anomaly score, e.g., Local Outlier
Factor (LOF) [12].

Clustering Based: In this algorithm, similar data instances
are grouped into clusters. There are three categories of
clustering-based anomaly detection techniques. First, tech-
niques that suppose normal data instances belong to a cluster,
while abnormal data points do not belong to any cluster,
e.g., SNN clustering [13]. Second, algorithms that consider
normal data instances are near to the closest cluster centroid,
while outliers are far from their closest cluster centroid, e.g.,
Self-Organizing Maps [14]. Third, those assume normal data
instances create large and dense clusters, while anomalous data
points create small or scattered clusters, e.g., Cluster-Based
Local Outlier Factor (CBLOF) [15].

Statistical: Regarding the basic assumption of statistical
anomaly detection techniques, normal data points happen in
high probability areas of a stochastic model, while outliers
happen in the low probability areas of the stochastic model.
In these approaches, a statistical model (usually for normal
patterns) is applied to the dataset and then a statistical infer-
ence test is utilized to identify whether a data point fits well
to this model or not. Regarding the applied test statistic, data
instances that there are low probability to be created from
the learn model are considered as anomalous data.Parametric
and non-parametric techniques are two approaches that can
be leveraged to fit a statistical model. Gaussian model based
algorithms like Maximum Likelihood Estimation (MLE) [16],
regression model based like Auto-regressive Integrated Mov-
ing Average (ARIMA) [17], and combination of parametric
distribution based algorithms like Expectation Maximization
(EM) [18] are instances of parametric techniques. Histogram
based such as Intrusion-Detection Expert System (IDES) [19],
and kernel function based like parzen windows estimation [20]
are samples of non-parametric techniques.

Information Theoretic: In this approach, the information
content of the dataset is analyzed. The purpose of this tech-
nique is to solve a double optimization problem in order to
determine the minimized subset that maximizes the complexity
reduction of the dataset, and finally label that subset as the
outlier. Entropy and Kolmogorov Complexity [21] are two
examples of this category.

Spectral: This technique tries to find a lower-dimensional
subspace in such a way that outliers and normal data points
are remarkably different. Hence, anomalies can be easily
distinguished. Principal Component Analysis (PCA) is used in
many techniques in order to project data points into a lower
dimensional space [22].

III. DATA AND MODELS FOR EXPERIMENTS

This section sheds light on the data under investigation.
Furthermore, it provides details on the pre-processing per-
formed on the received data, and the planned data analytics
and verification procedures.

A. Data Collection

The relation of data to AI is as food to the human being.
In other words, there is no artificial intelligence in isolation,
and any AI approach needs corresponding data for learning.
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For this project, we receive the dataset through our industrial
partner, from a third-party company. While the data itself is
confidential and could not be shared open access on the web,
in this section we try to provide insights into the data, in order
to make the reader familiar with the approaches that will be
presented in the next section.

1) A deep Look into the Dataset: Our dataset contains 18
unique test runs for produced machine parts. Each of these
tests has been run for a different period of time, i.e., there are
different reported cycles per test.

2) Features available per test: The first dataset
(testoverview. csv) provides a comprehensive list of features
available per test (out of 18 tests). These features include the
type of material used in the experiments, e.g., the oil, and the
setting that has been applied in the experiment, e.g., distance
between disks. This metadata has been collected to be used
for verification of dataset and its reproducibility, as we will
see in the next section (Section IV-C).

3) Features available per test cycle: For each of the tests
mentioned above, measurements have been done for different
periods of time, and a number of features have been recorded
per time cycle in the second dataset (tests.csv). In other words,
this dataset presents a comprehensive list of features available
per time cycle for each test. In contrast to the first dataset,
most of the features of the second dataset are unknown to the
reader and have not been revealed by the third company to us.

B. Pre-processing of Data

For pre-processing of data, we investigate NaN values and
missing entries in the dataset. Then, we start plotting the data
to see trends in the results from each test. Figure 1 represents
two features of a specific test across time. It is interesting to
see that the features represent 3 trends in 3 different phases,
including (a) an increasing trend at the start phase (up to 600
cycles, with a return to 50 periodically for the second feature),
(b) a semi-constant trend from 600 cycles until the end cycle
-600 cycles, and (c) an increasing trend in the last 600 cycles
(with a return to 50 periodically for the second feature). In
order to see if it is a recurring trend, we investigate the same
thing for other tests. The increasing/decreasing trend at the
start/end phases and the semi-constant trend in the middle
phase are observed in all tests unless one test and this test
is excluded from our analysis based on the human expert
information, as it does not show the standard behavior.

C. Planned Data Analysis

Figure 2 represents the plausibility check problem and the
planned analysis for dealing with this problem. Based on this
figure, we receive the data per test per time cycle (as the
data pipeline from the bottom of the blue box), and also
some metadata per test (as the left data pipeline), and aim
at investigating if each test data is plausible or not. The focus
of this work is on the design of the plausibility check module
and the design of an ontology for the generation of the check
data to be used in the plausibility checker module.

Fig. 1. Description of subset-1 of data versus cycle index

1) Evaluation Metric: In this work, we focus on predicting
the test values and comparing them with the real values for
detection of a potential anomaly, i.e., performing regression
analysis. Regression refers to predictive modeling, and in-
volves predicting a numeric value, and is different from the
classification that involves predicting the label of a class
of data. In regression analysis, we use Mean Squared Error
(MSE), as an error metric designed for evaluating predictions
made on regression problems. The MSE metric is derived as
the mean or average of the squared differences between real
and predicted values, i.e.,: MSE = 1

N

∑N
i=1(X[i] − X̃[i])2,

in which, X[i] is the i’th real value in the dataset and X̃[i] is
the i’th predicted value. The difference is squared, which has
the effect of resulting in a positive error value and inflating or
magnifying the large errors.

2) Evaluation Framework: Figure 2 represents the evalua-
tion framework for performance assessment of the proposed
plausibility check solution. Based on this figure, we will
add two types of error, including constant bias noise and
random noise, to the test data per cycle, and will check if the
plausibility check module is capable of finding inconsistency
in the data.

Fig. 2. Planned evaluation framework

IV. THE PROPOSED SOLUTION

This section aims at presenting contributions of the work.
Our contributions include the design of a data analytics unit
for plausibility check of data. The schema of the proposed
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Fig. 3. The proposed solution

solution has been depicted in Figure 3. This proposed unit
includes two novel functions: (a) the test data generator
function and (b) the plausibility check function. The former
one collects further information about the test and generates
checkpoints (contextual data) to be evaluated by the checker
function. The checker function compares the checkpoints with
the threshold values and makes the plausibility decision. Then,
before storing data in the database or actuating based on the
received data, the customer can pass the data through the
data analytics unit and check whether this data is plausible
or not. As we will see in detail of the proposed approaches,
the test data generator function includes an intelligent agent
for generating the test data.

Implementation of the proposed solution requires contextual
data1 to be collected. Also, the contextual data should be useful
in the plausibility check of the dataset. In the following, three
ideas are presented for generating contextual data:

1) Cross-correlation between columns of the dataset is used
for prediction of the column of interest. The performance
of prediction (Mean Squared Error (MSE)) is reported as
a property of column of interest for a plausibility check.

2) Prediction of future values of each column based on
the previous values of that column and comparison with
the received data (Auto-regression). The performance in
terms of MSE is used for a plausibility check.

3) Finding rules and statistics for each column based on
metadata and configuration available for the test, e.g.,
type of oil used at the machine part.

A. Design of contextual information for plausibility check: The
first solution

In tests.csv dataset, there are 18 unique tests with 29 data
columns, unique hash codes, and different cycles. The columns
of the dataset could be correlated together. Then, one can use
some columns to check the plausibility of other columns.

For testing the hypothesis of mutual correlation between
different columns, we consider one unique test and find the
correlation between each column with itself and with 28 other
columns, by using the built-in correlation function of python.
As shown in Figure 4, the correlation results of each test are
stored in a matrix of 29 ∗ 29. The correlation number in each

1Test data related to the dataset to be checked at the plausibility check
function

Fig. 4. The correlation matrix after averaging over all available tests

cell ci,j of this matrix is an amount between -1 and 1 and this
number states that how much the column i is correlated to the
column j. The higher the absolute value of each cell ci,j , the
more correlated the column i to the column j.

Since the correlations between columns in one test might
randomly be high or low, the correlation matrix is calculated
for each 18 unique tests, and 18 correlation matrices of 29 ∗
29 are obtained. Then, each cell of correlation matrices is
averaged over all 18 tests. Figure 4 refers to the result of
averaged correlation matrices over 18 tests. This correlation
matrix is for the starting phase. Since the behavior of features
in the various phases is different, the correlation matrix for
the steady-state and ending phase are calculated separately.

As the absolute value of the correlation matrix is of impor-
tance, the features with the hottest and coldest colors are more
correlated together. As shown in Figure 4, the results confirm
the existence of strongly related features for plausibility check
of each feature.

Having access to the m most related columns for each col-
umn, we can train a machine-learning algorithm to predict the
value of feature of interest (FoI) based on the selected features.
Here, we select the three most related features for prediction.
If the prediction based on the selected features matches the
recorded data, there is a low probability of implausibility. If
the predicted and recorded values do not match, an alarm
could be raised. For deploying this idea, we need an ML
agent. Figure 5 depicts the check data generation and decision-
making procedures in more detail. In this figure, the FoI is X1,
and the subset of features related to it is X2. Then, X2 is fed
to the test generator node, and a prediction of X1 based on X2

is generated (call it X̃1). The predicted value, X̃1 along with
X1 are fed to the comparator node, and from the comparison,
the system can carry out the validation process. Finally, the X1

data will be accepted or an alarm will be triggered. One must
note that the test ontology can trigger generating any kind of
test data for X1 based on X2. For example, after setting the
ontology by a human expert, the ML agent in the test generator
node takes ontology and customer dataset as inputs. Ontology
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Fig. 5. Feature selection and decision making procedure in more details for
the first solution.

determines what contextual information should be collected. In
the above example, ML agent understands from the ontology
that MSE is required to be collected for the FoI. So, the
ML agent, by applying an appropriate algorithm, generates
the MSE in the prediction of feature-1 using the three most
related features to it. In the decision-making step, this MSE is
compared with the ground-truth value. If the value of MSE is
less than or equal to the ground-truth value, then the customer
data is plausible and can be stored in the database, otherwise,
the data is implausible and an alarm is raised.

