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Abstract

Human recognition is an important part of perception systems, such as those used
in autonomous vehicles or robots. These systems often use deep neural networks
for this purpose, which rely on large amounts of data that ideally cover various
situations, movements, visual appearances, and interactions. However, obtaining
such data is typically complex and expensive. In addition to raw data, labels are
required to create training data for supervised learning. Thus, manual annotation
of bounding boxes, keypoints, orientations, or actions performed is frequently ne-
cessary. This work addresses whether the laborious acquisition and creation of data
can be simplified through targeted simulation. If data are generated in a simulation,
information such as positions, dimensions, orientations, surfaces, and occlusions are
already known, and appropriate labels can be generated automatically. A key ques-
tion is whether deep neural networks, trained with simulated data, can be applied
to real data. This work explores the use of simulated training data using examples
from the field of pedestrian detection for autonomous vehicles. On the one hand, it
is shown how existing systems can be improved by targeted retraining with simula-
tion data, for example to better recognize corner cases. On the other hand, the work
focuses on the generation of data that hardly or not occur at all in real standard
datasets. It will be demonstrated how training data can be generated by targeted
acquisition and combination of motion data and 3D models, which contain finely
graded action labels to recognize even complex pedestrian situations. Through the
diverse annotation data that simulations provide, it becomes possible to train deep
neural networks for a wide variety of tasks with one dataset. In this work, such
simulated data is used to train a novel deep multitask network that brings together
diverse, previously mostly independently considered but related, tasks such as 2D
and 3D human pose recognition and body and orientation estimation.

v





Kurzfassung

Die Erkennung von Menschen ist ein wichtiger Bestandteil von Perzeptionssyste-
me, wie sie beispielsweise in autonomen Fahrzeugen oder Robotern zum Einsatz
kommen. Hierbei werden oft tiefe neuronale Netzwerke eingesetzt, die auf große
Mengen an Daten angewiesen sind, welche idealerweise verschiedene Situationen,
Bewegungen, visuelle Erscheinungsformen und Interaktionen abdecken. Die Erstel-
lung dieser Daten ist jedoch oft aufwendig und teuer. Neben den Rohdaten werden
auch Labels für diese Daten benötigt. So müssen zum Beispiel Bounding Boxes,
menschliche Skelettrepräsentationen, Orientierungsangaben oder Aktionen manuell
annotiert werden. Diese Arbeit widmet sich der Frage, ob diese aufwendige Beschaf-
fung und Erstellung von Daten durch gezielte Simulation vereinfacht werden kann.
Wenn Daten in einer Simulation erzeugt werden, hat dies den Vorteil, dass Informa-
tionen wie Position, Ausmaße, Orientierung, Oberflächen und Verdeckungen bereits
bekannt sind und automatisch entsprechende Labels generiert werden können. Eine
Kernfrage dabei ist, wie tiefe neuronale Netze, die mit simulierten Daten trainiert
wurden, auf Realdaten angewendet werden können. Diese Arbeit untersucht den
Einsatz von simulierten Trainingsdaten anhand von Beispielen aus dem Bereich
der Fußgängererkennung für autonome Fahrzeuge. Dabei wird zum einen betrach-
tet, wie existierende Systeme durch gezieltes Nachtrainieren mit Simulationsdaten
verbessert werden können, um etwa Randfälle, sogenannte Corner Cases, besser
zu erkennen. Zum anderen liegt ein Schwerpunkt der Arbeit auf der Generierung
von Daten, die in realen Standarddatensätzen kaum oder gar nicht vorkommen. Es
wird aufgezeigt, wie durch gezielte Aufnahme und Kombination von Bewegungsda-
ten und 3D Modellen Trainingsdaten generiert werden können, die fein abgestufte
Aktionslabels beinhalten, um auch komplexe Fußgängersituationen zu erkennen.
Durch die vielfältigen Annotationsdaten, die Simulationen liefern, wird es möglich
Netzwerke für verschiedenste Aufgaben mit einem Datensatz zu trainieren. In dieser
Arbeit wird dies genutzt, um ein neuartiges, tiefes Multi-Task Netzwerk zu trai-
nieren, das diverse, bisher meist unabhängig betrachtete, aber zusammenhängende,
Aufgaben, wie die 2D und 3D Mensch-Posenerkennung sowie die Körper und die
Orientierungsschätzung zusammenzubringen.
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Chapter 1

