
ASIM-Workshop STS/GMMS 2014
Treffen der ASIM/GI-Fachgruppen:
Simulation technischer Systeme
Grundlagen und Methoden in Modellbildung und Simulation

20. bis 21. Februar 2014 in
Reutlingen-Rommelsbach

Tagungsband

Jürgen Scheible (Hrsg.)
Ingrid Bausch-Gall (Hrsg.)
Christina Deatcu (Hrsg.)

Arbeitsgemeinschaft Simulation ASIM in der Gesellschaft für Informatik GI

ISBN 978-3-901608-42-1 ARGESIM Report 42 * ASIM Mitteilung AM 149

ARGESIM Reports

Published by ARGESIM and ASIM, Arbeitsgemeinschaft Simulation,
Fachausschuss 4.5 der GI

Series Editor:
Felix Breitenecker (ARGESIM / ASIM)
Div. Simulation, Vienna University of Technology
Wiedner Hauptstrasse 8 - 10, A - 1040 Vienna
Tel: +43-1-58801-10115, Fax: +43-1-58801-10199
Email: Felix.Breitenecker@tuwien.ac.at

ARGESIM Report 42
ASIM Mitteilung AM 149

Titel: ASIM-Workshop STS/GMMS 2014
Treffen der ASIM/GI-Fachgruppen:
Simulation technischer Systeme
Grundlagen und Methoden in Modellbildung und Simulation

Herausgeber: Jürgen Scheible
Ingrid Bausch-Gall
Christina Deatcu
Email: christina.deatcu@hs-wismar.de

ISBN 978-3-901608-42-1

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung,
des Nachdrucks, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem
oder ähnlichem Weg und der Speicherung in Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser
Verwertung, vorbehalten.

© by ARGESIM / ASIM, Wien, 2014 – Hochschule Reutlingen

ARGE Simulation News (ARGESIM)
c/o F. Breitenecker, Div. Simulation, Vienna Univ. of Technology
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
Tel.: +43-1-58801-10115, Fax: +43-1-58801-10199
Email: info@argesim.org; WWW: http://www.argesim.org

Druck:
WENZEL GmbH druck . kopie . media
München

Advancing Virtual Commissioning with Variant Handling

Advancing Virtual Commissioning with Variant Handling

Johannes Möck1, Jens Weiland1

1Hochschule Reutlingen, School of Engineering
Alteburgstr. 150

72762 Reutlingen, Germany
{johannes.moeck, jens.weiland}@reutlingen-university.de

Abstract: Nowadays the software development plays an important role in the entire value chain in produc-
tion machine and plant engineering. An important component for rapid development of high quality software
is the virtual commissioning. The real machine is described on the basis of simulation models. Therefore, the
control software can be verified at an early stage using the simulation models. Since production machines are
produced highly individual or in very small series, the challenge of virtual commissioning is to reduce the
effort to the development of simulation models. Therefore, a systematic reuse of the simulation models and
the control software for different variants of a machine is essential for an economic use. This necessarily re-
quires a consideration of the variability which may occur between the production machines. This paper ana-
lyzes the question of how to systematically deal with the software-related variability in the context of virtual
commissioning. For this purpose, first the characteristics of the virtual commissioning and variability han-
dling are considered. Subsequently, the requirements to a so-called variant infrastructure for virtual commis-
sioning are analyzed and possible solutions are discussed.

1 Introduction
Nowadays the software development plays an im-
portant role in the entire value chain in production
machine and plant engineering. The low-cost and
rapid development of high quality software has be-
come a crucial success factor. The machine control
software (NC, PLC, HMI), which has to be solved
computationally, can no longer be seen as only an
appendage of a machine. Special software engineer-
ing methods are necessary to master the complexity
of the control software.

