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1. Introduction

Maintenance is a significant cost driver in manufacturing
and production [1,2], making related strategic approaches 
influence company performance [3]. Depending on the 
industry, the estimated contribution of maintenance to the total 
cost of goods produced ranges between 15–60% [1] and 15–
40% [4]. However, cost allocation practices may skew said 

percentages [1]. Predictive maintenance (PdM) is a business 
strategy informed by condition monitoring systems (CMS), 
which can lower maintenance costs, equipment downtime, and 
waste. Both PdM and condition monitoring benefit from the 
ongoing coalescence of the physical and digital world in the 
context of Industry 4.0. Technologies such as the industrial 
internet of things (IIoT), big data, artificial intelligence, edge 
computing, and cloud computing facilitate the development of 
PdM and condition monitoring systems [5–8]. However, only 
15% of production companies questioned in a study have 
implemented predictive and 4% prescriptive maintenance 
strategies [9], even though the industry recognizes the benefits 
of such strategies [10].

Data-driven approaches reduce the challenges model-based 
and knowledge-based approaches pose to developing 
accessible PdM and CMS solutions [2,11]. However,
developing solutions requires interdisciplinary competencies 
and capacities for maintenance, data science, and computer 
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Condition monitoring supported with artificial intelligence, cloud computing, and industrial internet of things (IIoT) technologies increases the 
feasibility of predictive maintenance. However, the cost of traditional sensors, data acquisition systems, and the required information technology 
expert-knowledge challenge the industry. This paper presents a hybrid condition monitoring system (CMS) architecture consisting of a
distributed, low-cost IIoT-sensor solution. The CMS uses micro-electro-mechanical system (MEMS) microphones for data acquisition, edge 
computing for signal preprocessing, and cloud computing, including artificial neural networks (ANN) for higher-level information processing. 
The system's feasibility is validated using a testbed for reciprocating linear-motion axes.
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science. Small and medium-sized enterprises, in particular, 
often lack sufficient capacities for these competencies. 
Therefore, new approaches are required to overcome these 
challenges. The recent year's prize decline in sensors, 
microcontrollers, and, in parallel, the increasing performance 
in information processing enable new possibilities for 
economically beneficial applications of CMS and PdM. 
Especially, micro-electro-mechanical system (MEMS) based 
sensors provide increasingly good technological characteristics 
at a low cost. This paper aims to propose a condition 
monitoring system architecture based on MEMS microphones, 
artificial neural networks (ANN), and cloud computing,
facilitating the implementation of CMS and PdM solutions.

2. Related Work

PdM strategies aim to schedule maintenance measures 
based on (predicted) equipment conditions [1,2,5,11–13],
while condition monitoring comprises different technologies to 
determine equipment conditions and potentially predict failures
[14]. CMSs include various components for data acquisition, 
transmission, storage, preprocessing, and analysis [15],
organized in a system architecture tailored to the specific 
application. Typical CMS architectures define the arrangement
of components and the allocation and distribution of computing 
tasks within the system [4,16–24].

In an IIoT context, edge and cloud computing allow flexible 
computing task-allocation within systems. Light computing 
tasks are allocatable to on-premise nodes (devices) at the 
“edge” of a network, while resource-intensive computing tasks 
occur in the cloud [2,6,7].

Data-driven PdM and condition monitoring often exploit 
vibration signals [5,11]. Vibration, in general, describes an 
oscillatory movement [25], which relates closely to acoustic 
emission, and acoustic signals (sound). Acoustic emission 
describes the generation of transient elastic waves due to a 

rapid release of strain energy caused by a structural alteration 
in a solid material [26]. Sound describes mechanical vibrations 
in the frequency range perceivable to the human ear. 
Depending on the medium in which the sound occurs, 
distinctions are between air-borne, liquid, and structure-borne 
sound [27].

Exploiting acoustic signals for PdM and condition 
monitoring poses advantages under certain conditions. Sensors 
(microphones) to capture acoustic signals do not require 
placement directly on the monitored equipment [28].
Specifically, MEMS microphones are low-cost and small while 
offering high sensitivity, a flat frequency response, and a low 
noise level [29]. MEMS microphones have proven a suitable 
alternative to conventional microphones for condition 
monitoring purposes [30–34].

The literature reviewed in the scope of this paper includes 
multiple valid approaches to PdM and CMS, including 
different solutions for data acquisition/sensors [2,11] and 
predictive analysis [2,5,11]. However, there is a lack of 
accessible technology chains for condition monitoring systems 
that facilitate data acquisition from industrial operating 
equipment [5,10,11,24]. Furthermore, time-based prediction 
approaches are underrepresented compared to classification 
and fault diagnosis approaches [5,11].