Introduction

Autonomous systems act in various areas, which contain miscellaneous direct and
indirect interactions with humans. Examples range from autonomous vehicles over
industrial and household robots to intelligent prostheses. There is a consensus
that the machine understanding of humans and their behavior is one of the main
challenges for autonomous systems [2]. Autonomous systems usually utilize sensor
technology to perceive their environment. Based on the processed sensor informa-
tion, those systems have to perform various tasks like detecting humans, handing a
human worker a component, or prevent a collision with a human. Most state-of-the-
art (SOTA) perceptual algorithms are data-driven and trained under supervision
(see chapter 2). The performance of such data-driven algorithms highly depends
on the quality of the annotated sensor data available at training time. The train-
ing data should contain a considerable variety of annotated data to enable the
autonomous system to fulfill certain tasks. These annotations can range from indi-
vidual bounding boxes over 2D and 3D human pose information to the intention of
individuals. The collection and annotation of real sensor data are time-consuming.
For example, suppose real sensor data is recorded from a car driving through vari-
ous cities while recording pedestrians. In that case, it can be manually annotated
where which human is at what time and what a human is doing. By carefully
observing a longer time range, it may also be possible to answer why a person is
doing something. For example, if someone is walking on the sidewalk and looks
back because he wants to cross the street (see Figure 1.1).

Since the recording and annotation of such training data are correspondingly
complex and thus expensive, standard datasets are usually used to train algorithms.
However, these standard datasets do not contain data for all possible situations.
Examples are rare poses such as handstands or certain actions such as waving a
vehicle out. Another problem in standard datasets is that the more complex the
annotation is, the fewer data is typically available (see section 1.3). Even if a
dataset with appropriate annotations is available, they are typically hand-labeled
and may contain errors. For example, in recent work, Northcutt et al. investigated
the presence of errors in training [3] and test [4] dataset labels. They estimate
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Walk
Look behind

Sees a vehicle?

Looking
for traffic?

Got called
from behind?

Human

Figure 1.1: Exemplary annotations made on a single frame, observing a human on
a sidewalk. Labeling of why the human looks around is not possible
without further context.

an average of 3.4% errors in those labels, with up to 10% errors in one of the ten
datasets examined [4, p. 6].

One possibility to quickly generate sensor data in different situations is simula-
tion, which can also automatically provide complex annotation data. This work
aims to create a simulation framework to show how simulated data can be gen-
erated with as little manual effort as possible, and how this simulation data can
be used to train and support deep learning applications. These studies are to be
conducted in the context of human detection, mainly in the context of autonomous
driving. For this purpose, algorithms will be adapted and developed to capture
various characteristics of people recorded with camera sensors. On the one hand, it
will be considered how standard tasks, such as 2D human pose recognition, can be
improved by generating data, that is not available in standard datasets, through a
simulation. Furthermore, it will be considered how simulations can be applied in
the context of special requirements in algorithm development. Action recognition
serves as an example, which often requires special motion sequences not available
in standard datasets. One significant issue in deep learning applications is the
collection of data with complex labels, such as 3D human pose data or body and
head orientation information. Those ground truths are hard to annotate manually
in real data. Therefore, this thesis will investigate how simulated data with such
complex labels can be used to train algorithms that can be applied to real data
subsequently. Since human actions are highly dynamic, it is important to predict
the actions correctly and in real-time. Thus, the algorithms used and developed in
this work focus on runtime efficiency and accuracy.
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1.1 Contribution
In [5] it is shown that a current SOTA pose recognition algorithm has problems
recognizing corner case poses. An example of such a pose is the handstand. It was
investigated to what extent simulated data can be used to adapt the algorithm to
improve the recognition rate of these poses. A key point of this work is that data
about a given condition may already exist in other domains and may be used to
solve problems for which no data exists in the target domain. There are various
motion capture databases in which poses, such as a handstand, are available in
various executions that are often not or only strongly underrepresented in video
and image datasets. By using these data in simulations, new sensor data can be
generated quickly and without great manual effort, with which a corresponding
algorithm can be trained. With this method, the recognition rate of human joints
in rarely occurring poses could be increased by 13.7%. The work was awarded a
Runner-Up Best Paper Award at the IEEE Intelligent Transportation Systems
Conference (ITSC) 2018. The co-authors supported the author in managing and
recording the data. The manuscript was written entirely by the author of this
thesis. This work is shown in section 4.1.

A system for pose-based action recognition using the example of an autonomous
valet parking function was presented in [6]. A deep learning-based architecture was
designed to detect pedestrians in real-time, estimate their pose and determine an
action based on the pose data. The system was used in an actual test vehicle to
detect pedestrians and to detect if they wave a parking vehicle out of a parking lot.
The architecture was also compared to other pose-based algorithms on a standard
dataset and achieved a 3.5% higher accuracy in detecting actions. For the valet
parking use case, it was also examined whether the action recognition can also be
trained with simulation data. A recognition rate of 81.48% was achieved. This is
clearly below the recognition rate of 99.26% when including real training data, but
showed that a system could also be trained with simulation data. In this work,
the co-authors supported the recording, administration, and processing of motion
capture, 3D scan, and camera sensor data. The manuscript was written entirely by
the author of this thesis. This work is shown in section 4.2