The virtual commissioning is an important step to
shorten developmental times (time-to-market) and to
improve the quality of the control software. In virtual
commissioning the real machine is described based
on virtual simulation models, including kinematic and
behavioral models. Using this technique the control
software can be verified on an early stage by means
of the simulation models. In addition, simulation
results can flow back into the machine design. Thus,
virtual commissioning allows an early validation and
optimization of the control software and the entire
machine behavior. This leads to a significant reduc-
tion of commissioning time and to a considerably
higher quality of the machine. In many places, the
virtual commissioning is at the threshold to produc-
tive use.

Despite the great progress that has been made in
recent years in the field of virtual commissioning,
there are still aspects which counteract their econom-
ic productive use. An essential aspect is the effort of
developing simulation models: Production machines
and plants are often highly individually and produced
in very small batches. As a result, the functionality of
a machine has to be customized for the respective
customer. In addition, from a technical point of view,
the machine-specific sensors and actuators lead to an
individual control of the machine. Functional and
technical differences between the different machine
variants are reflected inevitably in the control soft-
ware and the simulation models of each machine
variant.

Depending on the developmental phase and the scope
of use, the developmental effort can be reduced if
parts of the control software and the simulation mod-
els could be reused for different variants of the ma-
chine. However, a systematic reuse requires consider-
ation of the variability that can occur between the
production machines. As it has been used in mechan-
ical and plant engineering for a long time now, a
systematic handling of the variability is still lacking
adequate concepts for the associated software and
model-side variability. This concerns in particular
dependencies between variability in the control soft-
ware and the simulation models. In the following

7

TN- Advancing Virtual Commissioning with Variant Handling

sections, the question is discussed, how to deal sys-
tematically with the occurring variability between the
simulated production machines in software within the
virtual commissioning1. Firstly, the paper gives a
brief introduction into the Virtual Commissioning. In
the following the systematic handling of variability in
the context of virtual commissioning is discussed.
Afterwards the different requirements for a so-called
variant infrastructure within the virtual commission-
ing are mentioned and briefly explained. Finally a
summary and an outlook about advancing the virtual
commissioning with variant handling are given.

In contrast to the classical sequential development of
machine and plant engineering, the virtual commis-
sioning (VC) follows a different methodological
approach. Parts of the commissioning are brought
forward by using a virtual machine of the necessary
system components. Thereby the software develop-
ment can start early in the developmental process
(Figure 1). Through the virtual commissioning the
classic commissioning is not completely replaced, but
it can be significantly shortened and simplified. By
parallelizing the developmental steps and by utilizing
the simulation feedback, VC significantly shortens
developmental times, reduces developmental costs
and improves product quality.

1 This work is funded by the Federal Ministry of Education
and Research within the project Virtual Commissioning of
Variant-Rich Systems (VivaSys) under the reference num-
ber 03FH085PX2.

Depending on the objectives of the VC, the compo-
nents are displayed as simple as possible and as accu-
rate as necessary in various domain specific simula-
tion models. For example, a virtual machine tool is
represented by kinematics and behavioral models. In
this case the three-dimensional kinematics model
shows the geometry, the kinematics and the collision
calculation of the machine. Whereas the behavioral
model describes the physical characteristics of the
machine, such as the timing or the switching behav-
ior. Simulation models can be connected to real con-
trol software via a (simulated or real) field bus sys-
tem. The control software can be tested in this way at
an early stage compared with the simulation model
(Figure 2).

Figure 2: Integration of simulation models and control
software

Usually there are different simulation tools for devel-
opment and simulation of kinematics and behavioral
models. Thus, for example the multibody simulation
can be modeled in the simulation tool RecurDyn from
FunctionBay [8] and the behavioural model can be
modeled in SimulationX from ITI [9] or Simulink
from The Mathworks [11]. The control software can
be realized by the use of the developmental environ-
ment CODESYS [17] from 3S-Smart Software Solu-
tions.

