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Abstract: Analog integrated circuit sizing is notoriously difficult to automate due to its complexity
and scale; thus, it continues to heavily rely on human expert knowledge. This work presents a machine
learning-based design automation methodology comprising pre-defined building blocks such as
current mirrors or differential pairs and pre-computed look-up tables for electrical characteristics of
primitive devices. Modeling the behavior of primitive devices around the operating point with neural
networks combines the speed of equation-based methods with the accuracy of simulation-based
approaches and, thereby, brings quality of life improvements for analog circuit designers using
the gm/Id method. Extending this procedural automation method for human design experts, we
present a fully autonomous sizing approach. Related work shows that the convergence properties of
conventional optimization approaches improve significantly when acting in the electrical domain
instead of the geometrical domain. We, therefore, formulate the circuit sizing task as a sequential
decision-making problem in the alternative electrical design space. Our automation approach is based
entirely on reinforcement learning, whereby abstract agents learn efficient design space navigation
through interaction and without expert guidance. These agents’ learning behavior and performance
are evaluated on circuits of varying complexity and different technologies, showing both the feasibility
and portability of the work presented here.

Keywords: analog IC design; machine learning; reinforcement learning; GM over ID; procedural
design automation; learning-based design automation

1. Introduction

As a motivation and introduction, the current state of analog integrated circuit (IC)
sizing automation, including the approaches relevant to this work, is outlined in the fol-
lowing subsections. Furthermore, comparisons are drawn between related work regarding
machine learning (ML) and reinforcement learning (RL) in the field, further detailing the
differences to the approach presented here.

1.1. Current State of Analog IC Sizing Automation

Despite comprehensive research regarding the design automation of analog Mixed-
Signal ICs, in terms of topology synthesis [1], design optimization [2], or yield optimiza-
tion [3], this domain has still not caught up with its digital counterpart [4]. As such, it
remains a predominantly manual task relying heavily on human expert knowledge due to
the complexity of the subject matter. While digital circuits are designed from a higher level,
the gate level, due to their time- and value-discrete nature, analog circuit designers are still
sizing individual transistors by hand, bottlenecking the rest of the design flow. Existing
automation approaches are categorized as either optimization-based or knowledge-based.

The former employs optimization algorithms, such as Bayesian optimization (BO) [5]
or evolutionary strategies (ESs) [6], for example, to find new solutions. Depending on the
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algorithm and complexity of the circuit, this may lead to long execution times, be sample
inefficient, or return physically infeasible solutions [7].

The latter requires human experts to express their knowledge in an executable format,
reproducing the results they have found previously [8]. Some overhead is associated with
each new design, but value is accrued with each reuse. This is mainly based on the gm/Id

method [9] and the corresponding pre-computed look-up tables (LUTs), which combines
the accuracy of simulation-based methods with the execution time of equation-based
methods [10].

1.2. Procedural Analog IC Sizing

The main drawback is a lacking higher level of abstraction. Considering the continuous
nature of analog signals, all physical effects and parasitics have to be considered during the
design of analog integrated circuits. Hence, they are still designed on the transistor level,
in contrast to a fixed set of gates in the digital domain, making it difficult for optimization-
based automation approaches [7,11] to find solutions within such a high-dimensional
design space in an adequate time.

Formalizing the expert knowledge necessary for the design of analog circuits lays the
foundation for procedural automation approaches, which have been successfully employed
in the layout domain in the past [12]. These procedures are able to generate layouts
for commonly used analog circuits such as current mirrors or differential pairs. These
frequently reoccurring structures have been deemed “building blocks” [13,14]. While it
is possible to implement such generators for more complex, less frequently used circuits,
the time investment is a considerable trade-off. Recently, similar approaches have made
advances in the circuit design domain as well [15].

1.3. Machine Learning for EDA

Consequently, learning-based approaches have been emerging in recent years [16,17],
attempting to address the yet-unresolved challenges surrounding analog IC design automa-
tion by means of ML and RL.

Both, neural networks (NNs) and deep learning (DL) have shown great potential
in a wide range of tasks [18]. In the field of computer vision especially, convolutional
neural networks (CNNs) enable the autonomous extraction of meaningful information
from images, e.g., for object detection [19], semantic segmentation [20], or 2D/3D human
pose estimation [21], to only name a few. In recent years, the interest in the application
of DL for electronic design automation (EDA) has also increased [17,22], and methods for
analog circuit sizing are an active research topic.

While it has been shown that the behavior of primitive devices can be modeled with
NNs [23,24], this paper attempts to extend this approach to the building block [13] level.
Considering the universal approximation theorem [25], NNs are able to map characteristics
of such a building block to corresponding sizing parameters, e.g., W/L ratios, given
sufficient data.

Kahraman and Yildirim [26] showed that they can size a current mirror and a differ-
ential amplifier with the help of NNs, i.e., a multilayer perceptron (MLP) and a general
regression NN. The networks learn a mapping from the performance parameters to the
devices’ widths, while the lengths are kept constant.

Mendhurwar et al. [27] proposed a more general NN-based framework for circuit
sizing. They obtained a large database of simulation data by performing parameter sweeps
over primitive device models for different technologies and used these data for training
NNs. Due to difficulties in fitting a single model to the large parameter spaces, Mendhurwar
et al. used a binning algorithm to split the parameter space and train multiple sub-models
on the resulting bins. Additional correction models were applied to further improve
accuracy in specific failure cases.

A combination of an evolutionary algorithm and an NN was proposed by Islamoglu
et al. [28]. When evaluating the performance of the individuals, the simulation results
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were not discarded, but used for training an NN that learns to predict the performances of
individuals. The better this network is able to predict the performances, the less simulation
runs are required, resulting in a reduction of the execution time by up to 64.80%.

1.4. Reinforcement Learning for EDA

Reinforcement learning is a framework for finding optimal behavior in sequential
decision-making problems through interaction. The emergence of deep-learning- based
function approximation and subsequently deep reinforcement learning (DRL) has led
to tremendous successes in several challenging control problems, from board and video
games [29,30] to autonomous driving [31] and robotics [32,33]. By virtue of its two simple
provisions, (1) that the problem can be formulated as an Markov decision process (MDP)
and (2) that there exists a measure of reward, which indicates the desirability of a given
interaction, the framework can be applied to solve an even wider variety of tasks.

