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Background: Polysomnography (PSG) is the gold standard for detecting 
obstructive sleep apnea (OSA). However, this technique has many disadvantages 
when using it outside the hospital or for daily use. Portable monitors (PMs) aim to 
streamline the OSA detection process through deep learning (DL).

Materials and methods: We studied how to detect OSA events and calculate 
the apnea-hypopnea index (AHI) by using deep learning models that aim to 
be implemented on PMs. Several deep learning models are presented after being 
trained on polysomnography data from the National Sleep Research Resource 
(NSRR) repository. The best hyperparameters for the DL architecture are 
presented. In addition, emphasis is focused on model explainability techniques, 
concretely on Gradient-weighted Class Activation Mapping (Grad-CAM).

Results: The results for the best DL model are presented and analyzed. The 
interpretability of the DL model is also analyzed by studying the regions of the 
signals that are most relevant for the model to make the decision. The model 
that yields the best result is a one-dimensional convolutional neural network 
(1D-CNN) with 84.3% accuracy.

Conclusion: The use of PMs using machine learning techniques for detecting OSA 
events still has a long way to go. However, our method for developing explainable 
DL models demonstrates that PMs appear to be a promising alternative to PSG 
in the future for the detection of obstructive apnea events and the automatic 
calculation of AHI.
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1. Introduction

PSG is the gold standard for detecting OSA (Mostafa et al., 2019; Kim et al., 2022). Its 
effectiveness is far from doubt. However, it has many widely known drawbacks, such as long 
waiting lists in hospitals, patients staying overnight in sleep laboratories with many sensors on 
their bodies, and the need for sleep clinicians during the study. In short, PSG requires a long 
time to be carried out and is economically expensive.
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Alternatives to detect OSA have been appearing for some time 
(Collop et al., 2011). Some alternatives are intended to complement 
PSG to reduce patient waiting times, such as surveys (STOP-BANG) 
(Chung et al., 2016). At the same time, other alternatives claim to 
be an effective solution that can be used instead of polysomnography: 
PMs (Kirsch, 2013; Chang et  al., 2020). Many PMs have been 
developed to detect OSA and are a booming technology for 
monitoring sleep disorders (Collop et al., 2011; Mendonça et al., 2019; 
McClure et  al., 2020; Serrano Alarcón et  al., 2021). However, 
practically all the devices have common objectives to perform the 
sleep test outside the sleep laboratory, to be as inexpensive as possible, 
to be sufficiently accurate, and to be as non-invasive as possible for the 
patient (Gjevre et al., 2011). Many solutions require a few physiological 
signals to determine whether the patient has OSA. The methods used 
to determine if the patient has this pathology are diverse. Despite this 
fact, one is currently the most widely used and promises the best 
results: classical machine learning and deep learning models (Thorey 
et al., 2019; Zemouri et al., 2019).

Deep learning algorithms generally detect sleep patterns, 
considering that, in most cases, they outperform machine learning 
algorithms (Cen et al., 2018; Mostafa et al., 2019; JeyaJothi et al., 2022). 
Specifically, deep learning avoids the inconvenience of having 
extensive knowledge in the specific field to extract the most relevant 
features (Bock et  al., 2021; Zhang et  al., 2021). There are several 
techniques for classifying biomedical time series, ranging from using 
shapelets to deep learning, including classical machine learning 
models (Bock et al., 2021). Artificial intelligence is taking its place 
among the most established techniques for generating more precise 
results and being easier to develop. There are a large number of studies 
that have used artificial intelligence algorithms to detect sleep apnea 
(Mostafa et al., 2019; Ramachandran and Karuppiah, 2021; JeyaJothi 
et al., 2022). Some studies assess the use of different architectures to 
test which one gives the best results when working with time series 
(Fawaz et al., 2019). However, not all scientific papers intend to use 
these DL algorithms in PMs to detect OSA. Only some of the 
publications focus on an essential aspect when trying to develop a 
medical device that is used in a real medical environment: the 
explainability of the model (Gaube et al., 2021). If there is something 
about which the use of machine learning algorithms raises doubts, it 
is sometimes difficult to determine why a model has made a decision 
and not another (Wang et al., 2020). This aspect becomes even more 
crucial when using these algorithms in real medical settings. Besides 
achieving an acceptable result to diagnose a particular pathology such 
as OSA, explaining why the model has made that decision is equally 
or more important. If a model is not interpretable enough, it can lead 
to legal consequences (Zemouri et al., 2019). Therefore, there should 
be  a trade-off between the model accuracy and explainability/
interpretability (Selvaraju et al., 2016). To explain the model decision, 
we  can distinguish between local and global explanations. In the 
global explanation, the overall performance is analyzed. While in the 
local explanation, each example in the dataset is considered 
individually (Ivaturi et al., 2021). In this work, we are interested in 
knowing those regions of the signals most relevant for the model to 
make the prediction. Therefore, the technique known as Grad-CAM 
is chosen among the different visualization techniques currently used. 
When used with convolutional neural network (CNN), Grad-CAM 
uses the gradient information flowing into the last convolutional layer 
to assign importance values to each neuron for a given decision of 

interest (Gildenblat, 2017). Although Grad-CAM is widely used in 
image classification tasks, it also shows relevant results when 
classifying biomedical time series (Fauvel et al., 2021). Several existing 
implementations have been used and modified to implement 
Grad-CAM (Chollet, 2020). In addition, it must be presented clearly 
and concisely so the clinician can perfectly understand the prediction.

In the first stage of developing a PM to detect OSA, the problem 
of which data to train the models always arises. This fact occurs 
because, in the initial stages of the development of a PM, there is no 
patient data that the PM has collected. Therefore it must be decided 
which biomedical database to use. This fact is essential as the quality 
and extent of the data determine the success of training DL algorithms 
for detecting sleep patterns (Goldstein et  al., 2020). The database 
should contain signals that best represent the physiological signals that 
the PM will measure in the future. This fact will be crucial in later 
stages since when the device is developed and ready for testing, the DL 
models used during the early stages will have to classify the biomedical 
signals collected by the PM. If these signals are not similar, the results 
will not be satisfactory. Along with the database to be used, it is also 
essential to determine which architecture or model will be used for 
detecting sleep apnea (Biswal et al., 2018). Literature analysis shows 
that CNNs are the most widely used architecture (Choi et al., 2018). It 
is also fundamental to define which methodology will be used to train 
the algorithms that work with time series. The most used are 
windowing and the use of the complete time series (Bock et al., 2021). 
In this work, the windowing technique will be used for various reasons 
that will be explained throughout this manuscript.

In short, this scientific work aims to develop DL models that 
detect obstructive sleep apnea events and estimate the AHI to 
be  subsequently used on PMs in healthcare settings. A good 
interpretability of the model is needed, which will also be addressed 
throughout this manuscript. Numerous scientific publications 
comprehensively review different solutions for detecting OSA and 
other sleep disorders (Pathinarupothi et al., 2017; Chaw et al., 2019; 
Mendonça et al., 2019; Qian et al., 2021). Therefore, this work does not 
focus on reviewing existing solutions, but on developing a DL model 
so that a PM can subsequently use the model in a real clinical setting.