Simulation models, which have been developed in
this way can be executed and synchronized at the
same time as part of the co-simulation. Concepts that
allow such coupling between simulation tools are, for
example:

The Functional Digital Mock-up
(FunctionalDMU): An initiative of the
Fraunhofer Gesellschaft with the aim to create a
bridge between different simulations and
visualization [3]. The runtime environment
consists of a master simulator and simulators
with appropriate wrappers that are connected to
the master simulator interfaces, called slots.

The Functional Mock-up Interface (FMI), which
was developed in the context of MODELISAR

Figure 1: Concept of the Virtual Commissioning

8

Advancing Virtual Commissioning with Variant Handling

[12]. This concept was developed for the
exchange of dynamic models, which enables the
coupling of different simulation and modeling
environments for cross-domain simulation [3].

These above concepts allow the exchange of infor-
mation between simulation models during the simula-
tion time. The focus of the following requirements is
ensuring the consistency between simulation models
before executing a possible simulation.

Current simulation tools like RecurDyn, SimulationX
or Simulink only support the modeling of individual
systems and do not know concepts regarding variabil-
ity. In industry, the current procedure in the context of
VC is therefore that for each component individual
simulation models have to be developed. Alternative-
ly existing models are adapted by duplicating (so-
called Clone and Own). In particular, the duplication
can lead to increased maintenance costs and in-
creased exdenditure of time throughout the software
life cycle. As a change in one version may lead to
changes in all other copies.

An economic use of VC requires inevitably a system-
atic observation and handling of variability within
and between simulation models and associated con-
trol software.

A suitable concept for the systematic handling of
variability and for the efficient production of highly
individualized systems represents the product line
engineering ([4], [6]). Instead of developing individu-
al systems, which are independent of each other, the
focus is in product line engineering from the outset
on developing a set of systems that are associated
with a particular application domain. This develop-
ment is mainly done in two parallel processes: The
domain engineering and application engineering.
During domain engineering, a product line infrastruc-
ture for the systematic reuse of software artifacts is
developed. This includes, for example, the analysis of
variable requirements between systems in terms of
features as well as a cross-system reference architec-
ture or reusable implementation components. During
the application engineering these artifacts are the
basis, in order to generate specific members of the
product line.

The generative software development builds upon the
product line engineering. Goal of generative software
development is to generate automatically highly cus-

tomized and optimized systems from defined reusable
components on the basis of a concrete system specifi-
cation [7]. Core concept represents the generative
domain model (Figure 3). This separates application-
oriented concepts in the problem space from the con-
cepts of the implementation in the solution space.

It allows separate development of domain concepts
and reusable components and thus their individual
modeling, implementation and evolution. Both mod-
els can be developed independently of each other in
this way. The configuration knowledge maps the
problem space to the solution space and represents
the relationship between the two models explicitly.

Figure 3: Elements of the generative domain model
(see [7])

The product line engineering and the generative soft-
ware development, thus, form a basis for the system-
atic handling of variability in the context of VC.

Taken the product line engineering and generative
software development as the basis for a software-
based handling of variability, the following aspects
have to be considered. These aspects are the essential
requirements for a so-called variant infrastructure
within the VC.

4.1 Development of feature models in the prob-
lem space

For a function-based approach of variant-rich embed-
ded systems, feature models turned out to be success-
ful ([2], [7], [5], [9]). In feature models variable re-
quirements of a product line are managed and hierar-
chically structured in the form of features of the stud-
ied domain. The result is a comprehensive model of
common and variable features and their dependencies
between product variants. A distinction is made be-
tween mandatory and optional features, and (1..n):m-
group relations that are realized by the feature types
Mandatory, Optional, Alternative, and Or. Each fea-

9

TN- Advancing Virtual Commissioning with Variant Handling

ture can have a set of attribute-value pairs. Depend-
encies between features and attributes are defined by
restrictions. For feature modeling, the tool
pure::variants from the company pure-systems [13]
can be used. Figure 4 shows, for example, the varia-
ble characteristics of a speed picker (using notation
from [7]).