We further evaluated the approach of training pose-based action recognition al-
gorithms with simulated data only in [7]. The main idea behind it was to recreate a
laboratory scenario in a simulated environment, train a pose-based action recogni-
tion algorithm with the simulated data, and test the trained algorithm on real data.
With the same camera positions and perspectives in the simulated environment,
it is expected to reach a high recognition rate, assuming that the pose recognition
algorithms perform similarly on simulated and real data. In the experiment, we re-
corded a participant in our motion capture laboratory who performed five different
actions. A long-short term memory (LSTM) network was used to recognize actions
based on pose-data. The LSTM network was able to recognize all sequences cor-
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rectly. The recognition rate for each frame in the video was 98.52%, which shows
that in the laboratory experiment, no domain shift issues occurred when working
with pose-based action recognition algorithms. The co-authors supported the re-
cording, administration, and processing of motion capture, 3D scan, and camera
sensor data. The manuscript was written entirely by the author of this thesis. This
work is shown in section 4.3.

Another paper introduced the PedRecNet multi-task network at IEEE Intelli-
gent Vehicles 2022 [8]. The paper extends the 2D human pose estimation approach
from [6] with 3D pose estimation and body and head orientation estimation. In
doing so, the individual tasks exhibit recognition performance comparable to the
current SOTA. The system supports the recognition of multiple persons simul-
taneously in real-time (>20 FPS). The architecture is deliberately kept simple,
allowing the network to be easily adapted, modified and extended. The manuscript
was written entirely by the author of this thesis. This work is described in detail
in section 4.4.

1.2 Chapter Overview
The introduction and related work in chapter 1 is followed by required basics of
deep learning applications in chapter 2. Chapter 3 provides information about the
approach to simulated data and related work. Chapter 4 shows various applica-
tions of simulated data, generated with the developed simulation framework. The
chapter shows the application of simulated training data in various deep learn-
ing applications and contains various experiments demonstrating the effect of such
simulated training data. The work is concluded in chapter 5.

1.3 Related Work
The following literature review categorizes current deep learning-based computer
vision algorithms applied in human recognition and used in this work. This section
also includes information about the required annotated sensor data to train deep
learning algorithms in the given category.

1.3.1 Classification
Classification algorithms indicate whether a certain object class can be found in
sensor information. Classification is often one of the first steps in a detection
pipeline to determine if a human is in an image or if a certain part of an image
represents a human (see detection). A major classification milestone is AlexNet [9],
which outperformed the SOTA in the ImageNet classification challenge (see data-
sets) in 2012 by over 10% accuracy through the use of a deep convolutional neural
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network (see section 2.2.6). The following approaches are based on the same found-
ation of deep neural networks containing convolutional layers. One frequently used
network architecture is VGG [10], which has a reduced number of parameters com-
pared to AlexNet due to fixed kernel sizes. ResNet [11] is another network archi-
tecture, which is also the basis of most networks in this work (see sections 4.2, 4.3
and 4.4). It enables deeper networks as it reduces the vanishing gradient problem
(see section 2.2.1) by shortcut connections. Human classification performance is
approximately at a top-5 accuracy of 5.1% [12, p. 31] and is even surpassed by
current SOTA approaches which, for example, use neural architecture search to
let a neural network search for optimal network architectures [13] or by replacing
spatial convolutions with self-attention mechanisms [14]. Many other approaches
are similar in structure and differ in details.

Datasets Various datasets contain classification labels, many of them are spe-
cialized on tasks like the classification of numbers1, cars2 or bees3. There are also
various general purpose datasets containing many classes [15, 16, 17], but the most
widely used dataset is ImageNet [16], which contains over 14, 000, 000 images and
1, 000 classes4. Most deep neural networks (DNNs) in this work are pre-trained
on ImageNet, due to the robust features obtained from the huge amount of data.
Those pre-trained network parts are mostly used for feature extraction and fine-
tuned to specific tasks, such as the 2D and 3D human pose estimation algorithms
in this work.

Annotation Data For this work, the ResNet architecture is most relevant. It
is mostly used as a feature extractor before further applications like 2D human
pose estimation or 3D human pose estimation. The requirements for a simulation
for classification tasks are simple. An image of a camera sensor must be output
and provided with one or more labels that indicate which objects are in the image.
Classification is often a subtask of other algorithms, for example, in detection tasks.