2. Materials and methods

In this study, the set of signals with oxygen saturation (SpO2), 
heart rate (HR), thoracic respiratory effort (Thor-Res) and abdominal 
respiratory effort (Abdo-Res) were used to train and evaluate a DL 
model for OSA detection and AHI calculation. The workflow of the 
methodology used is summarized in Figure  1. The methodology 
applied in this study shows several distinct stages. First, the signals are 
obtained from the Sleep Heart Health Study 1 (SHHS1) (Zhang et al., 
2018; Drzazga and Cyganek, 2021), Sleep Heart Health Study 2 
(SHHS2) and Multi-Ethnic Study of Atherosclerosis (MESA) (Chen 
et al., 2015) databases. SHHS2 is used for training and validation. Data 
from SHHS1, SHHS2, and MESA are used for model testing. Four 
different datasets are generated from SHHS2 data to study the 
influence of artefact removal and signal normalization on the model 
results. The signals are divided into 60-s windows to subsequently 
balance the dataset, with 50% of the windows being apnea events and 
50% non-apnea events that are randomly chosen. For the balancing, 
it is taken into account that the maximum number of sleep apnea 
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windows is maintained. Subsequently, an optimizer is used to find the 
best architecture of the model using Keras Tuner. After the search for 
the best architecture, the three best models in terms of performance 
are selected, and new training is performed through cross-validation 
with K-fold = 5. The best-performing model is selected and re-trained 
on the whole dataset. Subsequently, the model is evaluated on SHHS2, 
SHHS1, and MESA. The best model is also used for the AHI 
calculation and for applying the Grad-CAM technique to facilitate the 
study of the decision taken by the deep learning model. Throughout 
the methods section, all these steps are explained in detail.

2.1. Dataset

The SHHS1 was performed from November 1, 1995, to January 
31, 1998, and consists of raw polysomnography data from 5,793 
patients. For its part, SHHS2 was carried out from January 2001–June 
2003 and contained raw polysomnography data from 2,651 patients. 
The MESA is an NHLBI-sponsored 6-center collaborative longitudinal 
investigation of factors associated with the development of subclinical 
cardiovascular disease in 6,814 black, white, Hispanic, and Chinese-
American men and women with baseline ages 45–84 years at baseline 
in 2000–2002. In subsequent studies, namely at MESA Exam 5 (2010–
2013), several subjects participated in a sleep examination to collect 

(PSG). In total 2,060 PSG recordings were successfully collected 
(Chen et al., 2015).

After reviewing the literature it is not determined which dataset 
(SHHS1 or SHHS2) generates better results when feeding deep 
learning models. Therefore, it was decided to use SHHS2 for training 
the model since software and hardware updates were made for data 
collection, which may imply better data quality. In addition, the 
number of patients that the SHHS2 contains should be sufficient to 
train the model since it is better to have quality data than quantity as 
a general rule. Some studies have used both SHHS datasets, while 
others only SHHS1 or SHHS2 (Drzazga and Cyganek, 2021). In order 
to test the model with other external datasets, data from SHHS1 and 
MESA will be used to evaluate the model.

In biomedicine, obtaining sufficiently large and quality 
annotated datasets remains challenging (Zemouri et  al., 2019). 
We have worked with four physiological signals in this work, that are 
explained in the next section. The DL model exposed in this work 
aims to be  used with a PM in a natural clinical environment. 
However, the development of the device has yet to finish, and data 
cannot be obtained directly using it. Therefore, external datasets are 
needed since there is little or no evidence of using DL models trained 
with data from PMs at home (Kristiansen et al., 2021). In total, three 
datasets were used to develop and evaluate the models presented in 
this manuscript.

FIGURE 1

Workflow with the methodology applied in this scientific work. Several differentiated stages can be seen, such as the selection of the databases, the 
preprocessing of the signals, the balancing of the dataset to generate reliable results, the search for the best data model, a new training through cross-
validation to verify the generalization of our model, the evaluation of the model in external datasets that are different from the one used for training 
and finally the calculation of the AHI together with the explainability of the model.

https://doi.org/10.3389/fnins.2023.1155900
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Alarcón et al. 10.3389/fnins.2023.1155900

Frontiers in Neuroscience 04 frontiersin.org

For training and validation of the models, patients from SHHS2 
were used. Once the best-performing model was found, it was tested 
with patient data from SHHS1 and MESA to study its generalizability 
to new data. The number of patients selected and some of their 
characteristics can be seen in Table 1.

As can be  seen in Table  1, there are similar proportions of 
women and men, which is essential to avoid bias in the classification 
task and develop as representative a model as possible. The patient 
data were randomly selected after discarding those patient data that 
contained a large number of missing values, a large number of 
artifacts or the sleep time was not longer than 300 minutes. The 
SHHS2 training dataset contains 994 patients with apnea and 230 
without apnea. SHHS2 test contains 132 patients without apnea and 
31 with apnea, while SHHS1 contains 1,518 patients with apnea and 
341 without apnea, and MESA contains 863 patients with apnea and 
113 without apnea.

2.1.1. Signals
The clinical manifestation of sleep apnea presents variations in 

oxygen saturation levels, respiratory effort, and heart rate 
(Ramachandran and Karuppiah, 2021). A total of four signals are 
used for this project: SpO2, HR, Thor-Res and Abdo-Res by 
respiratory inductance plethysmography (RIP) (Mostafa et  al., 
2019). Sp02 and HR were originally sampled at 1 Hz for SHHS and 
MESA. Thor-Res and Abdo-Res were sampled at 10 Hz for SHHS 
and 32 Hz for MESA. In order to keep as much of the SpO2 signal 
(essential for hypopnea recognition) information as possible, to 
reduce the model training time and improve the visualizations at 
the model explainability stage, Thor-Res and Abdo-Res were 
downsampled to 1 Hz. In this way, all the signals used have the 
same sampling frequency, being essential to feed the algorithm that 
they all have the same amount of data points. The choice of 1 Hz as 
sampling rate has already shown promising results in the past 
(Kristiansen et al., 2021).

The combination of a small set of signals has shown promising 
results in the past (Haidar et al., 2018). A similar signal combination 
was used by (Biswal et al., 2018). Such work used raw airflow signals, 
respiration signals (chest and abdomen belts), and SaO2 with a 
recurrent convolutional neural network (RCNN). There are several 
reasons for selecting these four signals to train the model. First, this 
set of signals is the one the PM will collect in the future, with the 
difference that instead of measuring Thor-Res and Abdo-Res, the PM 
will collect signals through electrical impedance pneumography (EIP). 
A decision must then be made whether to use the combination of 
Thor-Res and Abdo-Res or only one of these signals. In addition, sleep 
apnea events detected by instantaneous heart rate (IHR) can be better 
verified using SpO2 signal, achieving better accuracy and precision 
(Pathinarupothi et  al., 2017). The use of Thor-Res and Abdo-Res 

signals allows obtaining respiration airflow indirectly, thus avoiding 
the use of oronasal-airflow sensors that are invasive for the patient 
(Elmoaqet et al., 2020).

The recording duration of the patient’s physiological signals for all 
datasets (SHHS2, SHHS1, and MESA) used for the model 
development is 8 h (28,800 s).