Towards deploying the ML agent, we need to select an ML
algorithm, prepare a train and test dataset, train it over train
dataset, and test it over test dataset. To select an ML algorithm,
we need to consider some points such as simplicity in usage,
scalability, being model-free, explainability, resistance against
overfitting and noise, resistance against non-available values in
measurements, and working with categorical and continuous
values. Regarding these tips, a random forest (RF) algorithm
for regression is selected to be implemented in the ML agent.
Investigation of the RF algorithm on our dataset for configu-
ration of its parameter, i.e., number of estimator trees, showed
us that the best performance, in terms of speed and overfitting,
is achieved by 50 trees. Performance of the RF algorithms for
plausibility check is investigated in subsection V-A of the next
section. Towards using RF algorithm, we train an RF agent
based on several tests (out of 18 as described in the previous
section), and then test this agent on a test dataset (excluding
the training datasets).

B. Design of contextual information for plausibility check: The
second solution

Not only does cross-correlation exists between columns of
the dataset, but also auto-correlation among values of one
column could be considered. It means that one can utilize
the previous values of a column to check the plausibility of a
specific value in this column.

To see if auto-correlation could be used for the prediction
of a feature from its lags, we consider one unique test and find
the auto-correlation for each feature of this test. By using auto-
correlation, we can find how a value of a feature in time t is
related to the previous values of this feature at time t−1, t−2,
t−3, ..., t−n. Since the values of auto-correlation for a specific
feature of one test could randomly be high or low, we repeat
auto-correlation for this feature over the 18 tests and average

Fig. 6. Average of auto-correlation for feature-1 over different tests in the
end phase

Fig. 7. Feature selection and decision making procedure in more details for
the second solution.

the values of these tests. So, Figure 6 is resulted. Then, among
these averaged values, previous m recent values are selected
for use in the ML agent. Since the behavior of features in the
various phases follows different models, the auto-correlation
function is calculated for each phase of a feature separately.

Having access to the previous m recent values of a feature,
we can train a machine-learning algorithm to predict the value
of FoI at time t based on the previous values of the feature at
time t−1, t−2, ..., and t−n. If the prediction value at time t
based on the previous m recent values match the recorded data,
there is low probability of implausibility, otherwise because
of mismatch of prediction data and recorded one, an alarm
could be raised. Figure 7 depicts the overall architecture of the
second solution in more detail. In this figure, part of X1[0 :
N2], e.g., X1[0 : N1] in which N1 < N2, is fed to the test
data generator (Note: X1 is the FoI. ). Then, based on the test
ontology, e.g., time series forecasting of X1 using ARIMA,
test data for the validity of X1[0 : N2] will be generated, e.g.,
X̃1. Finally, at the comparator node, the real value of X1 will
be compared against X̃1. Based on this comparison, X1 data
will be accepted or an alarm will be triggered.

Toward deploying an ML agent for the second hypothesis,
Random Forest (RF) and ARIMA algorithms are implemented.
As mentioned in subsection IV-A, we use the RF algorithm
with 50 estimators for our test purpose. For the RF algorithm,
the plausibility of each data point is checked based on the
10 lags of the data, i.e., x[n] is checked based on x[n-
10]:x[n-1]. For ease of notation, we call this RF algorithm
as RF(50,10). For the ARIMA approach, the investigation
of parameters on our dataset showed that P=3, Q=I=0, i.e.,
ARIMA(3,0,0) matches our dataset. Performance of ARIMA
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Fig. 8. Feature selection and decision making procedure in more details for
the third solution.

and RF algorithms for plausibility check is investigated in
subsection V-B of the next section. Towards using ARIMA
and RF algorithms, we train the ML agent based on several
datasets (out of 18 tests), and then test these agents on a test
dataset (excluding training tests).

C. Design of contextual information for plausibility check:
The third solution

In the previous sections, we have leveraged the information
in the features, either in the FoI or a combination of features,
for plausibility check. In other words, the other contextual data
gathered by the test maker related to the overall test have not
been considered. In this section, we aim at investigating the
impact of such contextual data on the statistics of FoI, and the
potential application of such connection in plausibility check
for the dataset. Figure 8 represents the overall structure of the
proposed solution in which, the metadata about X1, which is
the FoI, is also fed to the test data generator along with X1.
Then, based on the test ontology, e.g., partitioning Cumulative
Distribution Function (CDF) of X1 based on states of the
metadata, test data for the validity of X1 will be generated,
e.g., S̃X1

. Finally, at the comparator node, the real value of
SX1

from received X1, e.g., the average value of X1 will be
compared against the S̃X1 . Based on this comparison, X1 data
will be accepted or an alarm will be triggered.

In our dataset, there are several contextual information
corresponding to each unique test that potentially have impacts
on the statistics of features. Examples of such contextual
data include type of the oil and separator metal used in the
experiment. Let us focus on oil. The initial hypothesis is that
there is a connection between the type of oil used in a test
and the statistics of measurements in this test. For example,
the min, max, variance, median, mean values of distribution
for Oil-A have considerable differences from the ones of Oil-
B. Figure 9 shows the statistics for feature-2. One can observe
that the Probability Density Function (PDF) and Cumulative
Distribution Function (CDF) of this feature are different for
various oil types. Furthermore, the min and max values of this
feature for type-A oil differ from type-B oil. So, using these
explored statistics, we can add some rules to the ontology to
discover the implausibility of the data. If the data would be
implausible, the related statistics will change in comparison
with the normal ones.

Fig. 9. PDF of feature-2

Fig. 10. Testing agent for predicting feature-1 with more details of 3 most
related features

We train the metrics of decision-making using statistics
of feature-2. If statistics of the test dataset comply with the
statistics of the trained dataset, i.e., metrics like min, median,
and variance are within the accepted bound found in the
training, the decision-maker accepts the test data as plausible.
Performance of plausibility check by using statistics of the
data is investigated in subsection V-C of the next section.

V. RESULTS AND DISCUSSION

A. Performance test for the first solution

Recall the first proposed solution in Figure 5. In this
solution, the test ontology mandates predicting FoI for validity
check based on the three most-related features. It also proposes
MSE as the prediction analysis metric. Then, the three most
related features to the FoI are fed to the test data generator
and are used for predicting the FoI. Figure 10 shows the
performance test results such that the prediction values are
fitted well with the real values of FoI (here, feature-1).

In this figure, along with the test data and predicted data,
the three most related features to feature-1 can be seen as well.
One can observe that these three features have almost either
direct or inverse (because of negative values of correlation)
relationship with the feature of interest (feature-1). The above
tests have been repeated for the steady phase and ending phase,
and the same behavior has been almost observed for tests in
these phases. We aim at leveraging the proposed ML agent
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Fig. 11. Testing agent for predicting feature-1 based on 3 most related fea-
tures. MSE=0.0002= MSE ground truth. (Blue: real data , Orange: predicted
data)

Fig. 12. Testing agent for predicting feature-1 based on 3 most related
features. Bias noise on the FoI, MSE=0.068 (340x ground truth). (Blue: real
data , Orange: predicted data)

for carrying plausibility checks out. So, seven test cases are
presented based on applying bias measurement errors, and
random measurement errors to the column of interest, and
most related columns. The first plausibility check is related
to the state that there is no noise in the data. As shown in
Figure 11, the plausibility of data has been confirmed. In the
second plausibility test, bias noise is added to the feature of
interest (feature-1). From results of Figure 12 are observed
that the predicted values are not the same as real values. So,
the ML agent can detect the error on the data and conclude the
implausibility of data. The third plausibility test is related to
the adding bias noise to the least related feature. In the fourth
plausibility check, bias noise is added to the most related
feature. The same plausibility tests are done by adding random
noise on the FoI, least related feature, and most related feature.
The result of adding random noise on the feature-1 is shown
in Figure 13. Table I summarizes the results of these seven
plausibility tests for the first solution.

B. Performance test for the second solution

Recall the second proposed solution in Figure 7. In this
solution, the test ontology mandates predicting FoI for validity
check based on its lags. It also proposes MSE as the prediction
analysis metric. Then, the lags of FoI are fed to the test
data generator, and are used for predicting the FoI. Figure 14
shows the performance test result using random forest for
predicting feature-1 (FoI). In the random forest algorithm, we
used 10 recent values of feature-1 for prediction. Figure 15
depicts the performance test result for predicting feature-1
using auto-correlation and ARIMA. In our implementation,

Fig. 13. Testing agent for predicting feature-1 based on 3 most related feature.
Random noise on the FoI, MSE =0.01 (50 times higher than the ground truth).
(Blue: real data , Orange: predicted data)

Fig. 14. Testing agent for predicting feature-1 using auto-correlation and
random forest.

ARIMA works with three recent values of feature-1. Both
Figure 14 and Figure 15 confirm that the prediction values fit
well with the real values of feature-1. We do the performance
test for the steady phase and ending phase of feature-1 using
random forest and ARIMA algorithms and the results for these
phases also follow the same trend.

For plausibility check using the auto-correlation contex-
tual data, we apply bias measurement errors and random
measurement errors to the FoI, and examine if the proposed
solution can assess the incorrectness of data. Towards this end,
we leverage the FoI’s forecasting results using ARIMA and
random forest methods. From Figure 16, Figure 17, Figure 18,
and Figure 19 with random and bias noises, one can observe
that the predicted values are not the same as real values of
FoI. So, the ML agent can detect the error on the data and

Fig. 15. Testing agent for predicting feature-1 using auto-correlation and
ARIMA.
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Fig. 16. Plausibility check for predicting feature-1 using auto-correlation,
Random forest, and bias noise.