1.3.2 Detection
Detection algorithms provide the position and dimensions of objects in an image
using a bounding box and classify the bounding box contents. The detection area
can be roughly divided into two categories. The first category is based on the fact
that different methods create so-called region of interest (ROI) proposals. This is
a more extensive set of bounding boxes with different positions and dimensions in

1http://yann.lecun.com/exdb/mnist/ (accessed on 2022-03-06)
2https://ai.stanford.edu/~jkrause/cars/car_dataset.html (accessed on 2022-03-06)
3https://www.kaggle.com/jenny18/honey-bee-annotated-images (accessed on 2022-03-06)
4http://image-net.org/ (accessed on 2022-03-06)
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the image, which tend to contain an object. On these ROIs, a classification is then
executed. If the network returns a certain probability for containing an object with
a class label, the bounding box proposal is accepted and output with the class label.
This category includes, for example, R-CNN [18] which performs feature extraction
on the bounding box for each ROI proposal and then classifies it. Its successors
like Fast(er)-RCNN [19, 20] perform a feature extraction only once on the whole
image, and the ROI proposals are generated on the feature vector. Since the feature
extraction only takes place on the full image, this speeds up the process.

The second category consists of algorithms that do not require ROI proposals.
They regress the position and extent of bounding boxes. These approaches include,
for example, the You Only Look Once (YOLO) architecture [21]. Here, the image is
divided into a grid of a certain size. Afterward, bounding boxes are regressed, and
their contents are classified. The algorithm in section 4.2 uses YOLOv3 as a feature
extractor before 2D human pose estimation, which is a further development of the
original YOLO architecture that additionally includes skip connections, residual
blocks, upsampling, and generally more layers. Furthermore, YOLOv3 detects on
three different scaled feature maps to better detect small objects. Another YOLO
version is YOLOv4 [22], which is used in section 4.4. In this version, adjustments
have been made to the training process and minor architectural changes, but noth-
ing has changed in the basic approach.

Datasets As for classification, there are many datasets for object detection spe-
cialized on certain tasks. Some popular datasets in the autonomous driving related
field are the KITTI object detection dataset [23] and the Pascal VOC dataset [24].
One large and widely used dataset is the COCO dataset [25] which contains over
200, 000 labeled images with over 1, 500, 000 object instances in 80 object categor-
ies5. The COCO dataset is used to pre-train the object detection algorithms used
in sections 4.2 and 4.4.

Annotation Data Since further processing is based on bounding boxes, detec-
tion algorithms are always used as the first step of a detection pipeline in this work.
As ground truth, detection algorithms require a list of contained objects and the
bounding box of these objects for each camera image.

1.3.3 2D Human Pose Estimation
In two-dimensional pose recognition, the positions of human joints of a human
skeleton are recognized and represented as image coordinates x and y. These are
connected according to a defined skeleton configuration. The term limb is usually
used for these connections, since these are mostly representations of human bones.

5https://cocodataset.org/ (accessed on 2022-03-06)
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An example would be the limb ‘right femur‘, which connects the two joints ‘right
hip‘ and ‘right knee‘. One way to categorize 2D human pose algorithms is by
dividing them into bottom-up or top-down approaches. Bottom-up approaches
first detect all joints in an image and try to connect them to individual skeletons
afterward. One possible bottom-up approach is first to detect body parts in the
image and afterward assign the single body parts to skeletons using integer linear
programming [26]. OpenPose [27] is another bottom-up approach, which was used
in the experiments described in section 4.1. In this approach, the network predicts
joint heatmaps over the full image and also outputs so-called part affinity fields
(PAFs). Those PAFs are used to indicate the mapping between two joints. For
example, it should output high peaks on the limb between the right knee and the
right ankle of a skeleton, but only if both joints belong to the same human body.
Top-down approaches first detect humans in an image and afterward recognize the
joints of the detected humans one by one. Stacked hourglasses contain multiple
down- and upsampling modules that capture information on multiple scales and
can produce a heatmap for each joint. Using the max activation on this heatmap
results in the joint coordinates. The activation strength can be used to estimate
the presence or absence of a joint [28]. In another approach, a fully connected
graph is built from human joint estimations, from which the skeleton is estimated
using integer linear programming [29]. Another simple method is to add a decoder
in the form of multiple transposed convolutional layers after encoding an image
to a feature space. Such an application was shown by Xuai et al. with a ResNet
Encoder [30]. This approach takes cropped human bounding boxes as input data
and produces a heatmap for each skeleton joint. This 2D human pose estimation
network is used in some experiments in this work (see section 4.2 and moved the
post-processing step to extract 2D image positions from heatmaps in the network
by using a spatial softargmax in 4.4).

Datasets The more difficult it is to generate annotation data, the fewer data is
available. This is also true for 2D human pose estimation datasets, which, com-
pared to millions of labeled data in classification and detection tasks, contain up
to hundreds of thousands of annotated human poses, but most often only several
thousand. One example dataset is the Leeds Sports Pose (LSP) dataset [31], which
contains 2000 hand-labeled images of people performing various sport activities.
Another dataset is the ‘Frames Labeled In Cinema (FLIC)’ dataset [32] composed
of around 20, 000 annotated people in Hollywood movies. More data is available in
the MPII human pose dataset [33] which contains manually labeled annotations for
40, 522 people doing various activities, collected from YouTube videos. The largest
2D human pose dataset, currently available to the public, is the COCO dataset [25]
which provides manually labeled data for over 250, 000 people. All 2D human pose
recognition networks, used and developed in this work, use the COCO dataset, at
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least for pre-training.