Figure 4: Extract of the speed picker feature diagram

In this feature tree, Vision_Control represents an
optional feature, which could or could not be part of
the Speed_Picker system. The Kinematic could be
achieved by choosing one of two alternative features
1_Arm_Kinematic or 2_Arms_Kinematics. Finally,
Photo_System and Video_System are Or-features.
Vision_Control could be implemented either on the
basis of using either one of them or both.

4.2 Development of reusable components in the
solution space

In the context of VC, the solution space includes the
control software and the simulation models. There-
fore the question arises which aspects - such as tech-
nique, information, and procedure - have to be con-
sidered in the implementation of variability in control
software and simulation models. In the following,
essential aspects and the resulting requirements for
the development tools are discussed in more detail.

a) Starting point for the implementation of variability
in control software and simulation models is the vari-
ation point. This defines a separate, clearly identifia-
ble area of the software or model, in which adjust-
ments can be made for a specific system variant [1].
Variability is therefore clearly localized.

For the introduction of variability in control software
and simulation models it is essential that the devel-
opment tools contain language elements by which
variation points can be realized. Here, the significant
factor is, that these "model-specific" language ele-
ments differ from "regular" language elements:

A variation point must be clearly visible for the
developer for manual and graphical development.

Eg by using a variant-specific color or a
graphical/textual label of the variation point.

A variation point must be clearly identifiable for
automated processing. Eg via an annotation as a
unique identifier. This is necessary for automated
configuration and communication with the
control software and the simulation models.

In addition, the potential language elements should
ensure a uniform handling for realizing variability
within the considered development tool.

b) The variation point essentially consists of a varia-
bility mechanism and the possible variants aside from
a unique identification. The variability mechanism
determines how a variation point is removed and is
replaced by an associated variant. Figure 5 shows an
example of a variation point in SimulationX.

Figure 5: Variation Point in SimulationX

The development tools must provide mechanisms by
which a variation point can be removed from the
software or models in terms of configuration of a
specific variant. Basically, the following mechanisms
can be distinguished:

During configuration a specific variant is
selected from a set of predefined variants based
on a specification. The variants are included in
the control software and the behavioral models.
Eg such variants could be selected by a signal
routing.

Within the substitution a variation point is
replaced by a variant. The variation point
specifies the condition under which this variant
has to be inserted in the variation point. Such
variants could be managed in the development

10

Advancing Virtual Commissioning with Variant Handling

tool within a library or by a file system which is
under a separate and external version control.

Figure 6: Variability mechanisms „selection“(left) and
"substitution"(right)

The selection and substitution can be controlled
via a specific set of variant configuration parame-
ters. Meanwhile, a number of object-oriented de-
velopment tools are offered for the modeling of
control and simulation software. Therefore, the
inheritance is another application for the selection
and substitution of variants.

The generation is based on a specification
that eg may take the form of a blueprint.
From this specification, the system variants
will be generated by a generator.

Figure 7: Variability mechanism "generation"

Not every concept is supported by each development
tool. On the one hand, in the modeling of a variation
point in a behavioral model, like SimulationX, it is
possible to model all variants through signal routing,
whereby a selection can be realized. On the other
hand within the modeling of kinematic models, eg of
multi-body simulation models in RecurDyn, only one
variant may be part of the current model (see Figure
8). In this case, the variation point requires detailed
information by which variants it may be replaced and
where to find them.