With AutoCkt, Settaluri et al. [34] applied DRL to the analog circuit sizing problem.
Given a netlist, a test bench, and a target specification, AutoCkt can generate trajectories of
actions, e.g., incrementing or decrementing transistor widths, thus satisfying the desired
target specification. The actions the RL agent is allowed to take are restricted to specific
intervals and step sizes, transforming a continuous action space into a discrete one. AutoCkt
uses the algorithm proximal policy optimization (PPO) [35], which is a popular baseline
because of its ability to handle large and continuous action spaces, as well as its relative
robustness during learning. However, as an on-policy method, PPO discards sampled
interactions after a single round of updates—a severe hindrance in a regime where sampling
interactions are expensive, e.g., because of slow simulations. For reference, PPO can
solve simple continuous control problems after a few tens to hundreds of thousands of
interactions, usually sampled at thousands of frames per second, a sampling rate about
two orders of magnitude higher than running the 25 ms simulation used by Settaluri et al.

Wang et al. leveraged the graph structure of circuits and presented a graph convolu-
tional network (GCN)-based RL circuit designer [36], which operates in continuous action
spaces, such as the widths and lengths of transistors. Training is performed with the
deep deterministic policy gradient (DDPG) [37] algorithm, a natural choice as DDPG is an
off-policy actor–critic algorithm with the ability to sample interactions from a large memory
buffer repeatedly, only discarding them after the buffer is overflowing. As a reward, the
authors defined a figure of merit (FOM): the weighted sum of the normalized performance
metrics, i.e., the distance between the target and actual performance—a technique known
as reward shaping [38], which provides a dense reward signal, which, in some cases, can aid
learning. GCN-RL is run for 104 steps corresponding to a runtime of around 5 h and, thus,
1.8 s per step. The time required per step is consistent with our approach, which is around
2 s per step.

Li et al. introduced a stochastic attention-based graph neural network (GNN) called
circuit attention network (CAN) [39]. They followed the FOM definition of [36], but treated
the normalized metrics as a random variable optimized for small variance. This leads to
the preference of sizings with small performance variance induced by the layout.

Noting these prior works, we highlight the importance of sensible decisions concerning
the definition of the analog sizing problem as an MDP and the choice of RL algorithms.
Like Wang et al., we built our approach upon an off-policy algorithm, namely twin delayed
deep deterministic policy gradient (TD3) [40], the successor to DDPG. TD3 attempts to
alleviate several shortcomings of its predecessor, such as an overestimation bias in the value
function leading to the agent getting stuck in local optima and, thus, not genuinely solving
complex tasks with small solution spaces. Further, we employed hindsight experience
replay (HER) [41], an augmented memory buffer designed to support learning in sparse
reward regimes. The sizing task is only solved once all target specifications are met
simultaneously, and successful episodes are rare in the agent’s initial exploration. HER
effectively “moves the goalpost” when sampling episodes from the memory buffer; while
the agent may not have reached the target specification, it has met a target specification.
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Thus, the agent learns to navigate the state (performance parameter) space effectively,
making the most of a limited number of simulation interactions without the need for
manual reward shaping.

Lastly, unlike previous works conducted purely in geometrical spaces, we propose to
transfer the sizing problem into the electrical parameter space, significantly reducing the
search space [42]. This paradigm shift outright prevents dead-end episodes due to infeasible
configurations of geometrical parameters by only allowing primitive devices at sensible
operating points, which in turn guarantees computable results from the simulation analyses.

This lines up with the preferred gm/Id methodology [43] for manual design by human
experts. Device geometries are merely a means to an end, while the electrical characteristics
of individual devices are much more closely correlated with the overall circuit performance.
It is generally difficult for human experts to intuitively relate transistor dimensions to
circuit performance. Instead, they have a better sense of what the operating points of
specific devices should be.

1.5. Structure

Section 2 introduces the concept of function mappings from the electrical design
domain to geometrical sizing. Subsequently, the sampling of data and training are covered
in Section 3. The trained models are then used in Section 4 to demonstrate the procedural
design with an ML-powered gm/Id methodology. This methodology for analog IC sizing
automation was first reported in [44]. Section 5 describes how these function mappings are
used in conjunction with RL agents, where they act as a performant interface to the gm/Id
methodology. Experimental results of this approach, which were first presented in [45], are
recapped and discussed in Section 6.

2. Function Mappings for Circuit Sizing

First, let us consider a very simple design task, such as a voltage divider, made up
only of resistors. Here, a designer would start by determining the required resistances,
which are the values of the electrical (E) domain, independent of any particular technology.
In a subsequent step, the designer would pick a specific resistor model from a given
process design kit (PDK) and convert the resistances to corresponding geometrical (G)
values according to the documentation. This voltage divider will behave the same in any
technology, provided there is a way of converting the desired resistance (E) to the correct
widths and lengths (G).

When sizing transistors, however, designers do not have this luxury of specifying
desired electrical behavior and looking up a conversion into geometrical sizing parameters
in the PDK manual. While the equations mapping terminal voltages and geometries to
operating point parameters exist in the device models [46,47], they are not easily rearranged
and only grow in complexity with each new version. As such, this would require function
optimization with a simulator in the loop to find geometrical parameters that result in the
desired electrical behavior. The search space, spanned by possible combinations of widths
and lengths for multiple devices in a circuit, is considerable and difficult to constrain. It
would be much more intuitive for a circuit designer, however, to constrain the parameters
of the electrical domain, such as the speed ( fug) or the efficiency (gm/id) of a device. In many
cases it is possible to fix such an electric parameter to a specific value, greatly reducing
the search space. A technology-dependent way of translating desired operating point
parameters into widths and lengths would lift the design problem into the electrical domain.
Here, the task can be viewed as entirely decoupled from the technology and geometries.
Once a design point, consisting of the desired electrical behavior of the transistors, is found,
it is the responsibility of such a translation function for a given technology to produce
the correct widths and lengths, resulting in this specified electrical behavior. That way,
the same operating point can be reproduced, provided the function exists for a PDK. If
the electrical behavior of individual devices is reproduced, the performance of the overall
circuit should be comparable as well.
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Instead of analytically inverting the equations of the transistor model, in this approach,
non-linear regression models are trained to learn and approximate the mappings shown
in (1).