2.1.2. Apnea-hypopnea index
The AHI is considered the most relevant metric for diagnosing 

the existence and severity of sleep apnea, indicating the number 
of apneas per hour (Mostafa et  al., 2019). The severity 
classification of obstructive sleep apnea has four distinct groups: 
physiological standard (AHI < 5), mild sleep apnea (5 ≤ AHI < 15), 
moderate sleep apnea (15 ≤ AHI < 30), and severe sleep apnea 
(AHI ≥ 30) (Piorecky et  al., 2021). Some algorithms also 
implement the calculation of the AHI (Drzazga and Cyganek, 
2021). The physiological signals used for this study are divided 
into 60-s windows. Therefore, if a window is detected as apnea or 
hypopnea, that window counts as an OSA event. As the entire set 
of windows that make up the physiological signals collected from 
the patient constitute 28,800 s, the calculation of the AHI could 
be done by applying Equation 1.

 
AHI Total numer of windows detected as OSA event

=
    

Total Recordinng Time TRT( )  
(1)

As shown in equation (1), the AHI is calculated using the 
TRT instead of the total sleep time (TST). Therefore, although 
this may lead to an underestimation of the severity of AHI, the 
model developed in this work does not calculate the start and 
end of sleep time. Therefore, it is not possible to use the 
TST. Despite this, TRT is considered a good approximation to 
TST for calculating AHI with PMs. When it comes to PM, AHI 
is usually expressed as the respiratory event index (REI) (Massie 
et al., 2018). REI is the number of apneas or hypopneas counted 
per hour by the device. However, the term AHI will continue to 
be used in this work to avoid confusion between terms.

2.2. Preprocessing

This scientific work aims to feed the deep learning model with raw 
signals and apply as little preprocessing as possible. Some works have 
this approach as their purpose (McClure et  al., 2020). Generally, 
filtering, windowing, and sampling are the most common 
preprocessing techniques. It also includes the normalization or 
standardization of the data in signal preprocessing (Cen et al., 2018; 

TABLE 1 Patient characteristics used for training, validation and testing of the models used in this scientific work.

Dataset N° of subjects Age BMI TST (min) AHI Male Female

SHHS2 Train 1,224 67 ± 10 28 ± 5 398 ± 50 17 ± 15 44% 56%

SHHS2 TEST 163 67 ± 11 28 ± 5 398 ± 47 16 ± 13 44% 56%

SHHS1 TEST 1859 62 ± 11 28 ± 5 394 ± 46 15 ± 13 45% 55%

MESA TEST 976 69 ± 9 – 396 ± 55 22 ± 17 42% 58%

Age, BMI (body max index), TST (total sleep time) and AHI are shown as Mean ± Standard Deviation.
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Manoni et al., 2020). This work focuses on studying how large artifact 
removal and signal normalization affect the performance of various 
deep learning models for sleep apnea detection.

2.2.1. Windowing
According to the American Academy of Sleep Medicine (AASM), 

sleep apnea is the cessation of airflow (equal or greater than 90%) for 
at least 10 s, while hypopnea is defined as a 30% fall in airflow for at 
least 10s (Berry et  al., 2012; Drzazga and Cyganek, 2021). The 
recommended AASM criteria stipulate that airflow reduction for 
hypopneas should be associated with arousal or oxygen desaturation 
of at least 3%. This definition was used for the development of the 
models and the calculation of AHI. Alternatively, AASM also accepts 
that hypopnea can be defined by airflow reduction associated with an 
oxygen desaturation of at least 4% (Piorecky et al., 2021). Considering 
the above and that an OSA event can range from 10 to 40 s, a window 
period of 60 s is the most appropriate. Short OSA event periods may 
increase the likelihood of splitting the apnea event between several 
windows and thus underestimate or overestimate the AHI, depending 
on the duration of the event. On the other hand, using longer windows 
may result in multiple apnea events in the same window. In addition, 
there is evidence of no performance gain with durations longer or 
shorter than 60 s (Kristiansen et al., 2021). Moreover, the duration of 
this window is ideal for later visualization of the results using the 
Grad-CAM technique. The ultimate purpose of the model is to 
be used in an accurate portable monitor used by physicians. In this 
way, the physician can obtain more information about the apnea event 
if its duration is 60 s, thus being able to study the course of the signals. 
Notwithstanding the above, scientific papers in the literature using 
windows of 10s or even less also show promising results (Urtnasan 
et al., 2018; Elmoaqet et al., 2020; Tsouti et al., 2020).

2.2.2. Artifacts removal
The occurrence of heavy artifacts is considered a fact to invalidate 

the reasoning analysis of the results (Moret-Bonillo et al., 2014). For 
this reason, the training and test data set was analyzed. After analysis 
of the data, it is observed that there are significant artifacts in the SpO2 
and HR signals, as shown in Figures 2A,B.

Different datasets are generated for the subsequent training of the 
DL algorithms and to study the influence of artifacts on the 
classification. In two of the datasets created for the experiment, heavy 
artifacts are removed by interpolation when there are SpO2 data 
points below 80% and above 100%. For HR, values below 40 bpm and 
above 200 bpm are considered an anomaly. The signals after removing 
the artifacts look like Figures 3A,B.

2.2.3. Normalization or standardization of the 
signals

In this work, the model is trained with different inputs. These 
input data can be used raw or normalized. As well as the study of the 
influence of the artifacts, the normalization of the signals is also 
relevant to the study of the model generalization. Therefore several 
datasets are generated and normalized. The normalized or 
standardized physiological signals range between 0 and 1. It is 
important to note that the data standardization is applied to the 
windows independently of the complete patient signal. This fact 
means that once the patient signals have been divided into 60-s 
windows, normalization is performed by applying Equation 2.

 
z X
=

− µ
σ  

(2)

2.2.4. Labeling
The signals contained in the SHHS and MESA also include 

annotations with the start and end of OSA events. The output of 
the developed DL model aims to classify the apnea events 
correctly. Therefore, those windows with apnea events greater 
than or equal to 10 s will be marked as an apnea event, regardless 
of their total duration. Physiological signals containing sleep 
apnea events are selected prior to windowing. The final selection 
can be seen in Table 1. The SHHS y MESA for AHI calculation, 
recognizes obstructive apneas with no oxygen desaturation 
threshold used and with or without arousal+ hypopneas with 
>30% flow reduction and > = 3% oxygen desaturation or 
with arousal.

2.3. Model architecture

Model building is the most significant difficulty when 
working with neural networks (NN). There is no guarantee that 
the number of hidden layers/units is optimal (Zemouri et  al., 
2019). Currently, several architectures usually give good results in 
many different fields, such as the recurrent neural network 
(RRN). Time series studies have shown that ResNet and CNN 
models achieve the best results in terms of classifying biomedical 
signals (Wang et al., 2017; Fawaz et al., 2019). However, RNNs are 
less frequently used than CNNs (Zemouri et al., 2019; Nassi et al., 
2021). CNN is the most widely used neural network for classifying 
apnea events, so its capacity is beyond doubt (Mostafa et  al., 
2019). This work aims to achieve optimal results so the model can 
be used in a natural clinical environment. Some scientific papers 
suggest that PMs for clinical practice should have a sensitivity 
>82.5% (Collop et  al., 2011). That would be  the objective, in 
addition to reducing the complexity of the model and the minimal 
processing of the signals. CNNs seem the best option when 
working with biomedical time series because they work well with 
raw signals, require fewer computational resources, and require 
fewer data to obtain optimal performance (Wang et  al., 2020; 
Bock et al., 2021). A variant of CNNs, the 1D-CNN, has been used 
for signal classification by many authors (Cen et al., 2018; Dey 
et al., 2018; Haidar et al., 2018; Urtnasan et al., 2018; McClure 
et al., 2020; Kim et al., 2022). Therefore a 1D-CNN model has 
been chosen as it has shown significant results in other studies 
and meets our requirements (Chang et  al., 2020). The main 
feature of 1D-CNN is that kernels traverse input signals in one 
dimension, with either the width or the height (depending on how 
the input is oriented) of the kernel being configurable, but not 
both dimensions of the kernel being configurable as they would 
be in 2D-CNN.