Fig. 17. Plausibility check for predicting feature-1 using auto-correlation,
ARIMA, and bias noise.

conclude the implausibility of the data. Table II summarizes
the results of plausibility tests for the second solution.

C. Performance test for the third solution

Recall the third proposed solution in Figure 8. In this
solution, the test ontology collects metadata about FoI for
validity check. Then, the past values of this feature are fed to
the test data generator, and are used for extraction of statistics
of this feature, and predicting the validity of the feature based
on the extracted statistics. Here, we focus on the oil data and
try to partition the pdf of FoI based on the type of oil used in
the experiment. Figure 20 represents the partitioned pdf of the
feature-2 (FoI) based on the type of oil used in the experiment.
One observes the same trend from the test data and train data
when there is no noise added to data (plausible test dataset).

Fig. 18. Plausibility check for predicting feature-1 using auto-correlation,
random forest, and random noise.

Fig. 19. Plausibility check for predicting feature-1 using auto-correlation,
ARIMA, and random noise.

Fig. 20. Comparison of PDF of FoI in two tests

In this section, we apply bias noise and random noise on
the test data to check if our designed solution can detect the
implausible data. Figure 21 and Figure 22 show the results of
performance analysis for bias and random noise respectively.
One observes in Figure 21 that adding the noise to the test
data (red one) clearly shifts the plot to the right. Figure 22
represents the dataset with random noise. One observes that
the noise has changed the shape of the pdf, e.g., the mean and
median have changed.

D. Discussion

In Table I, the results of plausibility test for the first
solution (subsection V-B) have been summarized. Table II
summarizes the performance results for the second solution
(subsection V-B). Table III summarizes the results of figures
20, 21, and 22 in subsection V-B.

Fig. 21. Comparison of PDF of FoI with and w/o bias noise
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Fig. 22. Comparison of PDF of FoI with and w/o random noise

TABLE I
SUMMARY OF PLAUSIBILITY CHECK USING SOLUTION 1

Test description MSE MSEratio :
MSE

MSEtrue

Check:
MSEratio <
Ratioth;
Ratioth =
1.5

True data 0.0002 1 Y
Bias error on column of
interest (feature-1)

0.068 360 N

Bias error on least re-
lated feature

0033 16.5 N

Bias error on most re-
lated feature

0.0420 210 N

Random error on fea-
ture of interest (feature-
1)

0.010 50 N

Random error on least
related feature

0.0012 6 N

Random error on most
related feature

0.0068 34 N

TABLE III
SUMMARY OF PLAUSIBILITY CHECK USING SOLUTION 3

Test
description

Mean Mean-
ratio

Median Median
-ratio

Plaus.
check

Train data (base
measurement)

22.8 1 18.2 1 -

Test data w/o
noise

24.6 1.08 20.4 1.12 Y

Test data with
bias error

47.42 2.08 43.4 2.38 N

Test data with
random error

35.8 1.57 31.7 1.74 N

From Table I, it is clear that the plausibility check solution,
which is powered by the prediction of FoI based on the most
related features, performs well against the bias noise. In other
words, when a constant value, i.e., a measurement error, is

added to the reading of a sensor, the plausibility check module
can easily detect that data is inconsistent with the past learning
(from 16.5 to 360 times more MSE has been reported). For the
random noise, when the amount of the added noise to the data
could vary, the performance is lower than the bias noise, but
still completely acceptable (from 6 to 50 times more MSE has
been reported). For example, one observes that the plausibility
test has been shown 6 times more MSE in the prediction of
FoI when random noise on the least relevant feature to the FoI
has been added. Furthermore, Table II showed that the second
solution (using RF) is not vulnerable to the random noise,
and it performs equivalently for the bias and random noises
(7 times more MSE in prediction of FoI). In the same time,
we observe that the ARIMA has a poor performance as an ML
agent for this solution, and it misses the alarm for the test-
case with bias noise on the the FoI (the corresponding MSE-
ratio is 1.125, which is lower than the threshold value, i.e.,
1.5). Finally, the third approach shows a weaker performance
than the previous ones (around two times more MSE has been
reported). One must note that the stronger performance of the
first approach and relatively the second approach is achieved
at the cost of further computing required for them. In other
words, there is a hidden reliability-complexity tradeoff here,
where going from solution 1 to 3, complexity is reduced and
the probability of error in plausibility check is increased.

VI. CONCLUSIONS

In this work, we investigated data plausibility checks for
a given dataset from a smart factory. Towards this end, a
data analytics unit, consisting of a contextual data genera-
tion function (which generates checkpoints based on a given
ontology) and a plausibility check function (which works
based on the designed checkpoints), was proposed. For the
implementation of the first function, we have investigated three
machine learning approaches that leverage auto-correlation in
each feature, correlation between features, and hidden statistics
of each feature for generating the checkpoints. Performance
evaluation results indicated the outstanding performance of
the proposed scheme in the detection of noisy data. The
main concluding remarks of this work include: (i) This study
indicated that each feature of the dataset, or a collection of
features, could be used without any other data for plausibility
check leveraging machine learning. (ii) Metadata about the
test, including conditions in which the test has been carried
out, could be an important part of the design of the plausibility
check. (iii) Checking of plausibility for a dataset that may
contain random noise on some features (or some cycles) is
much harder than checking the presence of static noise on
the data. (iv) Performances of different checkpoint generation
functions (using different ML approaches) are not the same.
The ones based on the investigation of each cycle of the
test, solutions 1 and 2, are more complex and provide a
better distinction between noisy and healthy data. While the
third solution is a lightweight solution with a lower reliability
performance.
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TABLE II
SUMMARY OF PLAUSIBILITY CHECK USING SOLUTION 2

Test description MSE in prediction
of FoI using itself
by ARIMA

MSEratio
for ARIMA:

MSE
MSEtrue-AR

Plausibility
for ARIMA:
MSEratio <
Ratioth;
Ratioth = 1.5

MSE in prediction
of FoI using itself
by RF

MSEratio
for RF:

MSE
MSEtrue-RF

Plausibility
for RF:
MSEratio <
Ratioth;
Ratioth =
1.5

True data (feature-1) 0.0024 =
MSEtrue-AR

1 Y 0.0012 =
MSEtrue-RF

1 Y

Bias error on feature of
interest (feature-1)

0.0027 1.125 Y 0.0046 7.8 N

Random error on feature
of interest (feature-1)

0.0063 2.8 N 0.0088 7.3 N
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Abstract—Hypergraphical structures provide a natural mathe-
matical way to represent the richness of diversified data and com-
plex relationships in hierarchical, relational, navigational, and
semi-structured settings, e.g., bibliographic paper submissions,
mHealth, and social media applications. These applications oper-
ate in distributed environments with a requirement of availability
while coping with high network latencies. Replication is the
commonly used approach to achieve a high degree of availability,
facilitating local query processing. However, replication requires
expensive (and often infeasible) concurrency control to ensure
consistency. In this work, we specify the well-formed Hypergraphs
as a Conflict-free Replicated Data Type (HgCRDT), which is a
commutative replication-based approach expressed in terms of
two 2P-Sets, the latter comprising mutable hyperedges.

Index Terms—Hypergraphs; semi-structured data; complex re-
lationships; well-formed structures; higher-ordered relationships;
eventual consistency; data replication; conflict-free replicated data
types.

I. INTRODUCTION

Hypergraphs are generalized graphs denoted as a pair
(N,E) where N is a set of vertices, and E is a set of
hyperedges which are arbitrary nonempty subsets of N [1]. Hy-
pergraphs are interesting mathematical structures with appli-
cation in databases [1]–[4]. Hypergraphs are better-suited than
graphs and relational databases to represent complex relation-
ships between hierarchical, navigational, semi-structured data
and metadata found in various applications [5]–[8]. Complex
relationships connect and represent multiple entities and/or
relations (to formulate higher-order relations) describing a
group of similar entities or a structure. We can find the
natural occurrence of complex relationships represented via
hyperedges in several applications and data sets, including co-
authorship, co-citation, social networks, email networks [6],
biological processes [9] [10], and patients’ medical history
[5]. Higher-order relations can be easily accommodated in hy-
pergraphical structures by employing higher-order hyperedges
to connect other hyperedges. Traditional data models for data
and complex relationships are optimized for particular types
of queries and data; for instance, a tabular representation of
relational databases is optimized for structured data and rela-
tional algebraic queries; and a graph representation of graph
databases is optimized for data stored in nodes and edges, as
well as navigation and neighborhood queries. Hypergraphs can
be used to combine the properties of various data models to
cope with the semi-structured, hierarchical, complex, higher-
order relationships inherent in such data.

Figure 1. Example: a hypergraph structure capturing an article relationship.

Consider a motivating scenario in which prospective authors
submit papers to a journal that are subjected to reviews before
being accepted for publication in a journal. The end result is
a published paper or a journal article viewed as a relationship
between the authors, a collection of reviews, and a journal is-
sue. Journals usually have multiple issues; therefore, a journal
issue has its publishing year and volume and links the journal
(that further relates to a publisher). Note the italicised issue
refers to journal issue. The paper is an implicit and essential
part of the article. Figure 1 depicts various entities (i.e.,
Author, Reviews, and Publisher) and relationships
(i.e., Article, JournalIssue, and Journal) of this
scenario in a structured hypergraph via structured vertices and
structured hyperedges, respectively, each with a set of fields
as their components that are initialized as null.

In this type of real-world scenario, the submission, review,
and publication process of conferences/journals are often car-
ried out at many distant domain sites, with each site notifying
the other sites of the article’s revised status for the next
stage. These sites may span over a large geographical area
bearing diverse network connections. Therefore, information
availability is highly required along with network latencies.
Since replication provides availability at the expense of strong
consistency between the copies, that further necessitate syn-
chronization [11]. Therefore, a weaker notion of consistency
is required to ensure the consistency of replicated copies.

We are familiar with consensus algorithm [12] [13] that
resolves conflicts between updates, however, at the expense
of high reconciliation cost. Here, Conflict-free Replicated
Data Types or CRDTs is a reasonable choice for maintaining
consistency in highly dynamic environments [14] [15]. CRDTs
address the twin requirements of availability of data (for
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efficient local query processing) and operation under network
partitioning without requiring complicated concurrency control
mechanisms while offering strong eventual consistency [16].