ρtype,tech :


gm
Id
fug
Vds
Vbs

 7→


Id
W
L

gds
W

Vgs

 (1)

This results in the translation function ρ for a given PDK (tech) and device type, where this
type is either NMOS or PMOS. As for the inputs to this model, the aforementioned speed
and efficiency are considered expert knowledge because an experienced circuit designer has
an intuition for choosing these values. Additionally, some prior knowledge in the form of the
drain–source voltage (Vds) and bulk–source voltage (Vbs) is used as part of the input. These
latter parameters can be determined by the location of the device in the circuit.

Related work [13] shows that the design space can be reduced even further by breaking
a circuit into building blocks, such as the current mirror or the differential pair, which are
highlighted in Figure A1. While NNs can be trained to approximate a mapping from
building block specific performances to individual sizing parameters for each device
therein [26], this work focuses on an alternative approach. It is shown that sizing a single
reference device and simply propagating the sizing parameters to related devices within a
building block is sufficient [48]. This only requires training data for a single device and
implicitly ensures that functionally related devices are matched. Hence, the sizing of a
building block is reduced to a single NN evaluation, which will be elaborated on during
the example in Section 4.

3. Data Sampling and Training

As mentioned previously, in Section 2, the foundation for this approach is LUTs
containing the operating point parameters of a transistor [9]. NNs can be trained to learn a
mapping of this data, approximating the simulation model. However, previous work has
shown that it can be difficult for NN predictions to converge over the entire input space [27].
Instead of binning the input space and training a correction model, in this approach, the
dataset is sampled [49] and transformed [50], changing the distribution of the outputs, as
shown in Figure 1, yielding better convergence of a single model.

All mappings modeling primitive device behavior around the operating point pre-
sented in this work were trained using the same network architecture and training algo-
rithm, which was found by iteratively extending the architectures of previous works [26,27].
The result is an NN with 4 inputs, 7 fully connected hidden layers, and 4 outputs, where
rectified linear unit (ReLU) [51] is used as the activation for all hidden layers. These
hidden layers consist of 128, 256, 512, 1024, 512, 256, and 128 neurons, respectively. The
Adam optimizer [52], with a learning rate of α = 10−3 and exponential decay rates for
the moment estimates β1 = 0.9 and β2 = 0.999, is used to minimize the mean-squared
error (MSE) between the LUT and predictions. Additionally, the mean absolute error (MAE)
is calculated for the validation set while monitoring the training progress. Training on
a dataset of 4× 106 samples for 24 epochs with a batch size of 128 took ca. 35 min on an
NVIDIA® RTX ™ 3090. Figure 2 shows how well the predictions agree with the LUT after
training. The left shows the drain current density (Jd = Id/W) over the efficiency, while
the self-gain (gm/gds) over the saturation voltage (vdsat) is depicted on the right.

The training data were obtained by characterizing primitive devices over a range of
terminal voltages (Vds, Vds, Vds) and geometries (W, L), resulting in two ML models (NMOS
and PMOS) per PDK.
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Figure 1. Histograms of scaled drain current Îd ∈ [0, 1], showing how the distribution changes for
different sampling techniques [44].
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5.99 nm} [44].

4. Procedural Design Example

For demonstrating the viability of the methodology for human circuit designers, the
symmetrical amplifier (SYM) shown in Figure A1a is sized to meet the specification given
in Table 1. The strategy is expressed entirely in the electrical domain as a sequence of
function evaluations for each building block in the circuit. When executing this procedure
for a technology, the correspondingly trained models act as a drop-in replacement for ρ.

Table 1. Specification for procedural sizing examples.

Parameter VDD Vin,cm Vout,cm IB0 CL
Specification 3.30 V 1.65 V 1.65 V 3.00 µA 10.00 pF

Initially, prior knowledge is considered by observing the specification, given in Table 1,
and deciding on a biasing current Id,MNCM12 = IB1 = 2× IB0, as well as an output current
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Id,MNCM32 = IB2 = 4× IB0, resulting in the ratio M = 1 : 4 of the PMOS current mirrors
MPCM2. Usually, this is chosen to balance the power consumption and phase margin. Since
this has to be analyzed separately by simulation, starting values Mcm21 = 1 and Mcm22 = 4
were selected. Thus, a sizing strategy is expressed as a sequence of function evaluations,
where the inputs depend on the knowledge and intuition of an expert circuit designer
and on prior knowledge of the location and connectivity of the device in the circuit. This
procedure, which is reminiscent of the manual work flow with analytical equations, is
illustrated in detail hereafter and captured in executable form. First, since the common
mode output voltage Vout,cm is known, current mirror MNCM3 is considered with (2).

ρNMOS



(gm/Id)cm3

fug,cm3
0.5 ·VDD

0.0


⇒


Jd,cm3
Lcm3

gds,cm3/Wcm3

Vgs,cm3

 (2)

This defines the length Lcm3 and width Wcm3 = IB2/Jd,cm32 in terms of speed and efficiency
and constitutes Mcm31 = Mcm32 = 2 for a 1 : 1 ratio. Next, the active load current mirrors
MPCM21 and MPCM22 are considered with the single model evaluation given in (3), thereby
sizing them identically in terms of the same fug and gm/Id.

ρPMOS




(gm/Id)cm2
fug,cm2

VDD −Vout,cm
0.0


⇒


Jd,cm2
Lcm2

gds,cm2/Wcm2

Vgs,cm2

 (3)

yielding the length Lcm2 and the width Wcm2 = (IB1/2)/Jd,cm22, while the ratio Mcm21 :
Mcm22 was defined earlier. Let Vy = VDD−Vgs,cm2, then the differential pair MND1 is defined
in terms of speed and efficiency with (4).

ρNMOS



(gm/Id)dp1

fug,dp1
Vy −VCM

−VCM


⇒


Jd,dp1
Ldp1

gds,dp1/Wdp1

Vgs,dp1

 (4)

where the width and length are obtained in the same way as previously described. Finally,
(5) defines the sizing for MNCM1 in terms of electrical parameters.