Another reason why CNNs seem the best option to work with 
because they allow the implementation of visualization techniques to 
identify the regions of the signal that are most relevant for the model 
to make a certain prediction, such as Class Activation Map (CAM) 
and Grad-CAM (Fawaz et al., 2019).
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In this work, four different datasets were used based on whether 
the artifacts of the SpO2 and HR signals were removed or the signal 
set was normalized. Based on this, four models were generated 
and trained.

The features of the proposed models are similar. All models 
contain the same pattern for the layers: a convolutional layer and a 
batch normalization layer that are used to improve the speed, 
performance, and stability of the neural network (Kim et al., 2022). 
Additionally, activation functions and regularization techniques are 
included to avoid overfitting the model. All the features of the layers 
of the chosen model are finally exposed in Section “Results”.

Some publications use trial and error techniques to choose the 
best model (Dey et al., 2018). However, for the selection of the best 
architecture of this model, a more engineering approach is used with 
the use of a hyperparameter optimization framework such as 
Keras Tuner.

2.3.1. Hyperparameter setting
The architecture-level parameters, called hyperparameters, are 

among the most relevant tasks when working with DL algorithms. 
Despite the large number of publications that currently use DL models 
for sleep apnea detection, there is no standard for fine-tuning the model 
hyperparameters. In most cases, it is decided to modify the 

hyperparameters by hand and retrain the model repeatedly. However, 
this should be  different, and a more empirical approach should 
be  sought (Chollet, 2021). There are some publications in which a 
method is developed based on certain algorithms for an optimal 
configuration of the hyperparameters (De Falco et al., 2018). Despite 
this, it is a challenging task. For this reason, Keras Tuner is used to 
choose the best hyperparameters for our search space (see Table 2) 
(O’Malley et al., 2019).

Keras Tuner offers several different tuners. For training our 
model, we opted for Hyperband (Li et al., 2018). The main operation 
of Hyperband is that it takes random samples of all hyperparameter 
combinations and does not run the full training and evaluation set. It 
trains the model for a few epochs with a set of hyperparameter 
combinations and selects the best candidates based on the results of 
these few epochs. It is performed iteratively and the tuner runs the 
chosen candidates through the complete training and evaluation set. 
In this aspect, Hyperband is better than other tuners like 
RandomSearch that perform the complete evaluation in each iteration. 
The Bayesian Optimization tuner was discarded as its operation is 
sometimes similar to a black box.

Regarding the set of hyperparameters, this search space has been 
established based on the results of other publications (Mostafa et al., 2019; 
Kristiansen et  al., 2021; Ramachandran and Karuppiah, 2021). 

FIGURE 2

(A) Heavy artifacts in the SpO2 and HR signals of patient data in the SHHS dataset. (B) SpO2 and HR signals contain zero values for several seconds, 
causing numerous artifacts in these signals.
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Specifically, the kernel size is relatively small because the number of data 
points per window is limited (60 s). On the other hand, the activation 
function chosen is rectified linear unit (ReLU) for the convolution layers 
and sigmoid for the activation layer of the last layer. These activation 
functions have been chosen because ReLU has demonstrated its good 
performance in numerous fields, specifically classifying OSA events 

(Chollet, 2021). For binary classification (two output classes), models are 
recommended to be terminated with a dense layer with a unit and a 
sigmoid activation (the model output should be a scalar between 0 and 1 
that encodes a probability). Regarding the loss function, it is best to use 
the binary cross-entropy loss function as it is usually the best choice when 
developing models that output probabilities. For this reason, these 
hyperparameters are not searched using the tuner (Chollet, 2021). The 
Adam optimizer is chosen as it is widely used and has shown promising 
results in classification tasks.

2.3.2. Training and evaluation
The data preprocessing and model training were carried out in a 

jupyter notebook application using Python language (version 3.9.7). The 
Python deep learning API Keras, which works on Tensorflow (version 
2.8.0), were used to develop the models. The scientific computing library 
NumPy (version 1.21.5) and the machine learning library Scikit-Learn 
(version 1.0.2) were used for data processing tasks and model 
evaluations. The Workstation used to carry out the experiments 
comprises an Intel i7-11700K 3.60GHz processor, 32GB RAM, and an 
Nvidia GeForce RTX 3090 24GB Graphics Processing Unit (GPU).

The SHHS2 dataset was split into a training set (70%), a validation 
set (20%), and a test set (10%). From this dataset, four new datasets were 

FIGURE 3

(A) Plot with the same set of signals as in Figure 1 where the heavy artifacts in the SpO2 and HR signals have been removed. (B) SpO2 and HR signals 
contain non-zero values as the artifacts have been removed.

TABLE 2 Search space for the search of the best hyperparameters by the 
optimizer.

Hyperparameters Search space

Tuner Hyperband

Number of hidden layers {2,3,4,5,6}

Feature map {64,96,128,160,192,224,256}

Kernel size {3,5,7,9,11}

Dropout {0.1,0.2,0.3,0.4,0.5}

Layer Activation (convolutional layer) ReLU

Last-layer activation Sigmoid

Optimizer Adam

Loss Binary Crossentropy
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generated. Four different training sessions were carried out, depending 
on the training dataset used. A dataset without artifact removal and 
without standardization: training dataset 1 (TrainDat1). Another dataset 
with artifact removal and without standardization: training dataset 2 
(TrainDat2). Another dataset without artifact removal and with 
standardization: training dataset 3 (TrainDat3). Lastly a dataset with 
artifact removal and standardization: training dataset 4 (TrainDat4).

These four data sets and applying only some processing tasks are 
intended to evaluate the model to determine with which dataset the 
model yields the best results. The tuner Hyperband was used to search 
for the best set of hyperparameters. For this, a batch size of 1,024 was 
established since the batch size should not be treated as a tunable 
hyperparameter for validation set performance. Some studies suggest 
that the batch size should be long enough to be supported by hardware 
resources (Shallue et al., 2018; Godbole, 2023).

The metrics used to validate the model were binary crossentropy 
such as loss, accuracy, sensitivity, specificity, area under the curve 
(AUC), and precision. The tuner was configured not to train models 
older than 50 epochs. There is controversy over Hyperband 
determination of the number of models to train. According to 
(Gildenblat, 2017), one iteration will run approximately max_epochs 
* (math.log(max_epochs, factor) ** 2) cumulative epochs across all 
trials. However, according to (Lamberta, 2017), Hyperband 
determines the number of models to train in a bracket by computing 
1 + log(max_epochs, factor) and rounding it up to the nearest integer. 
The maximum number of epochs established during the search for the 
best hyperparameters for the model was 50. The early stopping 
optimization technique was also used to create a callback to stop 
training after reaching a specific validation value for more than five 
epochs. After completing the search for the best hyperparameters by 
Keras Tuner, the three models that obtained the best validation 
accuracy value were selected. These models were retrained again to 
find the optimal epoch value from which the best value for loss 

validation is obtained and overfitting begins. After knowing the best 
value for the epoch, the model is retrained with a few more epochs of 
the best epoch by using cross-validation with a k-fold equal to five. As 
the physiological signals of the patients were divided into windows for 
the division of the data set into training, validation and test data, it is 
not possible to use all the available data for cross-validation, since the 
model would be trained and evaluated with windows that belong to 
the same patient. Therefore, the methodology shown in Figure 4 is 
applied. For the training and validation set, a proportion of windows 
is selected for the first fold, twice as many windows for the second, and 
so on for the rest of the folds until the entire data set is covered. In this 
case, the entire data set comprises the data for training and validation.