Contributions: The purpose of this paper is to discuss
how to distribute higher-ordered hypergraphs to multiple repli-
cas in a scalable manner where rejoining replicated copies of
hypergraphs from distributed databases is possible without any
loss of information. We believe that our work’s novelty adds
a new dimension to use the rich hypergraphs in distributed
settings. Other data distribution challenges, such as security
and privacy, are beyond the scope of this paper. We omit
specifics about our ongoing implementation to emphasize
the suitability of our proposed hypergraphs to be used with
conventional CRDTs. On the other hand, the implementation
introduces a database paradigm for modeling, storing, retriev-
ing, distributing, and encoding our envisioned hypergraphs.

We aim to leverage the novelty of CRDTs with hypergraph
structures and semantics to provide consistent updating and
propagation of hypergraphical information across multiple
replicas in the previously-stated distributed settings while also
ensuring data availability and network latency. Therefore, we
extend the existing portfolio of CRDTs [14], [15], [17]–[19] to
embrace well-formed higher-order recursively-defined mutable
hypergraph as a new CRDT: Hypergraph CRDT or HgCRDT.
While previous constructions of a CRDT in others have
been graphical, hierarchical, list-oriented, key-value based,
we believe this is the first instance of well-formed higher-
order hypergraphs. In particular, the hyperedges are mutable
(discussed in Section III-A), in that the set of atoms they
connect can be changed. We propose a hypergraph atom, a
logical term to refer to a vertex or a hyperedge. The mutability
of the atoms within a CRDT merits special attention. The
hyperedges allow the nesting of hyperedges and are built on
references, making their members independent.

In the rest of this paper, we overview background and
some related work in Section II. In Section III, we introduce
hypergraphs in HgCRDT, and the HgCRDT approach. Next,
in Section IV, we present the specification of the HgCRDT
that incorporates query, add, remove and modify operations
on hypergraphical atoms. A proof-of-correctness showing how
concurrent processes meet convergence conditions (essential
for eventual consistency) is given in Section V. Finally,
in Section VII, we summarise our contributions as well as
potential research directions.

II. BACKGROUND AND RELATED WORK

This section will begin by briefly introducing hypergraphs
and related work. After that, we will discuss the background
of CRDTs and the research aligned with this paper.

A. Hypergraphs

A hypergraph is a generalized graph where hyperedges
connect more than two vertices. A traditional hypergraph is
specified as a pair (N,E) where N is a set of vertices, and E
is a set of hyperedges, which are arbitrary nonempty subsets
of N as given in [1].

Hypergraphs have been studied since 1980 by various
researchers. A few significant work includes: [1] expresses the
relational database schemes as hyperedges for ensuring certain
degrees of acyclicity (such as α-acyclicity, β-acyclicity, and γ-
acyclicity); [20] introduces Hypernode model based on nested
graphs; [7] proposes GROOVY, an object-oriented database
model formalized using hypergraphs; [21] proposes a frame-
work for mapping a generic hierarchical/network/relational db
model into another using hypergraph; and [22] introduces a
schema-oriented graph model with properties and labels using
hyper-nodes and hyper-edges.

Existing research on hypergraphs in distributed settings in-
cludes, HyperX [23] (a scalable hypergraph framework which
works in distributed graph settings converting hypergraphs into
graphs using a layer built atop Spark), and Trinity [24] (a hy-
pergraph database and computation platform over distributed
memory cloud).

B. CRDTs

The CRDTs manage distributed replicas of mutable data
with minimal synchronization and without using complex con-
currency control protocols [15]. In CRDTs, different replicas
of a data structure can be locally read and written to, repli-
cating the data/operations asynchronously at the distributed
locations. The approach applies to data type representations
in which the operations performed are conflict-free while
ensuring strong eventual consistency [16], allowing local
modification to the data and then immediately returning to
computation.

The CRDTs are designed to work in an underlying reli-
able causally-ordered broadcast communication protocol, in
which a source replica (the replica that sends its update
information to other replicas) delivers its messages to each
downstream replica (the recipient replica) exactly once in
an order consistent with happened-before [15]. Maintaining
causal consistency via a reliable delivery mechanism helps to
further reduce inconsistencies between replicas by restricting
the operations seen in possibly different orders at the replicas
to only concurrent operations. Therefore, the same replica
can simultaneously send and receive different or redundant
messages.

A CRDT specifies an internal data structure representation
(called the payload), and an collection of interface operations,
comprising the query operations which interrogate the state of
the data object and return a value, and the update operations
which change the internal state of the data object. Both query
and update operations may specify preconditions that must
be satisfied for them to be invoked. Query operations can be
performed purely locally, without any need for synchronization
and communication with other replicas. Update operations do
not return any value, and involve two phases- first, the source
site prepares the parameters for the updates to be performed
at the various replicas; then these changes are effected at the
various replicas atomically, immediately at the source site,
and asynchronously propagated to the other sites. Usually,
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the effect-phase parameters sent to all downstream sites are
identical to those at the source phase.

CRDT implementations are classified into Convergent
Replicated Data Type (CvRDT) and Operation-based Com-
mutative Replicated Data Type (CmRDT). CvRDTs is a
passive replication approach where all necessary information
that needs to be replicated is captured by a state which is
further transmitted to all the replicas. On the other hand,
CmRDTs is an active replication approach where an update
operation occurs at the source replica and then is replicated
to all the downstream replicas by transmitting operations and
performed locally. The eventual transmission of the entire state
in CvRDTs may be costly for large data structures. In contrast,
operation-based CRDTs transmit only the update operations,
which are typically small. However, the communication infras-
tructure used for CmRDTs must ensure that all operations on a
replica are delivered to the other replicas, without duplication,
but in any order.

The portfolio of CRDTs [14] [15] includes a variety of
interesting data types such as counters, registers, sets, graphs,
lists [18] [19], and maps [25]. Of particular interest are the
operations-based 2P2P Graph CRDTs [14] [15], since their
payload consists of two 2P-Sets for adding and removing
vertices and edges where the edge sets are dependent on the
vertex sets.

The existing work in the direction of higher-order CRDT
includes Riak [25], a distributed NoSQL key-value data store
that defines maps as a CvRDT; JSON data structure [26] that
composes lists, maps, and registers to embed JSON data types
as a CRDT; Logoot [18] that uses a sparse non-mutable n-
ary tree to nest ordered lists; and higher-order patterns [27].
Causal Graphs [28] illustrates a hierarchical graph-oriented
CRDT that represents ordered trees into Causal Graphs. Fur-
thermore, Delta CRDT [29] [30] discusses CRDTs that encode
CRDTs using delta mutations of state-based CRDTs. Deltas
are temporarily stored in a buffer instead of propagating the
entire state to the remote replicas.

An instance of CRDTs employed in databases is the use of
SU Sets, a CRDT to handle RDF-Graphs and the SPARQL 1.1
Update operations [31] [32]. The underlying CRDT used in
that work is an Operations-based OR-Set of database triples.
While the insert and delete operations involve sets of elements,
these are of a pre-defined atomic element type, in contrast to
our higher-order hypergraphs where the set of a hyperedge
may include hyperedges belonging to the same hypergraph.
More interesting is the insert-delete operation, which uses a
multiset of mappings when preparing sets of triples to delete
and insert into the database.

III. REPRESENTATION OF HGCRDTS

A. Hypergraphs in HgCRDT

We use hypergraphs in HgCRDT, where a (higher-order)
hypergraph is a collection of schematic & typed vertices V
and hyperedges H . We propose a term hypergraph atoms to
abstractly refer to the schematic typed vertices and hyperedges.
Vertices are assumed to be primitive and represent entities,

whereas a directed hyperedge is of the form he(U), which
connects a set of atoms U . We formally define hypergraphs in
HgCRDT as follows:

Definition 1 (Hypergraphs in HgCRDT). A hypergraph G
in HgCRDT is defined as a collection of hypergraph objects
composed of (V,H), where

• V is a finite set of vertex objects defined as: V =
{v1, v2, ..., vn}, n ≥ 0, with each vi ∈ V containing
only scalar data (such as String, Int, Float, Boolean);
and

• H is a finite set of hyperedge objects used to represent a
relationship, and is defined as: H = {he1, he2, ..., hem},
m ≥ 0. Each hyperedge object he ∈ H connects a finite
set of atoms specified as U = {u1, u2, ..., uk}, k ≥ 0,
where each ui ∈ (V ∪H). The hyperedge he is added to
H when the following constraints satisfies avoiding any
cycle and self-loop for every ui ∈ he.U , where ui ∈ H:

1) ui ̸= he,
2) ∀ he′ ∈ H :

a) ui /∈ he′.U
b) ∀ he′′ ∈ he′.U : he′′ /∈ he □

Hyperedges are a non-trivial data type, supporting rela-
tional structure, hierarchical data, and higher-order relations.
A hypergraph is well-founded if for every new hyperedge
he to be added in H , every atom u ∈ he.U must exist
in (V ∪ H). As a consequence, a hyperedge cannot appear
within its own set. Notably, we treat atoms as typed objects
with a unique implicit identity, avoiding the need to store the
entire hyperedge where hyperedge members are themselves
(independent) objects. As shown in Figure 2, a few hypergraph
objects where, e.g., the independent objects for a journal issue,
a set of authors, and a set of reviews are all referentially
tied to an article hyperedge object using the implicit object
it. Additionally, it aids in the formation of well-formed and
acyclic hypergraphical structures. A hyperedge is said to be
well-formed when added to H if on adding atom u ∈ he.U ,
u does not form any cycle and self-loop. Significantly, acyclic
structures facilitate query optimization and minimize query
response time. Hyperedges are mutable, in that we permit
the set of atoms to be modified. Moreover, hypergraphs are
particularly well-suited for replication since a hyperedge’s
projection containing only some of its set’s atoms is still a
hyperedge.