ρNMOS



(gm/Id)cm1

fug,cm1
VCM

0.0


⇒


Jd,cm1
Lcm1

gds,cm1/Wcm1

Vgs,cm1

 (5)

Consequently, a sizing procedure for this entire circuit, consisting of 10 devices, is wholly
expressed by a sequence of 4 function evaluations and defines the strategy entirely in terms
of electrical characteristics according to (6).
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fSYM :



(gm/Id)dp1
(gm/Id)cm1
(gm/Id)cm2
(gm/Id)cm3

fug,dp1
fug,cm1
fug,cm2
fug,cm3


7→



Wdp1

Wcm1

Wcm2

Wcm3

Ldp1
Lcm1
Lcm2
Lcm3

Mdp11

...
Mcm32



(6)

More generally, this achieves a mapping from the electrical domain onto the geometrical
domain, fSYM : E→ G, for this particular circuit, where the transformation models ρ act
as a drop-in replacement for any technology. The geometrical sizing parameters obtained
from (6) are used in conjunction with a simulator to extract circuit performance parameters.
By either procedurally or interactively adjusting the electrical characteristics of the building
blocks, an experienced circuit designer may approach any specification. However, for
this example, a sequential-model-based optimization library [53] is used to find the target
performances given in Table 2. For this, a scalar-valued objective function is defined
according to (7).

o(xxxE) = c ◦ s ◦ f ⇒ l (7)

where f : xxxE 7→ xxxG is a function converting the electrical characteristics of the building
blocks into the geometric sizing parameters of individual devices, such as fSYM. s : xxxG 7→ ppp
denotes the interface to the simulator, which takes a vector of geometric sizing parameters
xxxG and returns a vector with corresponding circuit performances ppp, such as the ones listed
in Table 2. The cost function c : ppp 7→ l is a curried [54] version of c′(ttt, ppp), defined in (8),
returning a scalar loss l, where ttt, a vector of performance targets of the same size n as ppp, is
already applied, yielding c.

c′(ttt, ppp) =
n

∑
i=1

eti−pi (8)

It is implied that the elements of ttt and ppp line up, and elements with the same index refer
to the same performance parameter. With this, Bayesian optimization using Gaussian
processes [5,53] and a function evaluation budget of 128 achieves the results shown in
Table 2.

Table 2. Target specification for procedural sizing examples.

Parameter Unit Target Result
DC loop gain (A0) dB >60.00 60.70
unity gain bandwidth (UGBW) MHz >7.50 7.80
common mode rejection ratio (CMRR) dB >100.00 118.47
power supply rejection ratio (PSRR) dB >80.00 80.61
slew rate (SR) V/µs >4.00 4.52
phase margin (PM) ° >80.00 80.03
statistical offset (Voff(1σ)) mV <5.00 4.71

5. Reinforcement Learning Methodology

While the results achieved in the previous section could be improved by tuning the
parameters of the optimizer [53], this type of approach is not pursued further in this
work. Instead, we considered the formulation of the sizing problem as a function in terms
of electrical characteristics, such as fSYM in (6) for the symmetrical amplifier shown in
Figure A1a, as an interface to the gm/Id method not only for human expert designers and
optimization algorithms, but also DRL agents. Because circuit simulations and performance
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extraction are expensive, RL agents are trained to reach arbitrary goal states with as few
simulation steps as possible. In other words, the agents are not trained to find any optimum,
but rather, navigate the design space as efficiently as possible by building intuition through
experience, similar to a human designer. This is achieved by training policies and Q-
functions, which take as the input a state s ∈ S , as well as a desired goal g ∈ G [55], where
the state is defined as a set of performance parameters describing the behavior of a circuit,
while the goal is a subset thereof, such that there exists a predicate hg : S 7→ {0, 1}. As such,
it is every agent’s designation to achieve any state {ŝ|ŝ ∈ S , hg(ŝ) = 1}. If the goal space is
multi-dimensional, which is the case here, a mapping m : S 7→ G is also required. The HER
buffer makes use of this, to generate successful trajectories by finding the goal g′, which is
satisfied by a trajectory’s final state [41].

5.1. Motivation

As the motivation, before going into deeper detail about the implementation, an
attempt was made to reproduce the results reported by [34], with the method presented
here, utilizing a continuous action space in the electrical domain in conjunction with
the HER buffer. For this comparison, two agents were trained on the Miller operational
amplifier, shown in Figure A1b, one with an electrical (E) action space and the other with a
geometrical (G) one. Figure 3 shows the average number of steps it takes these agents to
reach a given goal state, sampled at the beginning of the episode, where this goal state
is defined by the same parameters A0, UGBW, PM, and current consumption (IDD) [34].
These results indicate that training with a sparse reward signal and HER in addition to the
continuous action space improves the navigational capabilities of an agent even in the G

domain. Additionally, it shows how much easier it is for an agent to find a satisfactory
solution in the electrical design space. Here, it takes the agent 1 ≤ t ≤ 3 steps to reach a
goal state, which is 9× faster than in the results reported by Settaluri et al.
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Figure 3. Comparison between electrical (E) and geometrical (G) design spaces with Miller opera-
tional amplifier as described in [34] as shown by Uhlmann et al. in [45].