Figure 8: Modeling a variant-rich multibody model in
RecurDyn

c) As part of the mapping of the problem space to the
solution space, the features are mapped on variation
points in the control software and the simulation
models. Therefore, feature types Optional, Alterna-
tive, and Or have a strong influence on the realization
of these variation points: Feature types have to be
mapped to variability mechanisms. Experience shows
that not every variability mechanism supports each
feature type. Therefore, the tool side must provide
potential variability mechanisms for the various fea-
ture types.

d) Depending on the size of the variant, that is associ-
ated with a variation point in the control software and
the simulation model, different granularities of varia-
bility can be distinguished. The simplest form of
variability is the so-called data variability. Variants
describe the parameter values, which represent appli-
cation-specific thresholds or characteristic curves.
Another form of variability is the variant-specific
signal routing within an application function. In the
third form, variants consist of code blocks or model
components that encapsulate variant-specific applica-
tion functions. This enables the separate and possibly
parallel development of functions. Such application
functions may also be reused in a different context. In
the development of control software by using
CODESYS, a code block could be a class, a function,
a function block or a set of parameters. For the rele-
vant granularity the potential variability mechanisms
has to be considered on the tool side.

11

TN- Advancing Virtual Commissioning with Variant Handling

4.3 Modeling of configuration knowledge
In the context of the VC the features from the feature
model have to be mapped to variation points from the
control software and simulation models by the con-
figuration knowledge. For this mapping the
knowledge about the features, the variation points in
the control software and simulation models, as well
as the dependencies between features and variation
points (both among themselves and between problem
and solution space) are required.

In the feature model dependencies between features
can be specified as following: dependencies can de-
pend on the position of a feature in the model hierar-
chy, the feature type or the special relations to other
features. On the basis of the tool pure::variants it is
possible to manage this knowledge.

With respect to the variability in the control software
and simulation models various questions have to be
answered:

What comprises the knowledge to manage
variability? Among others, this affects the
information about the variation points,
information about variants and information about
the used variability mechanisms.

Where to store this variability knowledge? Eg
within the means of the development tools or
outside the tools in a central repository.

How to save the knowledge about the variability?
This aspect relates to the structure of the data
model and its implementation.

The mapping of features out of the feature model to
variation points enables tracing of the distributed
variation and automated configuration of the variant-
rich control software and simulation models based on
a feature selection. Here it is necessary to analyze the
following aspects:

What comprises the knowledge to manage
dependencies? Eg the assignment of features to
variation points of the control software and the
simulation models, default settings, etc.

Where and in what type the dependencies are to
be saved? Eg within the respective development
tools or in a central repository.

4.4 Synchronization using a variant manager
As part of the VC several software tools are working
on the development of the control software and the

kinematics and behavioral models closely together.
Knowledge of the variability and dependencies within
and between the control software, the simulation
models and the feature model must necessarily be
synchronized for the management and configuration
of variant-rich systems. This is the central task of the
so-called variant manager (Figure 9).

Figure 9: Variant infrastructure with variants manager

The variant manager provides the functionality to
automatically share variability and dependency
knowledge between different VC-development tools
in the variant infrastructure. It ensures consistency of
variability knowledge across the used tools. Due to
different interfaces of the development tools it is up
to the variant manager to provide an appropriate in-
terface technology for the exchange of information.
At the logical level the variant Manager must provide
the following functionality to the development tools:

To log on (and off) to the variant manager.

To define the possible communication techniques
at the technical level for integration into the
infrastructure. This communication could be
realized by the exchange of formatted files
(XML, CSV, etc.), remote procedure calls, or an
object broker.

To consistently exchange the tool intrinsic
variability knowledge on the basis of a defined
set of operations.

Part of the development is to evaluate to what extent
such a variant manager should be realized central in
the form of an information broker or decentralized
distributed in the VC-development tools.

In the development of production machines, the vir-
tual commissioning (VC) plays an increasingly im-
portant role. On the basis of virtual simulation mod-

12

Advancing Virtual Commissioning with Variant Handling

els, the control software can be verified at a very
early stage and can back flow simulation insights into
the design of the machine. This leads to shorter de-
velopment time and a higher product quality.

The challenge of the VC is to reduce the high costs of
developing the simulation models. These costs can be
significantly reduced by considering variability in the
control software and the simulation models. A con-
sideration of variability enables the systematic reuse
of common parts of the model.