Annotation Data For 2D human pose recognition, labels in the form of 2D im-
age positions of human joints of a fixed skeletal structure are required. In addition,
the individual joints must be assigned to a specific skeleton.

1.3.4 3D Human Pose Estimation
Three-dimensional body poses are equivalent to two-dimensional body poses, with
the difference that they include the additional dimension of depth. The first step in
3D human pose recognition is to define a corresponding 3D space. Estimating the
3D positions directly in the camera coordinate system is unsuitable in most cases
since data from different datasets are used for training or validation, and the camera
coordinate systems differ accordingly. Therefore, in the presented work, a reference
point, the center of the hip, is always assumed as the coordinate system origin.
The orientation of the coordinate system may differ from work to work. Besides
direct estimation of 3D human joint positions by a deep neural network [34, 35, 36,
37] alternative approaches exist that first estimate 2D human poses followed by 3D
human pose regression [38, 39, 40, 41, 42]. Some approaches show the application
of model-based approaches [43, 44, 34, 36, 42] to further improve a recognized 3D
skeleton. The categorization in bottom-up [35] and top-down approaches [45, 34,
36] is also valid for 3D human pose estimation. Mehta et al. show an approach
predicting three location-maps for the x, y and z position parameters per body
joint [34]. Those location maps encode the distance in x, y, or z direction from the
coordinate root (pelvis). The location of a joint on those location maps is retrieved
from 2D human pose heatmaps. The results are refined using a kinematic skeleton
fitting method. They have also shown how to apply location maps in a bottom-
up approach which also handles occlusion better by using redundancy in so-called
occlusion-robust pose-maps by representing the decomposed body as torso, limbs,
and heads [35]. Luvizon et al. show a similar approach to encode depth information
in a heatmap but use it only for the depth estimation [37]. It is also possible to
directly regress 3D human poses from 2D heatmaps [40] or directly from 2D human
pose coordinates [46] which improves when using multiple frames as input [39].
Another approach to retrieve 3D human pose information from 2D human poses
is 3D catalog matching [38]. Such approaches rely more heavily on the 2D human
pose estimator’s output than approaches that also use visual input. Kolotouros
et al. show how to reconstruct a volumetric model by estimating the parameters
for the SMPL statistical body shape model [47] and further improve the model by
iteratively fitting on 2D human joints [42]. This work presents an approach similar
to [37], but with a straightforward and performant method to retrieve the pose and
depth heatmaps in section 4.4.

8



1.3 Related Work

Datasets The most used datasets in 3D human pose estimation are recorded in
motion capture laboratories with calibrated camera sensors. One such dataset is
the Human3.6M dataset [48] which contains seven subjects performing 17 different
scenarios in a motion capture laboratory while being recorded from four cameras.
Another popular dataset is the MPII HumanEva dataset [49] which contains four
subjects performing six different actions while being recorded by seven cameras.
Another approach was used to create the 3DHP dataset [50] where the authors
used a markerless, multi-camera setup to record eight subjects doing eight activity
sets with different clothing while being recorded by 14 cameras. They also recorded
outdoor scenes using their camera setup and included them in the test set. The 3D
Poses in the Wild (3DPW) dataset [51] used an inertial measurement unit (IMU)
based approach where the 3D human poses retrieved from the IMUs are aligned
with the camera image by using the 2D human pose. They recorded seven actors
with different clothing in 60 sequences using moving phone cameras.

Annotation Data For 3D human pose recognition, the x, y, and z position of
all human body joints are required. To enable various use cases, they should be
provided in camera space and with additional camera calibration (extrinsic and
intrinsic) data to transform the positions to any required format. As in 2D human
pose estimation, the individual joints must be assigned to a specific skeleton.