To facilitate the explanation of the results obtained by the deep 
learning models, the model trained with TrainDat1 is called Model 1. 
The model trained with TrainDat2 is called Model 2, the model 
trained with TrainDat3 was named Model 3. Lastly the Model 4 was 
trained on TrainDat4.

2.4. Explainability of the model

In addition to the difficulty in choosing the appropriate model 
architecture, the interpretation of the results obtained is equally 
relevant, where the concept known as the “black box” is fundamental 
to avoid in medicine. Model explainability is crucial when using DL 
models in the clinical setting. For this fact, the chosen neural network 
is a CNN with a Global Average Pooling (GAP) layer. The advantage 
of using this architecture and this layer is that the neural network can 
retain the remarkable localization ability until the final layer. In this 
way, using Grad-Cam, the most crucial signal region of the input can 
be  discriminated (Zhou et  al., 2016). The GAP unit receives the 
convolutional feature map as input and generates the spatial average 
of each feature map (Vijayarangan et al., 2020).

FIGURE 4

Methodology for the application of cross validation for the evaluation of the best model. When working with 60-s windows, it is not possible to 
perform cross-validation on the whole dataset, as there would be windows belonging to the same patient in both the training and validation sets. 
Therefore, the training and validation sets are increased by approximately 20% in each fold (5 times) in the training and validation sets with patient data 
independent of each other.
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3. Results

3.1. Performance of the models after 
training

The number of models executed and trained by the Keras 
Tuner was 90 before finding the models that yielded the best 
results. The execution time for all the models trained and 
evaluated was between 8 and 10 h. The results obtained after 
training and their evaluation in SHHS2, SHHS1, and MESA are 
found in Table 3. It can also be seen in Supplementary Table S4, 

the results after testing the models on unbalanced data sets with 
a ratio of 1:3 with a lower number of apnea events.

In order to study the results, we  must first evaluate the 
metrics obtained in SHHS2, as this is the dataset used to train 
the models. In view of this and starting with the accuracy, 
we can observe that the best results are obtained with Model 4. 
This fact makes sense since the model was trained on patient’s 
signals from the same dataset (SHHS2). The worst results are 
given by Models 1 and 2. This fact implies that those datasets 
with standardized data would give better results. As a 
counterpart to standardization, we  have the elimination of 
artifacts. As we can see from the results in Table 3, the datasets 
whose data were filtered to remove artifacts do not perform as 
well as the models where standardization was applied. Generally, 
when dealing with binary classification, it is necessary to 
support the result in accuracy with other metrics as not all 
datasets are balanced, and the results obtained can 
be misleading. In this work, the datasets were balanced at 50% 
with windows and apnea and 50% windows without sleep apnea. 
This implies that the accuracy gives a robust idea of the 
generalization power of our models. However, sensitivity, 
specificity, precision and AUC are shown in Table 3. Considering 
the results obtained by Models 3 and 4 are very similar. However, 
there are slight differences. For the evaluation of the model on 
SHHS1, the metrics improve slightly with Model 4, which uses 
a dataset in which the removal of artifacts and standardization 
has been applied. This could indicate that SHHS1 contains a 
more significant number of artifacts than another dataset, and 
therefore the removal of artifacts positively affects the 
performance of the model. The same is for SHHS1 with Models 
1 and 2, where the results are slightly better for Model 2. 
However, the differences must be  more substantial to use 
artefact removal to improve model performance. Considering 
other metrics, such as specificity, the results are robust for all 
the models and the datasets used. This indicates that the trained 
models recognize normal or non-apnea events well. Looking at 
AUC, the results are good enough to discern between apnea and 
non-apnea events since the value for AUC is between 70% and 
93% for practically all the datasets used. Therefore, after 
studying the results obtained and attending to all the metrics, it 
can be affirmed that Model 4 is the algorithm that works best 
for the detection of apnea events. Therefore it will be the model 
analyzed throughout this section. For this purpose, its 
architecture and its performance in the AHI calculation will 
be  studied. The outputs will also be  analyzed using the 
Grad-CAM technique. Table 4 shows the set of hyperparameters 

TABLE 3 Overall results to evaluate the different 1D-CNN models trained on the balanced test datasets (SHHS1, SHHS2 and MESA).

Model 1 Model 2 Model 3 Model 4

Dataset SHHS2 SHHS1 MESA SHHS2 SHHS1 MESA SHHS2 SHHS1 MESA SHHS2 SHHS1 MESA

Accuracy 72.5 64.0 66.3 72.3 66.1 66.0 83.8 68.1 74.1 84.3 70.0 74.5

Loss 0.56 0.74 0.66 0.60 0.76 0.76 0.37 0.75 0.66 0.36 0.64 0.63

Sensitivity 54.4 44.9 50.1 56.9 45.8 52.3 80.5 46.0 71.6 82.5 53.7 76.0

Specificity 90.6 83.0 81.8 87.8 86.4 79.6 87.0 90.3 76.7 86.0 86.3 72.8

Precision 85.4 72.5 73.6 82.4 77.1 71.9 86.1 82.6 75.5 85.5 79.6 73.7

AUC 82.6 69.7 74.3 81.7 74.5 73.3 92.0 77.3 81.1 92.1 77.7 80.8

TABLE 4 Set of the best hyperparameters of the Model 4.

Tuner Hyperband

Number of hidden layers 6

Feature map – 1st hidden layer 128

Kernel size – 1st hidden layer 7

Dropout – 1st hidden layer 0.3

Feature map – 2nd hidden layer 192

Kernel size – 2nd hidden layer 5

Dropout – 2nd hidden layer 0.3

Feature map – 3rd hidden layer 224

Kernel size – 3rd hidden layer 3

Dropout – 3rd hidden layer 0.4

Feature map – 4th hidden layer 96

Kernel size – 4th hidden layer 7

Dropout – 4th hidden layer 0.2

Feature map – 5th hidden layer 256

Kernel size – 5th hidden layer 9

Dropout – 5th hidden layer 0.3

Feature map – 6th hidden layer 96

Kernel size – 6th hidden layer 9

Dropout – 6th hidden layer 0.5

Layer Activation (all convolutional layers) ReLU

Last-layer activation Sigmoid

Learning rate 0.001

Optimizer Adam

Loss Binary Crossentropy
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that constitute the architecture of Model 4. The architecture 
consists of six hidden layers with kernel values ranging from 
three through seven to nine. The set of hyperparameters for the 
other models consists of four hidden layers, which can be seen 
in the Supplementary Tables S1,S2,S3.