5.2. Overview

For this implementation, G is a 9-dimensional space, spanned by the unity gain
bandwidth (UGBW), phase margin (PM), slew rate (SR), current consumption (IDD), DC
loop gain (A0), statistical offset (Voff(1σ)), common mode rejection ratio (CMRR), power
supply rejection ratio (PSRR), and estimated area (Ae), where Ae is the only parameter in
the geometrical domain G. The condition g ⊆ s defined earlier is satisfied by the mapping
m shown in (9). Therefore, any goal g is defined as a 9-dimensional coordinate in the state
space, where additional parameters of the state such as the input and output voltage ranges
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or the output referred noise density at different frequencies are not considered for this
implementation.

m :



UGBW
PM

...
VIL
VIH
VOL
VOH

VN,X Hz


7→



UGBW
PM
SR

CMRR
PSRR

A0
Voff(1σ)

Ae
Idd


(9)

State-of-the-art approaches, discussed in Section 1.4, do not make use of HER, but
instead, guide the learning behavior of an agent by defining an FOM, which scores the qual-
ity of a proposed sizing [36,39], where such an FOM is the weighted sum of the distances
between achieved and desired circuit performance parameters. Reward shaping [38] like this
requires expert-level domain knowledge and potentially encodes biases, of the designer
crafting the function, into the reward signal. Additionally, modeling trade-offs between
performance metrics within a specific design context requires explicit human intervention
by adjusting the aforementioned weights [36]. All of these challenges are overcome by
leveraging HER and a sparse, binary reward signal, as given in (10) [41].

rg(st, at) =

{
0, if specification is met
−1, otherwise

(10)

Generally, the objective in terms of RL, shown in (12) [40], is finding the optimal policy πφ,
with parameters φ, that maximizes the expected return J(φ) = Esi∼pπ ,ai∼π [R0] [40], where
the return is the discounted sum of rewards, given in (11) [40].

Rt =
T

∑
i=t

γi−tr(si, ai) (11)

πφ = arg max
φ

J(φ) (12)

where γ is the discount factor and pπ the state transition probability subject to policy π [40],
in particular, a policy able to efficiently navigate the analog IC sizing state space, spanned
by the circuit performance parameters given in (9), by means of adjusting the operating
point parameters of building blocks within a circuit.

Figure 4 illustrates the RL framework implemented for this approach. It is paral-
lelizable, gym-compatible [56], and uses Cadence Spectre [57] for circuit performance
evaluation, ensuring compatibility with real-world PDKs. Initially, a custom TD3 [40]
agent was implemented in HaskTorch [58], while the functionality and reproducibility were
subsequently verified with stable-baselines3 [59].
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5.3. Environment

A function f expresses the sizing of a circuit in terms of electrical characteristics, such
as the previously described fSYM for the symmetrical amplifier, and is the core component
of the environment. After each reset, the environment samples a new random goal
ggg ∼ U (G) and a random initial state ssst=0 ∼ U (S) for the episode. Given any state ssst
and goal ggg from the environment, an action aaat ∼ πφ is sampled from the agent’s current
policy, where aaa=̂xxxE, as described in Section 4. The environment’s step function takes an aaat
and transitions into the next state ssst+1 by transforming the action into geometrical sizing
parameters f (aaat)⇒ xxxG, entering this sizing into the netlist and simulating this new state.
Additionally, the environment returns the reward rg(st, at) as defined in (10).

5.3.1. States

The state ssst ∈ Rn of a circuit at time step t is an n-dimensional vector composed of
performance parameters, such as the ones given previously in Section 5. Since there is no
guidance by a state’s FOM, concatenating the goal ssst||ggg is necessary when leveraging HER
so the agent has a measure of distance. The individual components of sss are of very different
magnitudes, wherefore they are normalized based on an estimated range sss = ŝss + ε, where
ŝss ∈ [−1, 1]n and ε ∈ Rn. This also puts sss in proportion with aaa, which are both passed to
the critic. All three circuits presented here share the same state space S . Furthermore, we
highlight that all components of sss, and ggg ⊆ sss correspondingly, with the exception of Ae, are
parameters of the E domain.

5.3.2. Actions

The action aaat ∈ [−1, 1]m at time step t is an m-dimensional vector, consisting of a
normalized efficiency (gm/Id) and speed ( fug) for every building block, as well as the branch
currents IB in the circuit. Essentially, it is a version of xxxE, described in Section 4, normalized
such that all devices are guaranteed to be in saturation. The reasoning behind this choice
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of operating point parameters is detailed in Section 2. The main motivation for using a
continuous action space over a discrete one is the issue of dimensionality [37]. In case of a
discrete space with 1000 options for each geometrical parameter of each building block in
the circuit, we would end up with a design space of size 1030 for the symmetrical amplifier,
shown in Figure A1a, which is by far the simplest example considered in this work.

For each of the operational amplifiers shown in Figure A1, the dimensions of the action
space are different, corresponding to the number of building blocks and branch currents
available in the circuit.

The geometrical action space used for comparison, in Section 5.1, comprises widths
(Wxx#), lengths (Lxx#), and multipliers (Mxx#), as denoted in Figure A1, which is a normal-
ized version of xxxG according to technology constraints.

5.3.3. Rewards

The reward rt ∈ {−1, 0} at time step t, as introduced previously in (10), is a binary
signal. If a state hg(ssst) = 1 for t < T is encountered, the agent has found a coordinate in the
state space S that meets the specification ggg, yielding a reward of 0; otherwise, the reward is
always −1 [41].

5.3.4. Goals

The goal ggg ∈ Rn′ is an n′-dimensional vector, where n′ ≤ n, which is sampled at
the beginning of an episode and remains identical for all t ∈ {0..T}. This is analogous
to a specification a human designer would pursue during the manual sizing process.
The components of this vector and its relation to the state are detailed in Section 5.2.
Similarly, the dimensions of G remain identical across all circuit environments shown in
this work. When using HER and replaying trajectories with augmented goals ggg′, the reward
is calculated given the predicate hggg′(ssst+i) for any future state ssst+i [41], which is a set of
inequalities, as indicated by a specification, such as the one described in Section 6, checking
whether the achieved performance is adequate.

5.4. Agents

Our custom DRL agent was trained using a combination of TD3 [40] and HER [41],
the reasoning for which is detailed in Section 1.4. At this time, no hyperparameter search or
optimization was performed; instead, the established values found in the literature [40,41]
were used and are listed in Table A2. Algorithm A1 further details the overall imple-
mentation. Both policy and critic networks have 2 fully connected hidden layers, with
256 neurons each. All hidden layers use ReLU [51] as their activation function, while the
policy’s output layer uses tanh [51].