1.3.5 Body and Head Orientation Estimation
Body and head orientation estimation approaches are usually handled as separate
problems. The estimation of body orientation often originate in pedestrian-related
works. Classical approaches regularly used classification of body parts, for ex-
ample, by using a part descriptor in a sliding window fashion to classify position,
scale, and orientation of body parts [52]. Another approach focuses on combin-
ing pedestrian orientation and classification by clustering pedestrians in the four
categories front, back, left, and right and train classification networks on those
clusters, which combined scores serve as the full pedestrian classification [53]. An-
other approach uses specific detectors for head and body orientation which are
converted to a full continuous probability density function and stabilized over time
by particle filtering [54, 55]. The authors also discretized the orientation space to
45-degree bins and used a HOG/linSVM based classification system [54]. There is
a lot of recent head orientation work using deep learning [56, 57, 58, 59, 60, 61],
which usually takes a head bounding box as input and thus is an additional step
in the recognition pipeline. Such methods require a head bounding box with a
reasonable resolution and thus, high-resolution sensors or people near the camera
sensor. Work on body orientation or combined body and head orientation estima-
tion has not yet transitioned well to deep learning approaches. One possible reason
could be the lack of appropriate datasets. There are not many standard datasets,
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and the existing ones are rather small and thus not suitable to train deep neural
networks. Heo et al. try to overcome this issue on body orientation estimation
by using a teacher-student learning framework in which they train a teacher net-
work with labeled data and use this network to generate labels for an unlabeled
dataset with which the student network is trained [62]. They have also discretized
the output orientation in 45-degree bins, turning the problem into a classification
problem [62]. Another work uses CNNs in a random forest that focuses on different
body and head parts to recognize the human body and head orientation, with a
focus on head orientation [63]. Steinhoff and Göhring propose the usage of IMUs
to generate more labeled training data for body and head orientation tasks, but
IMU-based approaches are usually hard to sync, suffer from error accumulation,
and do not contain global reference points [64]. Wu et al. propose the application
of 3D human pose estimation approaches (see section 1.3.4) as a basis for body and
head pose estimation using a 3D human pose estimation network as a backbone for
a classification header which classifies the input in 72 orientation bins [65]. This
work proposes a regression approach which is based on full human 3D human pose
information, described in section 4.4. Further, it is shown how to train such a
network with simulated data to overcome the deficient number of labeled data in
this field.

Datasets One available dataset is the HOC dataset [66] which contains 11, 000
full-body images with labels for the front, back, left, and right orientation. Another
available dataset is the TUD Multiview Pedestrians dataset [67] containing 5, 228
images which are labeled as one of the eight bins using 45° discretization. In a recent
approach Wu et al. annotated the COCO dataset with 72 bin discretization for
body orientation resulting in 133, 380 labeled images which may be made available
on request [65]. In summary, there is a large gap in available datasets for the human
body and head orientation estimation, especially when considering full body input
data.

Annotation Data Available datasets mostly contain not enough data to train
deep neural networks and are usually targeted to classification algorithms using only
a low number of classes to discretize the orientation angles. To the authors’ know-
ledge, there is no dataset containing full-body input with 360 degree annotations.
There is typically only a label for the yaw angle, not for the pitch, which might
be necessary for recognition applications based on the head orientation. Thus, a
dataset should contain labels for all 360 degrees for the pitch angle and all 180
degrees for the yaw angle.
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1.3.6 Action Recognition

Action recognition describes classifying actions of a human being at a certain time.
Examples are ‘walking’ and ‘looking around’. There are various directions of re-
search in the context of human action recognition. Some approaches are based
on convolutional neural networks (CNNs). They frequently follow a multi-stream
approach [68, 69, 70], which uses an RGB image for visual feature extraction as
well as a representation of the temporal flow, usually in the form of optical flow.
There is also work which makes use of human poses, either using pose directly [68,
70] or apply some attention like mechanism to get visual features from important
areas around the human skeleton [69, 71]. Those approaches often rely on recurrent
neural networks [71, 72]. Other approaches rely on handcrafted features extracted
from human pose [73, 74]. Labra et al. [75] encode 3D joint positions from motion
capture data and depth sensors into an image-like data structure. Unlike the EHPI
network shown in section 4.2, whole sequences of dynamic length are encoded, which
requires interpolation of time frames in color space. At 255× 255 pixels, the input
data is significantly larger than with the EHPI approach, which increases the com-
puting time for a classification accordingly. The EHPI approach shows that even
by using small, fixed time windows, action detection on noisy 2D human pose data
from camera-based pose estimation algorithms can achieve high detection accuracy
with real-time performance. Most similar to our work in 2D action recognition is
the work of Choutas et al. [76]. They encode time information in human body joint
proposal heatmaps with a color encoding and used this stacked, colored skeleton
joint heatmaps as an input for a CNN to classify the action. To reach SOTA per-
formance, they combined this approach with a multi-stream approach [77]. Most
of these approaches are relatively complex and therefore do not meet the frame
rates required by interactive autonomous systems. The EHPI(2D) approach shown
in section 4.2 is much simpler and still delivers competitive performance. A 3D
extension of the EHPI2D approach is described in section 4.5.