3. Approach

The general approach to the proposed CMS architecture 
includes a hybrid allocation of computing tasks between the 
edge and the cloud (Fig.1). The architecture allows flexible 
distribution of preconfigured edge nodes to various assets 
facilitating scalable and cost-effective implementations. The 
hybrid approach enables using capacities at the edge while also 
leveraging resource-intensive data-driven approaches in the 
cloud. Multiple distributable IIoT edge nodes enable data 

Fig. 1. Condition Monitoring System Architecture.
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acquisition and lower-level processing, while the cloud 
provides edge node management, storage, and higher-level 
processing (see Fig. 1). The condition analysis capabilities 
enable condition detection and time-based predictions without 
data representing the entire component degradation process. In 
addition, the condition analysis capabilities extend toward 
covering the entire machinery degradation process with 
increasing data availability.

3.1. Edge node

Data acquisition for the proposed CMS architecture relies 
on a MEMS microphone due to the advantages of low cost, 
small size, the option for remote placement, and technical 
qualities such as high sensitivity, a flat frequency response, and 
a low noise level. The technical specifications of the MEMS 
microphone and the analog-to-digital converter must have 
adequate sensitivity/resolution to determine differences in 
equipment conditions. Here, MEMS microphones with a digital 
interface such as I2S are preferable due to the already 
integrated analog-to-digital converter. Furthermore, the data 
acquisition intervals must be granular enough to capture 
changes in condition over time. A clock on the edge nodes 
allows localizing measurements in time.

The lower-level processing at the edge includes feature 
extraction from the recorded audio signals to reduce network 
traffic, metadata enrichment to facilitate data labeling at a later 
stage, and data transmission to the cloud. Examples of acoustic-
based features include root mean square values, amplitude 
envelopes, kurtosis, frequency spectra, spectrograms, Mel-
frequency cepstral coefficients, and wavelet coefficients. The 
cloud communication and security gateway provides 
communication to cloud provider-specific application 
programming interfaces to ensure authentication and encrypted 
data transmission between the edge and the cloud.

3.2. Cloud module

The cloud requires an interface to manage and securely 
authenticate multiple edge nodes and enable data transmission 
between the edge and the cloud. Storing the transmitted 
historical data is an essential requirement for higher-level 
processing. The higher-level processing includes data 
preprocessing, condition analysis, and an interface for 
inference purposes and adjacent applications.

Preprocessing applies statistical operations such as outlier 
removal and normalization necessary to prepare the features 
extracted during lower-level processing for the condition 
analysis. Furthermore, the features are labeled to satisfy 
requirements for implementing both condition analysis 
approaches.

Condition analysis consists of separate ANN-based 
approaches for condition detection and time-based predictions. 
The condition detection aims to determine condition classes, 
while time-based predictions aim to correlate changes in the 
extracted features to a time-delta between arbitrarily chosen 
points (conditions). Therefore, condition detection relies on a 
classification ANN and the time-based predictions on a 
regression ANN. Both ANNs train on the same features labeled 

differently to account for the respective approach. The 
approaches rely on the premise that the MEMS microphone 
recordings can reflect changes in physical condition.

The respective ANNs differ regarding their aim, network 
architecture, hyperparameters, and feature labeling. The 
architecture of ANNs describes their overall structure, i.e., the 
organization of neurons, layers, and their connections [35]. The 
hyperparameters (such as the learning rate, optimizer, and loss 
function) control the algorithm’s behavior during training [35].

Both condition analysis components require a dedicated 
solution for deployment to make the respective detection and 
prediction capabilities available to users and subsequent 
processing in adjacent applications.

4. Implementation & Validation

A prototype with three edge nodes was deployed to a testbed 
for reciprocating linear-motion axes simulating three different 
lubrication conditions. The test environment aims to 
investigate the feasibility and capability of the proposed CMS 
architecture to determine the condition of machinery 
components. The profile rails were parallel, and a belt drive 
reciprocated the guides simultaneously. Three different 
conditions were simulated by applying 50%, 100%, and 150% 
lubrication to the rail guides (according to the manufacturer’s 
specification). The edge nodes installed on the rail guides faced
the MEMS microphone down towards the profile rail.

Furthermore, the rail guides were loaded with 0.5 kg and 
continuously reciprocated for an 11-day test period. Each edge 
node acquired two seconds of audio every five minutes 
throughout the test period. The following sections describe the 
implementation of the individual architecture components. 

4.1. Edge node implementation

Data acquisition consists of a digital MEMS microphone
(Knowles SPH0645LM4H-B on an Adafruit breakout board) 
recording at 44.1 kHz, 24 bit via the inter-integrated circuit 
sound (I2S) protocol.

The lower-level processing at the edge (Raspberry Pi 3 
Model B) includes applying a fast Fourier transform to the 
audio and reducing the resulting spectrum by averaging the 
magnitudes over 10 Hz-wide frequency bands. Reducing the 
dimensionality of the spectra was necessary to accommodate 
the 256 kB limit for device-to-cloud messages.

The cloud communication and security gateways 
authenticate using connection strings uniquely assigned to each 
edge node to enable data transmission. Afterward, the spectra 
and corresponding metadata (recording timestamps and edge 
node identifiers) were serialized and transmitted to the cloud. 
An additional copy of the data was backed up to a private cloud 
running an InfluxDB. Data acquisition, lower-level processing, 
and transmission to the cloud occur fully automated according 
to specified time intervals.