Parallelizing off-policy RL methods is not common practice; however, it was per-
formed here to cope with the limitations of the environments regarding simulation time.
Running all necessary simulation analyses with Cadence Spectre takes about 2 s on average.
Compared to commonly used RL environments [56], this is at least two orders of magnitude
slower. This is overcome by parallelization, such that the agent gets to interact with P = 32
environments simultaneously. Given a state ssst and goal ggg at time step t for each parallel
environment, the agent samples an action aaat, as defined in (13).

aaa>t ∼ π(ssst ‖ ggg) =
[
(gm/Id)MX, . . . , fug,MX, . . . , IBX, . . .

]
(13)

where aaa>t is the transposed action in the E domain, as described in Section 5.3. During
training, some exploration noise ε will be added [40] before feeding the actions to the
corresponding parallel environments. First, they are denormalized to obtain gm/Id ∈ R,
fug ∈ R, and IB ∈ R, after which, ρ for the technology of the training environment is
used to convert these electrical characteristics into geometrical sizing parameters for each
building block, as described in Section 4.
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Simulating the environment with these sizings returns the next state, ssst+1, yielding
the transition tuple (ssst, aaat, rt, dt, ssst+1), which is stored in a preliminary replay bufferRe as
is commonly found in the literature [40]. It is important to note that the goal ggg sampled at
the beginning of the episode only influences an agent’s choice of action, but has no effect
on the dynamics of the environment at all [41]. Therefore, any collected trajectory can be
replayed during training with an arbitrary goal ggg′. This lends itself perfectly to the objective
of this approach, efficient design space navigation, as it teaches the agents how to reach
any coordinate in S as quickly as possible, instead of finding one optimal coordinate. Even
though agents cannot learn how to reach ggg from any trajectory τ = {sss0, . . . , sssT} where
kggg(ssst) = 0 ∀ ssst ∈ τ, they can certainly learn how to reach any intermediate state ggg′ = m(ssst′)
where 0 ≤ t′ ≤ T. Thus, successful trajectories can be created arbitrarily by replaying
each trajectory with k augmented goals, where we pretend the agent was meant to reach
ssst′ . Therefore, the agent is able to efficiently navigate S and reach arbitrary G therein,
even if those were never encountered during training. Following the strategy S, the HER
buffer R [41] is filled by sampling k additional goals G for each transition in Re. E = 40
optimization steps were performed with mini-batches B ∼ U (R) sampled uniformly from
the HER buffer after experiencing P = 32 parallel episodes. The critics Qθ1,θ2 were updated
towards the minimum target value of actions selected by the target policy πφ′ during each
iteration according to (14) [40].

sss′ = sss ‖ ggg

εεε ∼ clip(N (0, σ),−c, c)

aaa′ = πφ′(sss
′)

y = r + γ min(Qθ′1
(sss′, aaa′ + εεε), Qθ′2

(sss′, aaa′ + εεε))

(14)

The parameters of the online policy φ are updated every dth optimization step according to
the deterministic policy gradient [60]. Both target critics Qθ′1,θ′2

and the target policy πφ′ are
updated after each episode with a target smoothing coefficient τ. All hyperparameters are
listed in Table A2.

The results presented in Section 6 were also reproduced with stable-baselines3 [59], due
to the environment being fully gym-compatible [56]. This TD3 reference implementation
does not support parallel environments, however, wherefore longer runtimes are to be
expected.

6. Experimental Results

For the evaluation of the proposed method, the three operational amplifiers, shown
in Figure A1, were selected primarily to showcase the robustness regarding this class of
circuits. All agents were trained in the same nine-dimensional goal space G, defined in
Section 5. During the initial training, the agents only get to interact with the environment
via transformation models ρ for a real-world 350 nm PDK. On the left in Figure 5, the
success rate of each agent is shown, where 100% corresponds to the agent reaching the
desired ggg with t < T steps, averaged over P = 32 parallel environments. The success rates
for training in the G domain are omitted in this plot, since the agents fail to achieve any
specification over the course of M = 50 episodes, suggesting that a longer training time
and reward shaping might be necessary in this domain.

Section 5 introduces efficient design space navigation as the main focus for this ap-
proach. Instead of judging the circuit performance with an FOM [34,36,39], the number of
simulations t, such that hg(st) = 1, is the defining metric used to assess the agents’ per-
formance. The number of steps, averaged over P = 32 parallel environments, are plotted
versus the training episode on the right side of Figure 5. In addition to the average number
of steps t̄ and success rate after M = 50 episodes, Table 3 also shows the average number
of steps it takes an agent to reach the first success and the average number of steps before
the agent achieves success with t < 5 steps. By observing Table 4, the benefits of choosing
a continuous action space become evident. Upon each environment reset, the agent is
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confronted with a broken state of the circuit, where some performance metrics cannot even
be extracted, which are denoted as N/A in the table. Regardless of how broken this random
initial state is or how far it is from the desired goal, the agent proposes a suitable solution
almost immediately. This would not be possible in a discrete action space, where the agent
is impaired by the step size, such that the efficiency of navigation depends highly on the
starting point. Furthermore, Table 4 indicates that, regardless of initial state sss0 and goal ggg,
no explicit expert guidance or reward shaping is necessary. Since the agent is not trained to
maximize any FOM, there is never the need for expert intervention or reward shaping [36];
instead, the agent simply navigates to a coordinate in S where hggg(ssst) = 1 such that t� T,
regardless of whether some performances are already met or not. These observations and
results satisfy the goal, defined in Section 5, of this approach. After training for M = 50
episodes, the agents prove to be very capable of design space navigation based on the trans-
formed action space in the E domain. Whether this approach can be successfully applied to
other circuit classes remains to be examined in future research. However, if the action and
observation spaces are equally well defined with similar dimensions, comparable results
are to be expected.
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Figure 5. Average Success Rate over P = 32 environments [? ] during M = 50 training episodes is
shown on the left. The right shows the average number of steps it takes an agent to reach ggg from an
arbitrary sss0.

Table 3. All agents are trained with transformation models ρ for a 350 nm technology and evaluated
later with models for a 180 nm technology. All step values t̄ are averaged over P = 32 parallel
environments. Shown is the number of steps until the first successful trajectory, the number of steps
when an agent first succeeds with less than 5 steps, as well as the success rate and the number of
steps to succeed after M = 50 training episodes.