Datasets There are various action recognition datasets, which usually contain
single clips with an assigned action-class label. Examples are the UFC50 [78] and
the extension UFC101 [79] containing 50 respectively 101 action classes with about
6, 000 and 13, 000 videos respectively which were collected from YouTube. Another
popular dataset composed of commercial and YouTube videos is HMDB51 [80]
with its extension JHMDB [81] which also contains joint annotations for pose-
based action recognition algorithms. JHMDB was used in experiments in section
4.2. Another database uses Hollywood movies as video source, which are manu-
ally annotated with corresponding action labels [82]. Other datasets contain more
specialized action categories, for example from sports [83, 84] or cooking [85].
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Annotation Data Action annotation algorithms require one or more action la-
bels per frame for supervised learning. There is no general list of human actions
available. Thus, the labels depend mostly on the application. There is also often
ambiguity between actions, movements, activities, and intentions in the literature.
In this work, the term action is considered for elementary actions, such as ‘walking’
and ‘looking around’, which can also occur with other actions. The intention is
derived from the actions. For example, the underlying intention of walking and
looking around could be the desire to cross the street. As action annotations are
usually required for sequences and not only single frames, it is also required to have
unique identifiers in the annotation data.

1.3.7 Simulation in Deep Learning
Much work is being done utilizing simulations to create ground truth data for al-
gorithms. Animated 3D models can be used in front of random backgrounds to
improve detection algorithms [86], [87]. Another work demonstrates that simulated
3D humans in real environmental backgrounds such as a shopping passage improve
the action detection performance of trained models [88]. Shotton et al. [89] partially
trained the Xbox Kinect-based pose-recognizer on synthetic depth images generated
in a 3D human simulation pipeline. However, such a sensor would only work reliably
in the near field and under lab conditions. In the field of autonomous driving, much
work is done to simulate realistic 3D environments to train and evaluate autonom-
ous car systems [90, 91, 92]. Nevertheless, pedestrians in such environments are
mostly just wandering around on predefined paths with low variety in motion and
appearance. Souza et al. [93] created a database that contains motion capture-
driven 3D human models placed inside a virtual environment. They have shown
that using image data from such a simulation combined with a small part of annot-
ated real-world data improves action recognition. Khodabandeh et al. [94] provide
a method to automatically generate an action recognition dataset by partitioning
a video into action, subject, and context. Most current work either contains basic
representations of humans or represents databases generated procedurally targeting
a broad range of motions. Nevertheless, existing work on simulations to train and
evaluate algorithms shows a great demand for realistic human motion data. Most
current work either contains basic representations of humans or represents bigger
databases generated procedurally targeting a broad range of motions. On the other
hand, human actions must be simulated very precisely to be significant, for example
when it comes to interactions.

Transfer to the Real World A drawback of simulated training data is the
transfer of algorithms trained on simulated data to the application on real-world
data. There is usually a domain shift, which domain adaptation algorithms should
minimize. Such approaches commonly include the use of few real data and a large
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body of simulated data [95] or methods which use uncorrelated features [96] and
advanced domain confusion algorithms [97]. Some approaches try to map from one
domain to another or try only to train features that are domain invariant. It is
still an open issue which of these approaches best suits the problem of transferring
algorithms trained in simulations to a real sensor domain. The experiments show
that it is often possible to combine real data with simulated data and transfer
data learned from the simulated part to the real-world (see sections 4.1, 4.2 and
4.4). In addition, it is shown how to use pure simulated data with 2D human pose
input data as an abstraction level between the camera sensor image and a deep
neural network to train an action recognition network which yields near-optimal
recognition accuracy on real sensor data in section 4.3.
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Deep Learning

Deep-learning methods are representation-learning methods with mul-
tiple levels of representation, obtained by composing simple but non-
linear modules that each transform the representation at one level
(starting with the raw input) into a representation at a higher, slightly
more abstract level.

– LeCun et al. [98, p. 1]

This definition of deep learning states pretty well the basic idea behind it. Thus,
input data is processed through various modules, transforming it into an internal
feature representation that gets more abstract from the more modules it gets pro-
cessed. Deep learning is a collective term for neural network architectures which
consist of multiple successive modules. One example would be DNNs, which repres-
ents neural networks with multiple layers between the input and the output, which
enables the representation of complex functions [1, p. 167]. One essential part
of this definition is the mentioning of representation-learning methods. In classical
machine learning development, data of different types are analyzed by experts. Dis-
tinctive features are worked out, and then a reaction to corresponding input data
is implemented, for example, by using defined rules or machine learning methods
like support vector machines (SVMs) or decision trees (DTs). In representation-
learning, features are learned and not engineered like in other machine learning
applications [98, p. 1] (cf. Figure 2.1, Figure 2.2).

A deep learning system uses these learned internal features to provide a defined
output. The output can be, for example, a one hot vector for classification tasks.
LeCun et al. [98, p. 1] describe the learning part as ‘deep learning discovers intric-
ate structure in large datasets by using the backpropagation algorithm to indicate
how a machine should change its internal parameters that are used to compute
the presentation in each layer from the representation in the previous layer’. The
optimization of the internal parameters is described in section 2.2.3 and the back-
propagation algorithm in section 2.2. The process of learning can be divided into
three categories.

15



Chapter 2 Deep Learning
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Figure 2.1: Classic machine learning pipeline. An expert manually defines features
(for example, a kernel) for a given problem. Those features are used
as input data for a classifier (for example, a SVM or a DT) which is
trained to provide some kind of output based on the inputted features.