Further, similar to vertices that represent entities, each
hyperedge retains a set of internal attributes (usually of scalar
types) that define the properties of a relationship. The internal
attributes are different than the referential attributes (i.e., he.U )
used to define the parts of a relationships based on which the
relationship exists. In Figure 1, paper_title in Article,
and JName in Journal hyperedges are internal attributes.
Furthermore, two hyperedges with the same referential set U
and carrying the same value are not the same. The implicit
object ids, the hyperedge type, and the internal attributes of
the hyperedges make the hyperedges different. In this paper,
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we skip the internal attributes of vertices and hyperedges,
and emphasize on using only the referential attributes U in
a hyperedge.

Figure 2. A few hypergraph objects generated for the hypergraph structure
of Figure 1.

B. Hypergraph as a CRDT (HgCRDT)

Due to the anticipated size of hypergraphs (for instance,
a conference may include sub-conferences, workshops, and
a few journals; or a journal/conference may receive a large
volume of submissions [33]), we prefer the operations-based
commutative (CmRDT) approach over a state-based (CvRDT)
or a delta state-based approach as in [30], as transferring
the hypergraph state between replicas and merging would be
prohibitively expensive.

The communication model of the HgCRDT is similar to that
of the CRDTs [15], in that operations are sent in an ordered
causal fashion. We employ two 2-phase sets (2P-Sets [15]),
i.e., those where elements can be removed after addition, but
cannot be reintroduced, as the payload for our hypergraph data
type- one each for its vertices V and hyperedges H . Other
variants of CRDT Sets are possible, such as OR-Sets, though
the commutativity properties need to be carefully verified for
each such choice.

We are already familiar with the existing 2P2P graph-based
CRDT described in [14]. To facilitate the adoption of our
technique, we use the template provided by the 2P2P-Graph
specification for hypergraphs. Hypergraphs are generalized
graphs dealing with more complex structures than graphs, hier-
archies, and maps. The richness of our hypergraphs makes our
work different compared to the existing 2P2P-Graph CRDT.
Our proposed hypergraph specification uses two tombstone
sets (or remove sets: V R,HR) to represent the 2P-Sets, which
relaxes in some instances the requirement for a causal order
of delivery, and thus permits some additional asynchrony.

Also, note that in hypergraphs, vertices are the base case for
atoms (which also include hyperedges) and that hyperedges
relate the atoms of a set to each other. The novelty of this
work lies in this treatment of such well-founded recursive
hypergraphical structures. Another novelty is that the set
incident on a hyperedge is itself mutable 2P-Set. Hyperedges
have the following form, in which object references are used

to store the set rather than the complete hyperedge itself (in
the implementation).

he(mutable atom set U)

Consequently, hyperedges are mutable, as we may add and
remove atoms incident on the hyperedge. The use of tombstone
sets allows deletion of an atom from a set; however, since the
atoms are implemented as typed objects having their implicit
identity, the atoms persist across such modifications. The usage
of implicit object identities explains why traditional CRDT
models like Key-Value pairs and maps are not suitable for
encoding hypergraphs, even after some transformation.

IV. SPECIFICATION OF HGCRDTS

The HgCRDT specification comprises a list of local query
operations and global commutative update operations to add,
remove individual or a set of atoms and modify hyperedges.
Vertex modify is a trivial operation, and therefore, we ignore it
in this report. Note that the notion of sources and downstream
sites is not statically fixed.

In continuation to our previous example, Figure 3 illus-
trates a distribution scenario using the HgCRDT framework
involving its update operations to capture the journal article’s
submission, review, and publication processes among three
distinct copies. Each update operation begun at a source replica
is propagated to subsequent downstream replicas. Note that
vertices and hyperedges are introduced to the system in case
of no earlier existence, and the outcome is an article with the
associated entities and other relationships, as seen in Figure
2. The operation delays affect the payload of a replica in
case any other operation needs its prior delivery. As seen in
Figure, replica 1 initiates add operations for two vertices for
authors A and B and an article hyperedge, which is then shared
with replicas 2 and 3. Similarly, replica 2 adds three review
vertices. Meanwhile, replica 3 has a vertex for the publisher
and two hyperedges for the journal and issue. Now, adding the
set of reviews, and journal issue at the respective replica (i.e.,
replicas 2 and 3), necessitates modifying the article hyperedge.
Sharing the change operation by both the replicas leads to a
concurrent arrival at replica 1. However, this issue is resolved
according to the causal order of delivery that reflects both
the changes in the article. To add, we assume that a special
issue of the same journal is introduced to which the article
is best suited. Note that the previous instance of the journal
issue hyperedge cannot be deleted due to its reliance on the
article hyperedge. Thus, the modification of the new issue to
the article hyperedge enables the deletion of the first issue.

Next, we describe the HgCRDT specification that contains
a few keywords- initial specifies initial values of payload sets
at every replica; let marks non-mutating statements; query
and Update indicate a non-mutable, and a mutable operations
respectively; and pre specifies preconditions that must be satis-
fied for an operation to be invoked. Each update operation has
two phases: prepare at source, and effect at downstream. The
initial phase illustrates that an argument is locally prepared
by the source replica to be delivered to downstream replicas.
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Figure 3. Example: A distribution of HgCRDT operations between three replicas capturing the formation of a journal article relationship (from the paper
submission to its publication). Only objects are displayed here, with limited scalar values.

A downstream replica executes the later phase that atomically
and asynchronously uses the received argument prepared by
the source replica.

a) Query operations (Figure 4):: The payload initializes
the local and mutating state of a replica. In HgCRDT, the
payload consists of four sets: V A, V R,HA, and HR for
adding and removing vertices and hyperedges. The query
operations are performed locally at each replica. These oper-
ations provide the extensional observational criteria for iden-
tifying/distinguishing between the state of the mutable object
(hypergraph in this case).

lookupAtom checks for the presence of an atom, whether
a vertex (lookupVertex) or a hyperedge (lookupHyperedge),
as the case may be, in the hypergraph. The lookupAtom
operation is lifted to sets of atoms using conjunction. In
the lookupHyperedge query, the precondition checks for the
existence of all atoms in the set. Since we permit the set to
be mutable, the payload sets HA,HR only contain reference-
based structures for the hyperedges, and the set is accessed
by dereferencing. within operation checks that the given hy-
peredge should be acyclic. Therefore, it recursively checks if
a given atom appears within a given hyperedge.

b) Update operations: are global operations that are
defined using the novelty of the CRDT approach. As in,
the source replica initiates operation and prepares the update
information to send to downstream replicas. The operation is
then effected immediately at the source, and if the parameter
is non-trivial, also sent asynchronously but reliably to the
downstream locations, where it is affected atomically. Causal
delivery reduces the need for commutativity to only the con-
current operations, handling the dependency of the hyperedge

▷ V A : vertex add set, V R : vertex remove set,
HA : hyperedge add set,HR : hyperedge remove set

payload set V A, V R, HA, HR
initial ϕ, ϕ, ϕ, ϕ

query lookupAtom (atom a) : boolean b
if a is a vertex: lookupV ertex (a)
otherwise if a is a hyperedge: lookupHyperedge (a)

query lookupAtomSet (atom set S) : boolean b

let b =
( ∧

∀u∈ S

lookupAtom(u)
)

query lookupV ertex (vertex v) : boolean b
let b = (v ∈ (V A \ V R))

query lookupHyperedge (hyperedge he(U)): boolean b
let b = (lookupAtomSet(U) ∧ he(U) ∈ (HA \HR))

query within (atom a, hyperedge he(U )): boolean b

let b =



true if a = he(U) ∨
a ∈ U ∨ ∃ he(U ′) s.t.
lookupHyperedge(he(U ′))
∧ a ∈ U ′

∧ within(he(U ′), he(U))
false otherwise


Figure 4. Query Operations
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update addAtom (atom a)
if a is a vertex: addV ertex (a)
otherwise: addHyperedge (a)

update addV ertex (vertex v)
prepare at source (v)
effect at downstream (v)

V A := V A ∪ {v}

update addV ertexSet (vertex set X)
prepare at source (X)
effect at downstream (X)

∀v ∈ X : (V A := V A ∪ {v})

▷ he(atom set U)
update addHyperedge (hyperedge he(U))

prepare at source (he(U))
pre lookupAtomSet(U)

effect at downstream (he(U))
pre lookupAtomSet(U)
HA := HA ∪ {he(U)}

Figure 5. Add Operations

update removeAtom (atom a)
if a is a vertex: removeV ertex(a)
otherwise : removeHyperedge(a)

update removeV ertex (vertex v)
prepare at source (v)

pre lookupV ertex(v)
∧ ∀ (he{U} ∈ (HA \HR)) :
¬U.lookupV ertex(v)

effect at downstream (v)
pre addV ertex(v) delivered
V R := V R ∪ {v}

update removeHyperedge (hyperedge he(U))
prepare at source (he(U))

pre lookupHyperedge(he(U)) ∧
∀ (he{U ′} ∈ (HA \HR)) :
¬U ′.lookupHyperedge(he(U))

effect at downstream (he(U))
pre addHyperedge(he(U)) delivered ∧

∀(he{U ′} ∈ (HA \HR)) :
¬U ′.lookupHyperedge(he(U))

HR := HR ∪ {he(U)}
Figure 6. Remove Operations

2P-Set on the vertex 2P-Set.
Add Operations (Figure 5): The addAtom operation adds

a vertex or a hyperedge, depending on the kind of atom
specified. Adding a set of hyperedges can be realized by
iterating the addHyperedge operation. Note that when adding
a hyperedge, all atoms in its set must exist, and thus the

▷ he(mutable atom set U)
update changeHyperedge (hyperedge he(U),

atom set S+, S−)
prepare at source (he(U), atom set S+, S−)

pre lookupAtomSet(S+)
∧ U.lookupAtomSet(S−)
∧ lookupHyperedge(he(U))
∧ ∀(x ∈ S+) : ¬ within( x, he(U))

effect at downstream (he(U), atom set S+, S−

pre addHyperedge(he(U)) delivered
∧ lookupAtomSet(S+)
∧ ∀(x ∈ S+) : ¬ within( x, he(U))

∀(x ∈ S−) : U.removeAtom(x);
∀(x ∈ S+) : U.addAtom(x);

Figure 7. Modify Operation

corresponding add operations for all these atoms must have
been delivered earlier.