Environment 350 nm (trained) 180 nm (evaluated)
First r = 0 First t̄ < 5 Success t̄ Success t̄

SYM! (E) 333.91 336.94 100.00 % 1.00 82.29 % 1.27
MIL! (E) 203.50 218.41 97.92 % 1.10 75.00 % 1.00
FCA! (E) 338.22 392.53 100.00 % 1.03 100.00 % 1.02
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Figure 5. Average success rate over P = 32 environments [45] during M = 50 training episodes is
shown on the left. The right shows the average number of steps it takes an agent to reach ggg from an
arbitrary sss0.

Table 3. All agents are trained with transformation models ρ for a 350 nm technology and evaluated
later with models for a 180 nm technology. All step values t̄ are averaged over P = 32 parallel
environments. Shown is the number of steps until the first successful trajectory, the number of steps
when an agent first succeeds with less than 5 steps, as well as the success rate and the number of
steps to succeed after M = 50 training episodes.

Environment 350 nm (Trained) 180 nm (Evaluated)
First r = 0 First t̄ < 5 Success t̄ Success t̄

SYM (E) 333.91 336.94 100.0% 1.00 82.29% 1.27
MIL (E) 203.50 218.41 97.92% 1.10 75.00% 1.00
FCA (E) 338.22 392.53 100.0% 1.03 100.0% 1.02

Technology Migration

Table 3 shows, in addition to the previously discussed metrics, the findings regarding
the success rate and average number of steps of agents evaluated with transformation
models of a different technology without re-training. For this experiment, agents trained in
a 350 nm technology were employed on the same circuit, but with different transformation
models ρ for a 180 nm technology. As expected, the results confirm the findings presented
in Section 4, where procedures written for one technology can be seamlessly re-used
simply by swapping the transformation models. Essentially, the agents are oblivious to
the technology; they merely propose operating points that yield a certain performance.
Regardless of the technology, if all devices are at the same operating point, the overall
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performance should be comparable as well. By shifting the blame to the transformation
models, there is no need for transfer learning [36] to address technology migration. Similar
to human experts, the agents have acquired an intuition regarding the electrical behavior
of building blocks and their influence on the entire circuit performance. It is important to
note when considering different technologies that boundary conditions, such as the supply
voltage, can change and some circuit topologies might not be able to achieve the exact same
performance specifications. Therefore, these experiments were conducted with identical
boundary conditions.

For further illustration, the other example in Table 4 shows how an agent manages to
find the same specification in the same amount of steps t, but in a different technology. By
never exposing the agents to technology-dependent parameters, they become significantly
more versatile.

Table 4. Initial and final step of a successful episode, by an agent trained on folded cascode amplifier
(FCA) in 350 nm and tested on 180 nm.

Parameter Unit ggg 350 nm 180 nm
sss0 ssst sss0 ssst

A0 dB ≥75.0 −27.23 77.32 −59.52 76.03
UGBW MHz ≥2.5 N/A 2.51 N/A 2.58
SR V/ms ≥500 N/A 515.87 N/A 565.32
PM ° ≥80.0 0 85.54 0 82.79
CMRR dB ≥120.0 116.69 134.70 43.98 125.24
PSRR dB ≥100.0 107.49 127.53 17.18 109.21
Voff(1σ) mV ≤1.5 0.032 1.06 1.39 0.85
IDD µA ≤25.0 70.87 24.08 202.61 24.30
Ae µm2 ≤6.0 10.03 5.83 113.72 4.24
t – <30 0 2 0 2

7. Conclusions

Findings regarding both the knowledge-based and learning-based analog IC sizing meth-
ods are discussed and compared to related work in the following sections.

7.1. Knowledge-Based Circuit Sizing

The state-of-the-art, manual gm/Id method for sizing analog ICs based on LUTs was
used as the foundation for procedural sizing automation. NNs were trained with the LUT
data, effectively modeling the behavior of primitive devices around the operating point,
given desired electrical characteristics. Using these models, a sizing procedure for an
operational amplifier was expressed in terms of electrical characteristics (gm/Id, fug) of
building blocks [13] in the circuit.

When employing this method, the primary consideration is the generation of training
data and the training of the ML models. With an NVIDIA® RTX ™ 3090, training for one
such model took approximately 35 min. The data-generating process had to be performed
twice per technology, once for NMOS and PMOS. As soon as the models are available,
they can be used in conjunction with an already existing procedure, initially composed of
different models, seamlessly porting the sizing strategy to another technology. The effort
required in training the first models and programmatically expressing sizing strategies is far
outweighed by the resulting re-usability. Furthermore, the sizing strategies of experienced
circuit designers are captured in a technology-independent way, which is valuable for both
academia and industry.

7.2. Learning-Based Circuit Sizing

The findings of the procedural approach were the basis for the following learning-based
approach. If an expert circuit designer can use the gm/Id method to express an iterative
sizing strategy in the electrical domain, it stands to reason that an artificial designer can
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be trained to learn a similar policy. We formulated the sizing task as a sequential decision-
making problem, which allowed the use of RL to find a near-optimal solution given weak
supervision in the form of a reward signal. Prior work regarding RL for analog IC sizing
exists; however, it does not consider an action space in the electrical domain, nor does it
focus on efficient design space navigation, which makes a direct comparison difficult.

Unlike related work [34,36,39], our approach trained RL agents with an action space
in the electrical domain and a sparse binary reward signal indicating whether the agent
had reached the required specifications. We employed HER to increase sample efficiency
without relaxing the original problem, which would introduce bias to the optimization
procedure. During training, the agent was rewarded for reaching arbitrary states, i.e., sets
of specifications after a series of actions. This reward schedule deprecated the need for
a hand-crafted FOM, which would otherwise supplement a sparse reward signal in the
initial training stages when the agent is unlikely to reach optimal sets of specifications.
Subsequently, the agent learned to navigate the state space, allowing it to reach any desired
state with ease once training had concluded.

Wang et al. reported training for up to 104 simulation steps, while our approach
considered 50× 30× 32 = 4.8× 104 samples initially. Table 3 shows that the first successes
were achieved after 1

3 ∑{333.91, 203.50, 338.22}× 32 = 9340.05, simulation steps on average
across all three environments, which is just before the 10th episode. Additionally, we
observed that, shortly after this, the agents were able to solve the environment in less than
five simulation steps. According to Figure 5, the number of samples could be decreased to
30× 30× 32 = 2.88× 104 without any impact on performance.