On the basis of product line engineering concepts, the
requirements are analyzed for a variant infrastructure
in this paper. This is the basis for a systematic presen-
tation, management and configuration of variability
in control software and simulation models. As part of
the VC several software development tools work
together. For a multi-tool synchronization of variabil-
ity knowledge the requirements for a so-called variant
manager are analyzed within the variant infrastruc-
ture.

The requirements have been determined as part of the
BMBF-funded project Virtual Commissioning of
Variant-Rich Systems (VivaSys). Currently a data
model and the architecture for the variant infrastruc-
ture as well as a procedure for handling variability in
the context of VC are developed.

6 References
[1] Becker, M.: Anpassungsunterstützung in Soft-

ware-Produktfamilien. Dissertation, Techni-
sche Universität Kaiserslautern, 2004.

[2] Beuche, D.: Composition and Construction of
Embedded Software Families. Dissertation,
Universität Magdeburg, 2003.

[3] Blochwitz, T.; Otter, M.; Arnold, M.; Bausch,
C.; Clauß, C.; Elmqvist, H.; Junghanns, A.;
Mauss, J.; Monteiro, M.; Neidhold, T.;
Neumerkel, D.; Olsson, H.; Peetz, J.-V.; Wolf,
S.: The Functional Mockup Interface for Tool
independent Exchange of Simulation Models.
8th International Modelica Conference 2011,
20-22 March 2011, Dresden, Germany, 2011.

[4] Böckle, G.; Knauber, P.; Pohl, K.; Schmid, K.:
Software-Produktfamilien – Methoden, Ein-
führung und Praxis. dPunkt Verlag, 2004.

[5] Clauss, M.: Untersuchung der Modellierung
von Variabilität in UML. Diplomarbeit. Tech-
nische Universität Dresden, 2001.

[6] Clements, P.C.; Northrop, L.: Software Prod-
uct Lines – Practices and Patterns. SEI Series
in Software Engineering, Addison-Wesley,
2001.

[7] Czarnecki, K.; Eisenecker, U.W.: Generative
Programming – Methods, Tools, and Applica-
tions. Addison-Wesley, 2000.

[8] FunctionBay GmbH: RecurDyn,
www.functionbay.de/, 23.01.2014.

[9] ITI Gesellschaft für ingenieurtechnische
Informationsverarbeitung mbH: SimulationX,
http://www.simulationx.com/, 23.01.2014.

[10] Lee, K.; Kang, K.C.; Koh, E.; Chae, W.; Kim,
B.; Choi, B.W.: Domain-Oriented Engineering
of Elevator Control Software: A Product Line
Practice. In: Donohoe, P. (Edit.): Software
Product Lines – Experience and Research Di-
rections. Kluwer Academic Publishers, 2000.

[11] Mathworks: Simulink. www.mathworks.de/
products/simulink/, 23.01.2014.

[12] MODELISAR (07006): Functional Mock-up
Interface for Model Exchange. Document ver-
sion 1.0, 2010.

[13] pure-systems GmbH: pure::variants Eclipse
Plugin User Guide. 2012.

[14] Relovski, B.; Neumerkel, D.; Kleiner, N.; We-
lakwe, N.-A. S.: The MODELISAR Project
and the Functional Mockup Interface. 1st Int.
Conference on Multiphysics Simulation – Ad-
vanced Methods for Industrial Engineering,
22.-23. June 2010, Bonn.

[15] Wenk, M.: Virtuelle Inbetriebnahme.
www.oth-aw.de/wenk/forschung/virtuelle_
inbetriebnahme/, 03.01.2014.

[16] Wünsch, G.: Methoden für die virtuelle Inbe-
triebnahme automatisierter Produktionssyste-
me. Herbert Utz Verlag, 2007.

[17] 3S-Smart Software Solutions GmbH: CODE-
SYS, http://www.codesys.com/, 03.01.2014.

13