4.2. Cloud module implementation

The cloud components of the proposed architecture were 
implemented using Microsoft Azure. The higher-level 
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processing occurred in an Azure-hosted machine learning 
workspace with allocatable compute instances to account for 
preprocessing, both condition analysis approaches and the 
inference interface. Most of the cloud implementation, 
including higher-level processing, required manual setup and 
execution.

4.2.1. IIoT node management
An Azure IoT Hub provided the interface and node 

management to the edge, including authentication and routing 
incoming data to a specified storage container for the higher-
level processing. The individual edge nodes were registered 
manually and assigned a unique connection string for 
authentication and secure communication.

4.2.2. Storage
The spectra and metadata were automatically transmitted to 

the cloud and saved to .avro files within an Azure storage 
container. The further data transfer from the storage container 
to the machine learning workspace for higher-level processing 
required manual execution.

4.2.3. Preprocessing
The data acquired at the edge was split into features and 

labels. The features are the magnitude values of the spectra, and 
two labels per feature were constructed from the metadata 
according to the requirements for the condition detection and 
time-based predictions. Details for both labeling approaches 
are presented in the following section. 

To account for random noise events, spectra where the mean 
magnitude across all frequencies exceeds 1.5 times the 
interquartile range of the entire dataset were removed as 
outliers. Furthermore, the features for training and testing were 
scaled to a range between zero and one. The dataset was then 
split into 80% training and 20% testing data for validation.

4.2.4. Condition analysis
The condition detection and time-based prediction rely on a 

supervised learning approach. However, the respective ANN
architectures and hyperparameters required setup to the 
specific intended task, i.e., classification for condition 
detection and regression for the time-based prediction.

The ANNs were implemented in Python using Keras. The 
architectures and hyperparameters for both ANNs were chosen 

based on trial and error to enable functionality without focusing 
on optimized performance and prediction accuracy.

The classification approach aims to predict specific 
conditions of equipment. Therefore, the features were labeled 
according to the conditions set in the test environment, i.e., 
three classes corresponding to 50%, 100%, and 150% 
lubrication. The trained classification model's accuracy on the 
test set was 100%, correctly predicting 1898 labels (lubrication 
conditions) in 1898 predictions. Fig. shows the confusion 
matrix of the measured conditions plotted against the predicted 
conditions on the test dataset. The confusion matrix
complements the accuracy measure to evaluate the ANN’s
classification performance, showing the distribution of errors 
per label (i.e., per lubrication condition).

The regression ANN aims to output a single continuous 
value suitable for time-based predictions. The recording 
timestamps allow for labeling the dataset with the respective 
time-delta of each entry/recording to an arbitrarily chosen point 
in time within the dataset. After training, the regression ANN
predicted the previously unseen test data with a mean absolute 
error (MAE) of less than 15 hours. Fig. 3. shows the 
progression of the MAE on the training and the test data over 
50 training epochs. The error steeply declines during the first
training epochs and progressively converges less steeply
towards a gradient of zero. The error progression suggests that 
further training is uneconomical in terms of computing 
resources. However, further training might still marginally 
improve the model as the validation error on the test data does 
not suggest overfitting.

4.2.5. Inference interface
Both trained ANN models were registered to the machine 

learning workspace, packaged in separate Docker containers,
and deployed as web services hosted in Azure to implement the 
inference interface. The models are accessible via HTTPS 
requests using individual inputs matching the format of the 
spectra used for training. Both deployments answer requests 
automatically. 

5. Conclusions & Outlook

The presented results show the feasibility of the proposed 
system architecture and implemented technology chain in 
terms of data transmission throughout the system and the 

Fig. 2. Classification ANN Confusion Matrix. Fig. 3. Regression ANN Mean Absolute Error over 50 training epochs.
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limited capability to determine machinery component 
conditions. However, the capability of both neural networks 
must not be overestimated regarding their ability to extrapolate 
and generalize to other implementation scenarios.

The system architecture enables insight into condition 
classes from a broad perspective, while the time-based analysis 
enables granular insight on sections within the entire 
degradation process. Focusing the analysis on initially selected 
sections allows a limited detection/prediction capability based 
on small datasets while gradually extending detection and 
prediction capabilities with additional data.

Future work focuses on optimizing individual components
within the proposed system architecture to improve condition 
detection and prediction capabilities and computational 
efficiency. Examples are feature selection, (automated) 
hyperparameter tuning, and collecting data over the entire 
degradation process of additional machinery.

Possible extensions to the proposed system architecture 
include full automation of the manual processes in the cloud 
(preprocessing, training, deployment), including retraining the 
ANN models on newly acquired data. In addition, allocating 
lightweight versions of the trained models to the edge enables 
offline and real-time access to the condition analysis. 
Furthermore, multiple edge nodes enable sound source 
localization and noise-canceling opportunities.
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