Figure 5 shows the training curve for Model 4 throughout the 
cross-validation. Therefore, the curve is the different training 
runs (5-fold) overall. It can be  seen that the model converges 
quickly, and there are no abrupt jumps. No overfitting is observed 
either. The fast convergence of the model can be explained by the 
high value of the batch size, which, as mentioned in section 

“Training and evaluation”, a high batch size was chosen that the 
hardware used for training could process. Having a look at 
Figures 5A,B for both accuracy and loss, it can be seen that the 
training and validation curves are similar, which implies good 
convergence of the model and hence appropriate generalization, 
where the model continuously learns from the input data. 
Considering this and looking at Table  3, it can be  stated that 
Model 4 generalizes well for other datasets that the model has not 
used for training. Even though the results of the metrics are 
slightly worse, but still valid for the classification of OSA events. 
The mean value of the accuracy of the cross-validation application 

FIGURE 5

(A) Learning curve for accuracy on training and evaluation data. (B) Learning curve for loss on training and evaluation data.

FIGURE 6

(A) ROC curve. (B) Confusion matrix on the SHHS2 test.
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was 84.46 (±0.07) for the training set and 82.5 (± 0.64) for the 
validation set.

On the other hand, in Figure 6, it can also see the representation 
of the receiver operating characteristic (ROC) curve (Figure 6A) and 
the confusion matrix on the test set with 42.836 windows. The value 
of 92.1% of AUC indicates the model’s good performance when 
classifying OSA events. The confusion matrix shows how the vast 
majority of the 42,836 predicted windows were correctly classified 
(Figure 6B).

3.2. AHI estimation

The AHI estimate was calculated for SHHS2 Training, SHHS2 
Test, SHHS1 Test and MESA. The coefficient of determination 
(R2) was calculated to validate the AHI estimate. The confusion 
matrix was also generated to study correctly and incorrectly 
classified patients. As shown in Figure  7, the coefficient of 

determination is 0.65 for SHHS2 Training and SHHS2 Test, 0.64 
for SHHS1 Test and 0.62 for MESA. This fact implies that Model 
4 is able to discern between apnea and non-apnea events to 
account for AHI. Although there is an overestimation of AHI for 
all levels of apnea severity except for severe apnea, the R2 values 
show the potential of the model for both event classification and 
AHI calculation.

Figure  8 shows the confusion matrix for classifying OSA 
severity for different SHHS2, SHHS1, and MESA. Based on the 
visualization, it can be stated that Model 4 is able to obtain good 
results for the classification of apnea patients within moderate 
or severe severity with hit rates of 72.6–78.8% on average for all 
datasets. However, the results could be  better for the 
classification of non-apneic patients. The results are better for 
apnea patients with mild severity than those classified as 
non-apnea patients but still worse than for the moderate and 
severe severity grades. A fact that may explain the poor results 
obtained for classifying patients without apnea is that the range 

FIGURE 7

Scatter plots and regressions for the SHHS2, SHHS1 and MESA. The values for R2 are also shown in the different plots. The dash-dotted line indicates 
the identity line. Values are grouped according to apnea severity: no apnea, mild, moderate and severe apnea.
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from zero to less than five events is the smallest of all existing 
ranges for classifying patients according to severity. Therefore, 
an overestimation by the model implies more significant errors 
in this classification segment. Table 5 shows the results generated 

by the model for the most common thresholds for the calculation 
of AHI. Weighted Cohen’s Kappa with linear weights has been 
applied as we  worked with a multiclassification with 
ordinal values.

FIGURE 8

Confusion matrix for patient classification by OSA severity after AHI estimation for SHHS2, SHHS1 and MESA. Severity is shown by percentage in each 
cell and color scale, with darker colors being better.

TABLE 5 Results for AHI 5 e/h, AHI 10 e/h, and AHI 15 e/h to evaluate the different 1D-CNN models trained on the training and test data sets (SHHS1, 
SHHS2, and MESA).

Dataset SHHS2 training SHHS2 test SHHS1 test Mesa test

AHI (e/h) AHI 5 AHI 15 AHI 30 AHI 5 AHI 15 AHI 30 AHI 5 AHI 15 AHI 30 AHI 5 AHI 15 AHI 30

Accuracy 82.6 73.0 92.4 82.8 67.5 91.41 83.5 77.6 92.3 89.9 81.2 88.4

Sensitivity 99.9 98.04 79.2 100 98.4 76.0 98.7 87.6 61.4 99.7 96.6 73.8

Specificity 8.0 55.2 94.6 7.0 48.5 94.20 16.3 70.4 97.7 14.16 60.6 93.3

PPV 82.4 61.0 71.2 82.61 54.0 70.37 84.0 68.2 82.7 89.8 76.5 78.7

NPV 94.7 97.5 96.4 100 98.0 95.6 73.3 88.7 93.5 88.9 93.0 91.4

F1 90.3 75.2 75.2 90.48 69.7 73.1 90.7 76.7 70.5 94.6 85.4 76.2

C. Kappa (k) 0.46 0.41 0.46 0.55

PPV, positive predictive value; NPV, negative predictive value; F1, F1-score.
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3.3. Explainability of the model

This section shows several windows after being classified by 
Model 4. To give an overview of the performance of the model, 
the events shown correspond to a correctly classified apnea event, 
an incorrectly classified apnea event, a correctly classified 
non-apnea event and an incorrectly classified non-apnea event. 
As can be seen in Figures 9–12, the detection of changes in the 
course of the signals is essential for a correct classification of the 
apnea event. Before analyzing the windows after the application 
of Grad-CAM, it is essential to note that the visualizations show 
the signal regions that were most relevant for Model 4 to make 
the decision. This fact does not imply that the regions of the most 
relevant signals for Model 4 indicate the apnea event itself. In 
Figure  9, it can be  seen the window correctly classified as an 
apnea event. In this case, the focus is on the HR and SpO2 signals 
to identify the event. In the peri-apnea phase, it can be seen how 
the minimum HR causes the minimum SpO2 during the apnea 
phase. In addition, the maximum HR can be seen in response to 
the minimum SpO2 during the post-apnea phase. This is a typical 
HR and SpO2 response during an apnea event. In this first 
example, the most relevant region for Model 4 is where SpO2 
desaturation and HR increase. Thor-Res and Abdo-Res 
amplitudes remain stable and minimal in a clear apnea event. 
Therefore, Model 4 learned to identify an apnea event correctly. 
Figure  10 also shows similar behavior to Figure 9, with small 
Thor-Res and Abdo-Res amplitudes, a minimum in HR proceeds 
to desaturation of SpO2. In this case, the SpO2 desaturation is 

less significant than in Figure 9. Therefore, it is not a desaturation 
greater than or equal to 3%, which implies that it is not a sleep 
apnea event. Model 4 recognizes the pattern of an apnea event by 
looking at the lighter areas, with a decrease in HR, followed by a 
resaturation, a prelude to the desaturation of SpO2. However, 
unlike the example in Figure 9, the most relevant signal regions 
for Model 4 are the decrease in HR and the resaturation of SpO2, 
when the objective, in this case, would be the detection of the 
desaturations of SpO2. Figure 11 shows how model 4 considers 
practically the entire window to be relevant, with the exception 
of about 5 s at the beginning of the window. As can be seen, no 
changes in HR and no significant SpO2 desaturation could 
indicate an apnea event, with SpO2 always greater than 95% 
throughout the window. Thor-Res and Abdo-Res also show no 
noticeable changes. Therefore, the use of practically all the signals 
indicates that for the model, no relevant regions could indicate 
an apnea event but a non-apnea event in this case. Finally, 
Figure 12 shows that the regions of the signals most relevant to 
the model were those with an increase in HR and SpO2 
resaturation, in addition to SpO2 desaturation from second 43 
onwards. Despite this, the model did not correctly classify this 
window as an apnea event. Based on these results, it can be stated 
that windows that include seconds of sleep apnea but do not 
exceed 10 s in duration or small SpO2 desaturations that are close 
to 3% or have a small duration, significantly affect the 
performance of Model 4. In addition, and although less frequent, 
central apnea or mixed apnea events can also influence the 
predictive performance of the model.