Remove Operations (Figure 6): We can only delete an
atom incident on a hyperedge after the hyperedge itself has
been removed. Note that deleting an atom (whether vertex
or hyperedge) requires that it should not be incident on any
hyperedge (should not be in the set of any hyperedge). Thus
the precondition ensures that it cannot possibly appear within
any higher-order hyperedge. We do not present here the remove
operations lifted to a set of atoms.

Modify Operations (Figure 7): It is always possible to
modify a hyperedge in a hypergraph by deleting the existing
edge and replacing it with the modified edge. It requires
ensuring that any atoms present (recursively) within the new
set of the new hyperedge must already exist (and must not be
the hyperedge itself).

However, since hyperedges are complex structures, this im-
plementation is expensive. Instead, we specify the modification
of a hyperedge by the addition or removal of atoms in a set via
changeHyperedge operation. Note that we now require a set to
itself be mutable 2P2P-Set. The vertices and hyperedges in the
sets U.V, U.H are respectively subsets of the two 2P-Sets V,H
of the global hypergraph object. By global hypergraph, we
mean the replica’s state consisting of payload sets, irrespective
of any particular hyperedges. The global hypergraph objects V
and H may be represented by payload V A, V R, and HA,HR
in the tombstone implementation, respectively.

The changeHyperedge operation takes an existing hyper-
edge he(U), and the atom sets S+, S− that are to be added
to and removed from the set U . For simplicity, assume that
S+ ∩ S− = ∅, S+ ∩ U = ∅ and S− ⊆ U . For readability,
we use the set operations of intersection and subset. These
conditions can be expressed in terms of the query operations.
Note that in the precondition of changeHyperedge, we need
to check that the set S+ being added should exist in the
(global) hypergraph, whereas the set being deleted S− should
already be in the mutable set of the given hyperedge. Note,
in the effect phase, the atoms from the various sets are
removed/added to the set of the hypergraph. Observe that the
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atoms are only removed from the set of the hyperedge, but not
from the (global) hypergraph because hyperedges are formed
using references of existing other atoms.

V. PROOF OF CORRECTNESS

Most of the arguments related to 2P-Sets and 2P2P-Graphs
[15] carry over in the proof that this specification implements
a CRDT. It is easy to show that add operations or remove oper-
ations on unrelated atoms naturally commute. If, however, an
atom appears (recursively) within the set of another atom, then
adding the second atom must causally follow the addition of
the first atom. The delivery order ensures it. The reverse holds
for remove operations. Concurrent add(u) and remove(u)
operations on the same atom u, and concurrent remove(u) and
add(w) [or add(u) and remove(w)] operations where there
is a some relationship between u,w, are dealt with using the
2P-Set conditions [15], the conditions on adding or removing
atoms, and transitivity.

Operations other than the remove operations are indepen-
dent of the changeHyperedge. The tombstone set will en-
sure that removal prevails over modifications. Modifications
to different hyperedges commute. Consider two concurrent
modifications to the same hyperedge with changes S+

1 , S−
1

and S+
2 , S−

2 respectively. We claim that the operations can
safely commute (refer to the Lemma 1), resulting in set
(U ∪ S+

1 ∪ S+
2 ) \ (S−

1 ∪ S−
2 ). Atoms appearing in the cor-

responding add set (or removal set) pose no problem. The
assumptions about the sets of atoms being added or removed
from a given set within each operation allow the commutation.

Lemma 1. Concurrent changeHyperedge(he, S+
1 , S−

1 ) and
changeHyperedge(he, S+

2 , S−
2 ) commute.

Proof. According to the changeHyperedge operation, a set
of atoms S+ are added to, and a set of atoms S− are removed
from a hyperedge. Therefore:

changeHyperedge (he, S+
1 , S−

1 ) = U ∪ S+
1 and U \ S−

1

= (U ∪ S+
1 ) \ S−

1

Similarly,

changeHyperedge (he, S+
2 , S−

2 ) = U ∪ S+
2 and U \ S−

2

= (U ∪ S+
2 ) \ S−

2

The concurrent execution of both the change operations on
each replica on the same hyperedge results:

changeHyperedge (he, S+
1 , S−

1 ) ||
changeHyperedge (he, S+

2 , S−
2 ) =

(U ∪ S+
1 ∪ S+

2 ) \ (S−
1 ∪ S−

2 ) || (U ∪ S+
2 ∪ S+

1 ) \ (S−
2 ∪ S−

1 )

Further, the commutative set-union operation makes the
results equivalent:

(U ∪ S+
1 ∪ S+

2 ) \ (S−
1 ∪ S−

2 ) ≡ (U ∪ S+
2 ∪ S+

1 ) \ (S−
2 ∪ S−

1 )

Therefore, modification of concurrent operations to the same
hyperedge commute.

VI. DISCUSSION

Our proposed HgCRDT framework has been implemented
in our hypergraph-oriented database system. The system works
in the realm of an underpinning object-oriented framework,
supporting object re-usability, complex objects, data abstrac-
tion, encapsulation, and typing-like features. We use well-
defined schema and types to build hypergraphs where higher-
order relationships are formulated on top of other existing
relationships and entities without violating schematic acyclic
dependencies.

Our system ensures the consistency of hypergraph objects
among all the replicas of a distributed domain in its Consis-
tency layer, after which each replica immediately stores the
objects in its local database. Currently, the distribution process
works in a multi-threaded environment (#6 threads). The
system stores and retrieves hypergraph objects from its storage
and retrieval layers that are built atop HyperGraphDB [34].
HyperGraphDB is a general-purpose, portable, extensible, and
typed data storage mechanism. We use HyperGraphDB to
exploit object-level sharing in higher-order and n-ary relation-
ships.

VII. CONCLUSIONS

We proposed hypergraphs as a natural candidate structure
for representing semi-structured, hierarchical, navigational,
complex, higher-order relationships in distributed computing
settings. We introduced and specified a new CRDT, a well-
formed higher-order recursively-defined mutable hypergraph
named HgCRDT, where hypergraphs were modeled using
user-defined schema and system-defined object-oriented types.
In HgCRDT, the hyperedges themselves were mutable. The
HgCRDT is an operation-based specification of 2P2P sets,
which works with tombstone sets.

An extension of our approach introduces and implements
partial replication in the HgCRDT in a hypergraph-oriented
database model built atop HyperGraphDB. However, we have
omitted the specification and details pertaining to the partial
replication for clarity of exposition. We are in the process
of formalizing our approach to prove it algebraically, giving
a detailed mathematical proof of our approach; and studying
the performance of the replicated hypergraphs, particularly the
scalability of the approach, and evaluating the time and space
complexity when dealing with a variety of large hypergraphs
on real data. We also intend to compare our approach with
other possible Hypergraph specifications such as state-based,
and other Set CRDTs-based variations, e.g., OR Set.

Acknowledgments: I wish to acknowledge fruitful discus-
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Abstract—The machine learning market is growing and ma-
chine learning is increasingly being used productively. Because of
this, more and more tools have been developed in the past with
the aim of supporting machine learning in practice. One type of
these tools is called experiment tracking tools. Their objective is to
keep track of the information generated by different experiment
runs so that the information can be used later, for example, to find
the best experiment run. Within the context of a bachelor thesis,
a pre-selection of 20 systems was made and then 4 of them were
selected for a more in-depth analysis and their characteristics
were examined in more detail. This paper summarizes the most
important findings of this thesis.

Index Terms—Machine Learning; Experiment Tracking; De-
velopment Environment

I. INTRODUCTION

The machine learning market is growing strongly. Accord-
ing to MarketsandMarkets [1], it is ”expected to grow from
USD 1.03 billion in 2016 to USD 8.81 billion by 2022”. As a
result of this growth, tools have been developed in recent years
to help develop machine learning models and put them into
production. However, due to the fact that the use of machine
learning in productive software is relatively new, tools and
conventions are less settled and less commonly applied than
in traditional software development. Warden [2] uses the term
”machine-learning-reproducibility-crisis” to describe that the
tools to meet these needs are often not applied in practice.

With regard to tracking data, parameters, models and results,
numerous products with different focuses and strengths have
been developed. Tools that focus on saving information around
the model training and development process are often referred
to as experiment tracking tools. But as stated in a Kaggle
survey [3], in a large amount of scenarios these relatively new
tools remain unused and tracking is either done manually or
not done at all.

The rest of the paper is structured as follows: In Section II
we explain the machine learning lifecycle and what artifacts
needs to be tracked in the context of an experiment. Based
on these findings we present the general architecture for

experiment tracking tools and formulate the most important
requirements in Section III. In Section IV a number of concrete
tools are presented and compared. The papers is finished with
a Conclusion in Section V.

II. BACKGROUND

In this section, a set of basic insights required for under-
standing tracking tools in the field of machine learning will
be presented.

A. The Machine Learning Lifecycle

The different phases and steps around the productive use of
a machine learning model have been described by different
authors using different terms. One of these terms is the
machine learning lifecycle. Garcia et al. [4] describe the
machine learning lifecycle as a three-phase process as shown
in Figure 1. The first phase is the pipeline development. During
this iterative phase, the data preprocessing, exploration and
visualization is done, model designs are chosen and models get
trained with different configurations and hyperparameters. The
authors emphasize that the model is not the important product
of the first phase, but the pipeline, which can be reused to
create a model from a data set. This pipeline can be used later
in the second phase training (middle), to train and validate
the model used for inference. The last phase (right) is called
inference. Here, the prediction service (which includes the data
preprocessing as well as the model used for inference) returns
a prediction for a given user input. The prediction service
provides information on the made predictions, which can be
used for later trainings. The authors mention that the different
stages are often managed by different teams.