Leveraging an electrical action space makes the agents oblivious to the device geome-
tries. As such, the method is inherently technology-independent, and no transfer learning
is required, unlike other approaches [34,36]. The electrical domain, in conjunction with
HER, improves the design space navigation abilities of the agents presented here, making
it 9× faster than the ones reported by Settaluri et al.

This behavior demands further analysis since, initially, this was considered a sequential
decision-making problem. After training, however, the performance resembled that of
supervised learning approaches. Instead of step-by-step progress toward a goal, the
agent generates a suitable solution within one or two steps. A naively created dataset
for supervised learning in such a space would be comparatively large. For example, the
simplest circuit considered here, SYM shown in Figure A1a, with 10 input parameters and
10 values each, would result in a dataset with 1010 points. With the RL algorithm presented
here, it seems the 28.8× 104 data points collected after 30 episodes are sufficient to train an
efficacious artificial designer.

Wang et al. drew a comparison between a designer with 5 years of experience, for
whom it takes 6 h to size an operational amplifier. Although, most likely only a fraction of
a human designer’s training is spent on one specific topology, it is still much more than the
4.5 h training time of the artificial designers presented here. Additionally, the execution
time of t ≤ 3 simulations of a trained agent is at least three orders of magnitude faster
than this manual sizing process reported in [36]. Furthermore, because there is no reward
shaping, no prior domain knowledge is biasing or influencing the learning behavior of the
agents; they re-discover circuit sizing in the E domain by themselves.

7.3. Summary

Overall, using an electrical design and action space proved very effective for human-
and particularly artificial circuit designers in terms of both learning behavior and the
portability of trained agents between different technology nodes. The procedural approach
presented in Section 4 provides an interface for RL to the gm/Id method, such that agents
can learn the art of analog circuit sizing without being tied to a specific technology. Agents
trained in this alternative action space gain an understanding of the electrical behavior of
the building blocks [13] and do not require any re-training or explicit guidance by human
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domain experts when used with different technologies. Additionally, the results show that
the learned policies were optimized in terms of efficient design space navigation.
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to VSS and VDD, respectively.

These operational amplifiers were used for demonstrating both sizing approaches
presented in this work.
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Appendix B. Hyperparameters

For the NNs approximating the electrical behavior of primitive devices, the following
hyperparameters were used. No optimization or search has been conducted at this time,
and further improvements can be expected by tuning these accordingly.

Table A1. Hyperparameters for LUT mapping NNs.

Parameter Value
Optimizer Adam [52]
Learning Rate 1 · 10−3

Number of Hidden Layers 7
Number of Hidden Units per Layer [128, 256, 512, 1024, 512, 256, 128, 256]
Non-Linearity of Hidden Layers ReLU [51]
Batch Size 128
Number of Epochs 24

The hyperparameters for the TD3 + HER RL agents were taken from the litera-
ture [40,41]. Similarly, tuning these might lead to significant improvements.

Table A2. Hyperparameters for TD3 + HER agents.

Parameter Value
Optimizer Adam [52]
Actor Learning Rate 1 · 10−3

Critic Learning Rate 1 · 10−3

Discount Factor (γ) 0.99
Number of Hidden Layers 2
Number of Hidden Units per Layer 256
Non-Linearity of Hidden Layers ReLU [51]
Number of Update Steps (E) 40
Target Update Interval (d) 2
Random Exploration Interval 10
Test Interval 5
Parallel Environments (P) 32
Target Smoothing Coefficient (τ) 0.005
Noise Clipping (c) 0.2
Exploration Policy N (0, 0.1)
Number of Steps per Episode 30
Buffer Size 106

Batch Size 128
Goal Sampling Strategy (S) future [41]
Number of Additional Goals (k) 4

Appendix C. Reinforcement Learning Algorithm

The algorithm is a combination of TD3 [40] and HER [41], as listed in Algorithm A1
below.
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Algorithm A1 Artificial circuit designer (ACiD)

Initialize critic networks Qθ1 , Qθ2 and policy network πφ with random parameters θ1, θ2,
and φ.
Initialize target networks θ′1 ← θ1, θ′2 ← θ2, and φ′ ← φ.
Initialize empty replay bufferR.
for episode ∈ {0, . . . , M} do . For P parallel environments

Initialize empty episode bufferRe
Get initial state s0 and goal specification g.
for t ∈ {0, . . . , T} do

Concatenate current state and goal ot ← st ‖ g.
Sample exploration noise ε ∼ N (0, σ).
Sample action with exploration noise at ∼ πφ(ot) + ε.
Convert action to sizing āt ← ρ(at)
Simulate netlist with sizing āt, and observe st+1.
Store transition tuple (st, at, rt, dt, st+1) inRe.

end for
for t ∈ {0, . . . , T} do

Concatenate state and goal ot ← st ‖ g, ot+1 ← st+1 ‖ g.
Store transition tuple (ot, at, rt, ot+1) inR.
Sample k additional specifications G := S(Re).
for g′ ∈ G do

Calculate reward rg′ := r(st, at, g′).
Concatenate o′t ← st ‖ g′, o′t+1 ← st+1 ‖ g′.
Store transition tuple (o′t, at, rt, o′t+1) inR.

end for
end for
for iter ∈ {0, . . . , E} do

Sample minibatch of transitions B ∼ R.
Sample evaluation noise ε̃ ∼ clip(N (0, σ̃),−c, c)
Predict action ãt+1 ← πφ′(ot+1) + ε̃.
Calculate return y← rt + γ ·mini=[1,2] Qθ′i

(ot+1, ãt+1).

Update critics θi ← arg min
θi

N−1 ∑(y−Qθi (ot, at))2

if iter mod d ≡ 0 then
Predict action at ← πφ(ot).
Update ∇φ J(φ) = N−1 ∑∇aQθ1(ot, at)∇φπφ(ot).

end if
end for
Update target critics θ′i ← τθi + (1− τ)θ′i
Update target policy φ′ ← τφ + (1− τ)φ′

end for
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