FIGURE 9

Visualization after application of Grad-CAM to a window correctly classified as an apnea event by Model 4. As can be seen, during the apnea event, 
SpO2 desaturation occurs and continues until the post-apnea event. On the other hand, the HR response shows a bradycardia and a tachycardia 
phase in the transition from the apnea event to the post-apnea event. This is typical of an OSA event. For Model 4, the most important region of the 
signal to classify this window as an apnea event is this change in signal course as can be seen by the lighter area in the middle of the plot.
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FIGURE 10

Visualization after application of Grad-CAM to a window incorrectly classified as an apnea event by Model 4. Although the probability of this window 
being an apnea event is lower than for the window in Figure 9, the event was classified as apnea when in fact, it is not. As can be seen in the area of the 
signals that are most relevant for the model to make the decision, the changes in SpO2 and HR are the clearest and therefore the most important areas 
as in Figure 9.

FIGURE 11

Visualization after application of Grad-CAM to a window correctly classified as non-apnea event by Model 4. As can be seen  
from the colored areas of the signals, in practice all signal regions are of equal importance to the model. As there are no significant 
changes in the course of the signals that would indicate an apnea event, unlike in Figure 9, the model predicts this window as not being 
an apnea event.
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4. Discussion

Even though PSG continues to be the most widely used technique 
to detect sleep apnea events, PMs are increasingly playing a leading 
role. It is increasingly common to see PMs that achieve results in 
terms of accuracy, sensitivity, or specificity that are very similar to 
those obtained with PSG (Van Steenkiste et al., 2020; Kristiansen et al., 
2021). This work exposes the development of a deep learning model 
that can be  implemented in a PM. In addition, this development 
emphasizes something crucial when aiming to use artificial 
intelligence algorithms in a real healthcare environment: the 
explainability of the model. In general, a vast majority of scientific 
papers focus on getting outstanding metrics performance with 
machine learning algorithms. In contrast to the proposal shown in this 
scientific work, such scientific papers focus less on the end user who 
will use those algorithms: sleep, doctors, or clinicians. A PM should 
achieve results similar to those obtained with PSG. PMs should also 
improve numerous drawbacks of polysomnography, such as patient 
comfort during the sleep test. Since using many sensors, PSG can 
be considered an invasive technique where sometimes the patient has 
difficulty falling asleep. On the other hand, PMs are intended to 
reduce the economic cost of having a sleep clinician during the 
development of PSG. There are already solutions that can improve 
these aspects and even improve them. However, the presentation of 
results and the interpretability of deep learning models using many 
current solutions still need to provide all the necessary information 
for the doctor.

This paper showed the results concisely and understandably for a 
person who is not an expert in machine learning, in addition to 
providing a guideline to engineers or scientists who work in the field 

of deep learning to detect sleep patterns. On the one hand, by dividing 
the patient’s signals into windows of 60 s duration, it is ensured that an 
apnea event, which can normally last from 10 to 40 s, is included 
within the window. On the other hand, this implies that loss of 
information may occasionally arise since an OSA event may be divided 
by two windows when windowing is performed. However, splitting in 
this way makes it possible to calculate the AHI, which is a must for 
doctors. The model presented in this manuscript is trained and 
evaluated with four physiological signals: SpO2, HR, Thor-Res, and 
Abdo-Res. These signs were chosen for various reasons. First, this 
model intends to be used in a real PM, which collects three different 
signals, including oxygen saturation, heart rate, and impedance (in the 
absence of impedance data, a combination of Thor-Res and Abdo-Res 
will have to be used). SpO2 and HR should be signals similar to those 
used during training. On the other hand, which signal is more suitable 
to retrain the model once the PM is developed and collects the 
impedance should be considered. For this reason, the model has been 
trained with Abdo-Res and Thor-Res, since they are the most similar 
signals to impedance. As can be seen, the model works with only four 
signals so that the PM has few sensors and is as comfortable as possible 
for the patient regarding the chosen deep learning  algorithm. 
Numerous DL models have shown promising results in detecting OSA 
events (Ramachandran and Karuppiah, 2021). For the development 
of this work, several of them were considered (Mostafa et al., 2019; 
Ramachandran and Karuppiah, 2021; JeyaJothi et al., 2022). 1D-CNN 
was chosen because it offers several benefits in terms of development 
and subsequent use of the tool by the end user. On the one hand, this 
type of DL architecture is state-of-the-art and used in many different 
fields. 1D-CNN has also shown remarkable results in the field of sleep 
medicine (JeyaJothi et  al., 2022). Additionally, its architecture is 

FIGURE 12

Visualization after application of Grad-CAM to a window incorrectly classified as non-apnea event by Model 4. In this case the Model does not 
correctly classify the event as apnea. As can be seen in the image, there are no significant changes in the course of the signals, unlike in Figure 9. Only 
in the first 10 s of the window can abrupt changes be observed. However, this was not sufficient for the model to correctly classify this window as an 
apnea event. The duration of apnea events also influences the classification.
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relatively simple and does not require extensive computational 
resources to function at full capacity. In addition, it can be a small 
number of data to yield acceptable results.

On the other hand, it has been mentioned throughout this work 
that it is essential to keep in mind the role of the physician for 
developing machine learning models that will be used in a real clinical 
environment. Considering this, the 1D-CNN are models that can 
be  easily understood by people who are not experts in artificial 
intelligence. With an adequate technique, it is possible to provide 
additional tools to make the end user understand, in this case, the 
doctor, the reason behind a particular decision and not another 
decision by the model. In this case, the Grad-CAM technique was 
used to facilitate the interpretability and explainability of the model. 
This technique has been explained in Section “Explainability of the 
model”, and the results are also shown in Section “Results”. Using 
Grad-CAM, it is possible to visualize the most relevant regions of the 
physiological signal for the model to make the decision. In this case, 
the model must detect an OSA event, and thanks to Grad-CAM, it is 
possible to see when it occurs. This tool is also useful to study when 
an event is correctly classified. This is vital for clinicians.

If a tool with these characteristics is not presented together with the 
model, it is useless for the model to show promising values for the metrics. 
In addition, the technique must be understandable to experts in sleep 
medicine, as there may be occasions when the explainability of the model 
is so complex that what is widely known as a black box occurs. Thanks to 
the approach presented in this work, it is possible to detect apnea events 
with an accuracy of 84.3%, sensitivity of 82.5%, and specificity of 86%. It 
makes it possible for the DL algorithm to be suitable for working with 
PMs if we  follow the recommendation of some scientific works 
recommending that PMs must have at least 82.5% sensitivity and positive 
likelihood ratio (LR+) of at least 5 to be used in a real clinical environment 
(Collop et al., 2011). In our case we obtained an 82.5% sensitivity and LR+ 
of 5.89 for the SHHS2 dataset for testing.