B. Experiment Tracking

Langley [5] describes machine learning as an experimental
science and compares the process of finding a good model to
the empirical sciences of physics and chemistry. This aligns
with the results from interviews Hill et al. [6] conducted
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Fig. 1. Machine Learning Lifecycle (from [4])

with various machine learning practitioners in 2016. Seven
out of seven interviewees experienced the need ”to resort
to basic trial and error”. Langley defines an experiment as
the process of examining the effect of varying one or more
independent variables on some dependent variables [5]. Hence,
an experiment consists of multiple runs. According to Vartak
et al. [7], ”data scientist often built hundreds of models before
arriving at one that met some acceptance criteria”. Each model
built can be seen as the dependent variable of a run. However,
experiment tracking tools can also be used in the pipeline
development phase, introduced by Garcia et al. [4], which does
not produce a model, but a training pipeline. In this case, the
dependent variable would be the training pipeline. Therefore,
the following definition of a(n experiment) run is used in this
paper:

Definition (Experiment): A run is a part of an experiment,
it has a specific set of independent variables that produces a
model or a training pipeline. An experiment is a collection of
runs that try to solve the same problem or business task. The
objective of an experiment is to find the set of independent
variables resulting in the best dependent variable(s).

It should be noted that usually in practice it is not possible or
at least not economically feasible to find the best independent
variables [8].

Various possibilities exist to assess the quality of a model.
A common possibility is to calculate a metric for prediction
quality (such as accuracy) on a data set not used for training.
However, additional (nonfunctional) quality measures might
exist, e.g. the inference time, the training time or the explain-
ability of a prediction.

Due to the fact that the number of experiment runs might
be enormous, it is very helpful to track the experiment and its
runs. The term experiment tracking describes the process of
saving the information related to the experiment and its runs, to
allow further evaluation. Although typically the verb to track is
used in combination with experiments, some tools evaluated in
this work have functionalities that use the words log or logger.
Thus, both terms are treated as synonyms in this work. In its
easiest version, tracking can be done manually, alternatively
one of the tools presented in Section IV can be used. Either
way, tracking experiments brings multiple advantages:

Keeping track of all the runs makes it easy to find the

best variables. Additionally, it is easy to see which sets of
independent variables have already been tried out or might
be worth trying out in the future. This is especially helpful
if the work is done in teams, or if the responsible person
changes. With the right tool, tracked experiments can be
easily compared. If a model is used in production, it can
be very helpful to have the information available on how
the model was created. Another advantage – which applies
especially to research – is the fact, that results may need
to be reproduced. Furthermore, establishing the use of an
experiment tracking tool in a company or a project provides the
benefit of a structured way to access the data generated during
experimentation, regardless of the individuals responsible for
the experiments.

C. Reproducibility Requirements

In a reproducibility challenge, Pineau showed that most
challenge attendees found it at least reasonably difficult to
reproduce the result of a paper of the International Conference
on Learning Representations 2018 [9]. Pineau also published
a machine learning reproducibility checklist [10], which is
supposed to help increase the reproducibility of experiments.
Tatman et al. [11] define three levels of reproducibility for
research: low, medium and high reproducibility. The lowest
level of reproducibility is achieved by publishing the paper.
According to the authors, the medium level is achieved,
when the code is published along with the used data. The
highest level can be reached by additionally providing the
environment.

In the following subsections the requirements for repro-
ducibility introduced by Tatman et al. [11] as well as the terms
hyperparameters and metrics will be explained in detail.

1) Code: Similar to traditional programming, machine
learning highly depends on the source code. There are several
tools to effectively version source code. A developer survey
by StackOverflow in 2018 [12] showed that almost 90 % of
the developers use Git as a version control system. There is
no valid reason to not track the code used in machine learning
projects with Git. However, in a fast developing process,
experiment runs might be executed, without committing the
code beforehand. This would lead to a lack of reproducibility,
as Git needs a commit to restore a state of the code.
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2) Data: Besides the code, data plays an essential role in
machine learning, because different data can lead to different
results. As the kind of data depends on the business task, the
data format varies. Common data formats are text, image or
video. Due to the partly large data resources, a suitable tool
for the efficient storage of different variants of a data resource
should be used.

3) Environment: Providing information about the environ-
ment is certainly only necessary for some use cases. However,
it can contain important information of the original run,
such as the used hardware, the used operating system or the
software dependencies. Thus, keeping track of the environment
can be helpful to reproduce a run. Tatman et al. [11] propose
three possibilities to share the environment: Either by using
a hosted service, or by providing a container or virtual
machine, which includes all dependencies. At minimum, the
used libraries and their versions should be tracked.

4) Hyperparameters: According to Bergstra et al. [13],
hyperparameters configure the machine learning algorithm
before training, whereas, in the present paper, any kind of
configuration parameters of the experiment run (not only
the machine learning algorithm) will be considered as hy-
perparameters. As any change in configuration might result
in different results, it is recommended to track as many
hyperparameters as possible. Although hyperparameters are
often tracked implicitly when they are defined in the code
and the code is versioned, hyperparameters should be tracked
explicitly to allow easier comparison.

5) Metrics: A metric is an evaluation measure calculated
to quantify ”the effectiveness of a complete application that
includes machine learning components” [8]. Most of the times,
metrics will be calculated based on a model’s predictions on
data that has not been used for training. Different metrics with
varying strengths and weaknesses exist. For classification tasks
for example, accuracy or precision can be used. Accuracy
is defined as the fraction of correct predictions out of all
predictions [8]. Metrics can be used to compare different
runs of an experiment and can be considered as one of the
dependent variables of the experiment. Which type of metric
is used, is not important regarding experiment tracking.

III. EXPERIMENT TRACKING TOOLS

The main goal of experiment tracking is to save information
during experimentation in order to be able to access it later.
As a result, most experiment tracking tools consist of at least
three components, as shown in Figure 2. Some kind of client
software – for example a Python library – is required to store
the tracked information during experimenting on a persistent
data storage or send it to a server. The data can often be
retrieved programmatically through the client or be viewed in
a Graphical User Interface (GUI). The exact functionality of
those components differs between the available tools.

A. Requirements

As already discussed in Subsection II-B, tracking of code,
data, the used environment, hyperparameters, and metrics are

elementary requirements for such a tool. Additional require-
ments examined in our research also include the following
aspects:

1) Storing of Models: Training a model can take a long
time. Therefore, the models should be stored and linked to
the hyperparameters and metrics. This avoids time consuming
retraining e.g., if a model should be evaluated on new data.

2) Accessibility of Tracked Information: Tracking is a pre-
requisite, however the tracked data will only provide value,
if the tracked information can be accessed in a simple yet
powerful way. This includes a user interface which provides
a clear and customizable overview of all runs, as well as the
possibility to compare runs in depth. Filtering the runs with
easy but rich querying options is also part of this requirement.
Besides that, the tool should provide a possibility to create and
show plots. If additional interfaces, e.g., an API, exist, they
will be useful as well.

3) Collaboration: According to Tabladillo et al. [14], bring-
ing data science projects to production requires different tasks.
For this reason, data science projects are often worked on in
teams composed of different roles. Therefore, the tool should
facilitate collaborative work. This includes the possibility of
viewing existing results of different team members and adding
new results by executing new runs. To achieve this, a form of
access management is required.

4) Initial Setup and Infrastructure: Because tracking ma-
chine learning experiments should facilitate the work of the
teams, tools will only be taken into consideration if they
have low barriers to entry. Thus, this requirement describes
the initial investment needed to set up and use the tool. The
initial setup is everything that does not need to be repeated
if the same tool is used in another project (given the projects
can use the same infrastructure). As cloud tools might have
an advantage concerning the initial setup, it must be kept in
mind, that saving data off-premises might not be a possibility
due to legal or corporate regulations.

5) Ease of Integration: Similar to the previous requirement
this requirement concerns user-friendliness. Yet, unlike the
initial setup and infrastructure, the ease of integration describes
how easy it is to include the tool into a specific project. This
means, for example, project-specific configuration or source
code changes.

IV. EXAMINED TOOLS

In a market research, the following tools with experiment
tracking functionality were identified.

• Aim [15]
• Amazon SageMaker Experiments [16]
• Azure Machine Learning [17]
• ClearML [18]
• Comet [19]
• DAGsHub [20]
• DominoDataLab [21]
• DVC Studio [22]
• Guild AI [23]
• H2O MLOps [24]

23Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

                            31 / 36



Fig. 2. General Architecture of an Experiment-Tracking-Tool

• MLflow [25]
• Neptune [26]
• Paperspace Gradient [27]
• Polyaxon [28]
• Sacred [28] in combination with Omniboard, Incense or

Sacredboard (GUIs)
• TensorBoard [29]
• Valohai [30]
• Verta [31]
• Vertex AI [32]
• Weights & Biases [33]
The research was conducted online, using search engines,

blogs, forums, as well as the websites of the respective tools.
To allow an in-depth evaluation of the tools in the scope of

this work, the tools listed previously have to be limited to a
reasonable amount. The tools were selected in consultation
with a project team at inovex, actually developing a mul-
tilingual and multidomain Conversational AI. The selection
was influenced by requirements given from the project team.
In this process, MLflow, ClearML, Neptune and DAGsHub
were adopted for a more detailed evaluation. MLflow was
selected because it is one of the most established and widely
used tools. ClearML was assessed because of its wide range
of operating options. It can be used for free (even in small
teams) as a hosted option, operated self-hosted for free, but
also be used with a paid plan. The most important argument
for choosing Neptune was that it promises an effortless setup.
The last option evaluated was DAGsHub, as it makes use of
Data Version Control (DVC) [34] for versioning data, like the
project. In the next subsections each tool will be evaluated
based on the requirements defined in Subsection III-A and an
exemplary integration will be provided.

A. MLflow

The open-source tool MLflow is developed by Databricks.