Although our aim is to develop a model that can be used in a 
portable monitor that is also under development. A comparison 
between the results obtained by our model and other solutions 
proposed by other authors is shown in Table  6. The scientific 
papers listed in the table use the same datasets and signals used 
in this work. However, different sets of signals and a different 
number of patients were used. As can be  seen, our model 
outperforms many of the solutions shown, and only one proposal 

achieves better results (Gutiérrez-Tobal et al., 2021). However, 
this comparison has a particular bias since finding scientific 
works that use the same workflow to train and test the model is 
complicated, such as the number of patients, duration of windows, 
sampling frequency, number of signals used, etc. Moreover, not 
all solutions claim to use the models on PMs or claim to use 
visualization techniques to explain the decision made by the 
model. Furthermore, the number of signals used is also relevant 
as we consider that using one or two signals, despite achieving 
good results, is insufficient for the subsequent explainability of 
the model. Regarding Haidar et  al. (2018), there is a relevant 
difference with respect to our work: Haidar et al. (2018) is based 
on a multiclass classification with apnea, hypopnea and normal 
events, while we perform a binary classification. In Haidar et al. 
(2018) the set of three signals (nasal flow, abdominal and 
thoracic) gives the best results in terms of accuracy. However, 
unlike our work, they do not calculate AHI and do not include 
model explainability. In Van Steenkiste et al. (2019), a distinction 
is made between OSA, central apnea and hypopnea. AHI 
calculation is also performed, as in our work, the worst results are 
obtained with AHI < 5. This overestimation may be due to the fact 
that the number of events to classify the event as normal is within 
the lowest range, from 0 to 5, as opposed to the classification of 
events as mild, moderate or severe, which ranges from 5 to 15, 15 
to 30 and more than 30, respectively. In Van Steenkiste et  al. 
(2019), there is also no reference to the explainability of the 
model. In Haidar and Jeffries (2020) focus more on the 
explainability of the model. However, unlike our proposal, no 
visualisation method to study the decision-making of the model 
is proposed. Biswal et al. (2018) in addition to the classification 
of apnea events, also developed models for the classification of 
sleep phases and limb movements. It is similar to our work in the 
dataset used and the dataset. However, it also does not focus on 
the interpretability of the model. Finally, Gutiérrez-Tobal et al. 
(2021) achieved very good results using blood-oxygen saturation 
signals (SpO2) in predicting OSA events and calculating AHI. It 
also focuses on the problem of black boxes but without delving as 
deeply into the subject as our work. In short, besides presenting 
a deep learning model for apnea event detection and AHI 
calculation, this work presents a solution for the explainability of 
the model in a visual way that can be used by end users (in this 

TABLE 6 Comparison of the results obtained by our model with other results obtained by existing models in the scientific literature for OSA detection.

Author Dataset Signal Model Accuracy Sensitivity Specificity AUC

Haidar et al. (2018) MESA Thor-Res Abdo-Res CNN 77.7% 77.6% – –

Van Steenkiste et al. (2019) SHHS-1
Thor-Res Abdo-Res 

EDR
LSTM 70% 60.7% 72.8% 72%

Haidar and Jeffries (2020) MESA
Thor-Res Abdo-Res 

Airflow
CNN Markov Chain 80.78% 81.73

– –

Biswal et al. (2018) SHHS
Thor-Res Abdo-Res 

Airflow SpO2
RCNN 80.2%

– – –

Gutiérrez-Tobal et al. (2021)
SHHS1 

SHHS2
SpO2

Least-squares 

boosting (LSBoost)

89.68% (avg) 

88.66% (avg)

87.67% (avg) 

94.56% (avg)

79.56% (avg) 

64.77% (avg)
–

Our model SHHS2
SpO2 HR Thor-Res 

Abdo-Res
1D-CNN 84.3% 82.5% 86% 92.1%
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case, sleep clinicians). In addition, the proposed model is 
intended to be used on a real portable monitor. This differentiates 
it from the rest of the work presented in Table 6.

This work presents numerous promising aspects when it comes to 
the development of deep learning models for apnea detection. The 
training of the models is done by an engineering approach using Keras 
Tuner, thus avoiding costly trial and error in time and computational 
resources. The use of the Grad-CAM technique presents the explainability 
of the model. In this way, doctors are provided with a method to study 
the decision made by the model clearly and visually. The AHI is also 
calculated from the models that obtained the best results during training. 
Despite all this, the end-to-end solution of DL exposed in this work also 
includes several limitations. Although the training and test data for 
SHHS2 and SHHS1 were randomly selected, SHHS2 comprises a subset 
of SHHS1 patients who participated in a follow-up sleep study 5 years 
later. Even though the probability is low, this could imply a biased result. 
The data sets for training and testing contain only a few artifacts or 
missing values, and the quality of the signals is good. Therefore, Model 4 
must be tested in the future on lower-quality data to see its performance. 
Despite the benefits of choosing 1 Hz for the signal sampling rate, 
choosing another value for the sampling rate is a fact of interest in future 
developments of this scientific work. The development of window-fed 
models entails difficulty avoiding data from the same patient being 
included in the training, validation and test sets during cross-validation. 
The cross-validation method and the large number of windows reduce 
this possibility. However, to facilitate the development of the models, 
other alternative methods for cross-validation may be applied in the 
future. It is essential to note the large number of windows used to train 
the model. Moreover, this windowed dataset was perfectly balanced. This 
implies that the results are faithful to reality and reduce the bias generated 
due to the small number of patients used to generate the data for training. 
Moreover, unbalanced datasets may yield misleading results. Parallel to 
the development of the PM that will work with the DL model presented 
in this work, other possible architectures will be addressed to try, on the 
one hand, to improve the results presented here and reduce or eliminate 
the limitations described above. One possibility is the use of segmentation 
models, which have already shown promising results in classifying some 
sleep pathologies (Perslev et al., 2019). Various limitations of the proposal 
presented in this paper will also be covered in the future. Firstly, an 
attempt will be made to calculate the total time in bed instead of total 
recording time in order to obtain a more accurate AHI result, as the one 
shown in this paper overestimates the number of apnea events. We will 
also work with multiclassification tasks in order to distinguish between 
apnea and hypopnea.

5. Conclusion

A 1D-CNN has been developed for the detection of obstructive sleep 
apnea events. During the development of this model, it has been taken 
into account that the main objective of the algorithm is to work with a 
PM to detect sleep apnea. For this, it is essential to consider the figure of 
the end user of the device, in this case, the doctor or sleep clinician 
(besides the patient). Therefore, in addition to obtaining optimal results, 
this work aims to obtain a balance between the accuracy and the 
explainability of the model. The model can only be used in a medical 
environment with acceptable interpretability. In addition to providing 
model explainability, our solution achieved 84.3%, 82.5%, 86%, and 

92.1% in terms of accuracy, sensitivity, specificity, and AUC in detecting 
sleep apnea in SHHS2. The model was also tested on external datasets 
such as SHHS1 and MESA. Regarding the calculation of the AHI, despite 
an overestimation of the AHI, promising results were obtained with 
R2 = 0.65 for the SHHS2 training and test data set. To confirm the 
reliability of the results, the DL models were tested on both balanced and 
unbalanced data.
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