1 import mlflow
2 mlflow.set_tracking_uri("postgresql://postgres:

postgres@172.3...")
3 mlflow.set_experiment("MyProject") #group runs
4 with mlflow.start_run() as run:
5 hyperparams = {"lr": 0.01,}
6 mlflow.log_params(hyperparams)
7 #Training placeholder, model stored in var model
8 mlflow.pytorch.log_model(model, "log_r",)
9 mlflow.log_metric("acc", 0.99)

Listing 1. MLflow example code

To start tracking with MLflow, a run has to be started as
shown in Listing 1. By using a context manager, the run will
be ended automatically (line 4). MLflow differentiates between
metrics and params; both can be logged to MLflow by using

the respective function. MLflow provides functions to log one
value (line 9), or to log multiple values (here, a dictionary
is passed, as the only parameter and the name and values of
the dictionary will be used (line 6). Grouping multiple runs
together allows easy viewing and comparison in the GUI. This
can be achieved by setting up an experiment (line 3). Metadata
(params, metrics, etc.) are by default stored in a local text
file. However, other possibilities exist; such as saving them
in a SQL Database, which can be achieved by specifying a
tracking URI (line 2). By default, models logged with MLflow
are stored in the local file system. However, it is possible to
change the location, e.g., to an S3 bucket.

The MLflow GUI in Figure 3 shows all the hyperparameters
and metrics in a clear table. Runs of the same experiment can
be compared and metrics are automatically plotted. In addition
to the GUI, data tracked with MLflow can be retrieved via
Python, R, Java and REST APIs. MLflow does not provide a
dedicated way to keep track of the data used for training. It
does not support automated tracking of the environment either.
It can be used for free in teams, however, this requires shared
data storage, which has to be set up by yourself.

B. Neptune

Neptune is a tool developed by Neptune Labs. While the
Client Software (Python package) is open-source, the server
code is not publicly available. Free as well as paid plans exist.
To get started with Neptune, an account has to be created at
neptune.ai and an API token has to be generated. To track
experiments, a project (similar to an experiment in MLflow)
has to be created in the Neptune Web App. After those setup
steps, Neptune is ready for use.

1 import neptune.new as neptune
2 run = neptune.init(project="tbud/MyProject")
3 hyperparams = {"lr": 0.01,}
4 run["hyperparams"] = hyperparams
5 #Trainingloop placeholder
6 run["loss/train"].log(the_current_loss)
7 torch.save(model, "log_r.mdl")
8 run["model"].upload("log_r.mdl")
9 run["acc"] = 0.99

Listing 2. Neptune example code

Listing 2 shows the integration of Neptune, after importing
the new Neptune API, we can initialize a run and assign it
to a project (line 2). Neptune does not differentiate between
metrics and hyperparameters. To log values with Neptune,
a notation with square brackets and strings as keys (e.g.,
run[”some key”]) is used, which is similar to adding new
values to a dict (line 9). To track series such as the loss, the log
function has to be used (line 6). This automatically generates
a plot in the GUI. To upload a trained model, it first has to
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Fig. 3. MLflow GUI (from [35])

be saved locally and can then be uploaded to Neptune using
the upload (line 7).

The GUI of Neptune (Figure 4) looks similar to the MLflow
GUI. It includes all the basic functionalities that MLflow
has, but also has additional nice-to-have features, such as
query completion for filtering or an option to save customized
views. The data can also be retrieved through the Python API.
Similar to MLflow, Neptune’s focus is tracking metrics and
hyperparameters. The setup is easier as with MLflow, however,
using Neptune raises Data Governance questions, because data
is stored on Neptune servers, outside your own company. For
single users Neptune can be used for free. When working in
teams the prize is calculated based on the usage.

C. ClearML

ClearML is an open-source tool developed by Allegro AI,
it was formerly known as Allegro Trains. Multiple options to
operate ClearML exist, it can be self-managed for free, used
with a free as-a-Service plan for up to three team members or
used with a paid plan.

1 from clearml import Task, Logger, Dataset
2 path = Dataset.get(dataset_project="MyProject/data",

dataset_name="ds_1").get_local_copy()
3 task = Task.init(project_name="MyProject", task_name

="Task1", reuse_last_task_id=False, output_uri="
gs://MyProject",)

4 hyperparams = {"lr": 0.01,}
5 task.connect(hyperparams)
6 #Training placeholder, model stored in var model
7 torch.save(model, "log_r.mdl")
8 task.get_logger().report_scalar("model", "accuracy",

0.99, 0)

Listing 3. ClearML example code

Besides its hyperparameter and metric tracking capabilities,
ClearML provides a possibility to efficiently store and manage
large datasets. It works similar to DVC [34]. This allows

versioning datasets even for binary files. A simple example
of the integration into code is given in Listing 3. To get the
local path to a dataset managed with ClearML, the dataset has
to be queried with the Dataset.get() function (line 2).
The get_local_copy() (line 2) function ensures that
a local copy is available and returns the path, which can
then be used for training. In ClearML, a task is similar to
a run in MLflow and describes something that is executed
and should be tracked. In line 3, a task is initialized and
assigned to a project. Setting reuse_last_task_id to
False ensures that this task will not override an old task. The
output_uri specifies the location for the artifacts (e.g., the
model) and is in this example set to a Google Cloud Storage.
By initializing a task, the tracking is automatically started.
ClearML allows logging hyperparameters by connecting an
object to a task (line 5). When a model is saved locally,
ClearML automatically uploads it to the artifact store and
connects it to the task (line 7). Metrics can be reported to
a logger, where the first argument is the title of the plot, the
second is the name of the series, the third is the value and
the last is the iteration (x-coordinate). It should be noted that
executing Task.init automatically tracks the used python
packages and their versions, providing an additional amount
of information.

Figure 5 shows a screenshot of the GUI. While the overview
table of the experiments looks similar to Neptune and MLflow,
the detailed view of the task is very nested and can overwhelm
new users. This is in our opinion the biggest downside of
ClearML compared to the other tools: due to its huge amount
of possibilities, it requires more time to familiarize. However,
we think this time is well invested since ClearML provides a
lot of options and possibilities for the user. Besides the Python
API data collected with ClearML can also be retrieved with a
REST API.
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Fig. 4. Neptune GUI (from [26])

D. DAGsHub

In contrast to the other presented tools, DAGsHub offers
a different approach. It makes use of existing open-source
technologies and provides unified storage and GUI for them
(however, DAGsHub itself is not open-source):

• DVC [34] is used to keep track of the data and models.
• Git keeps track of the code.
• MLflow or the DAGsHub Client can be used to track

hyperparameters and metrics.
The interaction of the different tools is presented in Figure 6.

Beside DAGSHub’s own client, MLFlow can be used to
track hyperparameters and metrics. In this case the integration
into code looks like in Listing 1. The most important advan-
tages of DAGsHub are the unified storage and the efficient
handling of variants of datasets using DVC.

The GUI of DAGsHub in Figure 7 is familiar to GitHub
users, but additionally includes a data section, as well as an
overview of the experiment runs as known from MLflow. With
a free DAGsHub plan, the number of collaborators and storage
is limited. Paid plans exist, which allow working in bigger
teams. DAGsHub probably has the most potential for teams
that already use DVC and/or MLflow and want to keep using
the tools but would benefit from unified storage and GUI.

E. Comparison

Table IV-E shows a comparison for most of the defined
requirements. As tracking the code is done with Git most of
the times and tracking the hyperparameters and metrics and
the ease of integration are on a similar level for all four tools,
these defined requirements are not included in the table. The

tools have different strengths and weaknesses when it comes
to ease of use, pricing and more advanced requirements, such
as tracking data or computational environment. MLflow has a
well-structured API and can be used for free. Neptune, on the
other hand, offers a simple setup and highly functional GUI
but requires a paid plan when used as a team. In comparison
to the two previous tools, ClearML handles the tracking of
data and the computational environment, taking care of all
requirements. Additionally, it is open-source and can be self-
hosted or used as a free or paid Service. DAGsHub can be
considered as a good choice for teams already using DVC
and MLflow who like to have unified storage and GUI.

V. CONCLUSION

This paper showed the benefits of tracking machine learning
experiments. After presenting 20 tools with functionalities to
track experiments which have been identified in a market
research. Requirements for machine learning experiment tools
were defined based on the needs of an industrial data sci-
ence project and 4 tools have been evaluated in detail. This
evaluation has shown that the right choice of an experiment
tracking tool depends on the specific requirements, and iden-
tified ClearML as an open source tool that meets most of the
requirements.

Due to the quickly changing market of experiment tracking
tools, new tools might be released or existing tools might
receive new functionality. As a result, further research, also
of tools not evaluated in this paper, might be of use.
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Fig. 5. ClearML GUI (from [36])

TABLE I
COMPARITIVE OVERVIEW OF MLFLOW, NEPTUNE, CLEARML AND DAGSHUB

MLflow Neptune ClearML DAGsHub
Evaluated
version

1.17 0.9.18 1.0 as of June 2021

Data no dedicated functionality pro-
vided

no dedicated functionality pro-
vided

Data Managing and Versioning
with ClearML Data

Data Managing and Versioning
with DVC

Environment encourages the user to do it
manually (MLflow Projects)

no dedicated functionality pro-
vided

automatically keeps track of the
installed python packages and
their versions

no dedicated functionality pro-
vided

Storing
models

easily possible model has to be stored locally
first and can then be uploaded

automatically uploaded if saved
locally

possible to store models with
DVC, commit required for ev-
ery upload

Accessibility
of tracked
information

basic GUI as well as Python, R,
Java and REST APIs

highly customizable &
advanced GUI as well as
a Python API

advanced GUI as well as a
Python API

unified GUI for data, code, and
experiments, no Python API for
retrieving experiment data

Collaboration possible, requires a shared data
storage

possible with a paid account possible, user limit depends on
the operation mode, unlimited
for self-hosting

free for public repositories, not
free of charge for private repos-
itories

Initial setup
and infras-
tructure

setting up a database or shared
file storage is required for col-
laborative use

easy setup, as the user does not
have to take care of the infras-
tructure

hosted as well as self-hosting
options exist, images to make
the setup easier exist

easy setup if DAGsHub is used
as Git and DVC storage

Fig. 6. DAGsHub Architecture
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Fig. 7. DAGsHub GUI
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