Supervised learning During supervised learning, a machine receives a correspond-
ing output for each input. The machine’s task is to learn a function that
maps an input to a specific output.

Unsupervised learning During unsupervised learning, only input data is available
to the machine. The machine should extract features that describe and cat-
egorize the data.

Reinforcement Learning Reinforcement learning can be understood as an indirect
form of supervised learning. Instead of a defined output, a reward for outputs
is used. The machine learns to output data in a way that maximizes the
reward. It, therefore, differs from supervised learning in that no fixed dataset
is required.

Since this thesis follows the approach of automatically generating annotated
training data by simulation, all learning-based algorithms presented fall into the
category of supervised learning.

2.1 Artificial Neural Networks
Artificial neural networks (ANNs) are networks of interconnected neurons, which
are the smallest unit in the network. Neurons are linked to other neurons via
connections. The output of one neuron is correspondingly part of the input of
another neuron. This link between two neurons is weighted to model the relevance
of the value for the receiving neuron. In fully connected neural networks (FCNNs)
every neuron in one layer has a connection to every neuron in another layer (see
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Input Feature Extraction & Classification Output
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Figure 2.2: Deep learning pipeline. In contrast to the classic machine learning
pipeline, the feature engineering is not required. The network extracts
features from the input during processing in the hidden layers. In this
example, the classification is done based on the features in the last layer.

Figure 2.2). Thus, an input layer x with length m and an output layer y with
length n result in a weight matrix W = (wij) ∈ Rm×n for i = 1, ...,m and
j = 1, ..., n which represents the weights for the combinations of input and output
values, correspondingly y = x · W . A neuron uses the sum of all its inputs in a
usually nonlinear activation function f(x · wj + b) (see section 2.1.1) which maps
the inputs to a single output. The basic functionality of a neuron is displayed in
figure 2.3.

x1

xi f(x · wj + b)

Neuron j

yj

Output

xm

1Bias

w1j

wij

wmj

b

Input x

wj

Weights

Figure 2.3: Example of an artificial neuron. It uses the sum of weighted inputs x·wj
with added bias b as input for a nonlinear activation function f which
produces the single output of this neuron, which then can be used as
an input of another neuron or as a part of the output of the network.

The bias is a neuron whose input is always one, weighted by variable b. The bias
enables the neuron to shift the activation function, thus providing possibilities to
reach parameters that otherwise could not be reached. The weights between layers
are the parameters of the network which are adapted during the learning process.
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Name f(x) f ′(x) Graph of f(x)

Sigmoid 1
1+e−x f(x)(1− f(x))

5

1

Hyperbolic tangent tanh(x) 1− f(x)2

5
−1

1

ReLU max(x, 0)

{
1, if x > 0

0, otherwise
5

5

Table 2.1: Example activation functions with their deviations and graphs. The
ReLU activation function zeroes all inputs below zero, thus enables
sparse representations of inputs. For positive input it behaves linear
which also has the benefit of having a simple deviation which is one for
x > 0 and zero otherwise.

In supervised learning, a loss function (see section 2.2.2) is used that maps the
difference between the current output value and the target value from the ground
truth to a value. Therefore, it represents the error. The weights of the network
should then be adjusted via an optimization function so that the error is minimized
(see section 2.2).

2.1.1 Activation Functions
An activation function brings nonlinearity into a neural network and thus enables
it to solve complex tasks. Various activation functions exist (see Table 2.1) which
are used in different situations. The currently most used activation function is the
rectified linear unit (ReLU) [1, p. 174, 98, p. 438] and is seen as one essential part of
SOTA feedforward neural networks [99, p. 1026]. Jarrett et al. [100] used rectified
nonlinearities like |x| and max(x, 0) in convolutional neural networks and observed
a greatly improve of the performance of recognition systems. This observation
was supported by Nair and Hinton [101] which used the max(0, x) nonlinearity to
improve restricted boltzmann machines (RBMs). Its application in deep learning
was demonstrated by Glorot et al. [102], who highlighted the effect of sparsity in
addition to the increased performance using max(0, x) as the activation function
in deep neural networks.

Most neural networks presented in this work use mainly the ReLU activation
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function in hidden layers, with exception of LSTMs where the tanh activation func-
tion is used. The output layers’ activation function depends mostly on the use case.
For example, a softmax is often applied to the output layer in binary classification
tasks to shape the output into a probability distribution. The softmax activation
function is defined as σ(z)j = ezj∑K

k=1 e
zj
. It behaves similar to the sigmoid activation

function and squeezes values to the range between zero and one. In contrast to the
sigmoid function, the outputs of the softmax function are not independent of each
other, as the softmax function ensures that all outputs sum to one.

2.1.2 Fully Connected Layer

Fully connected layers are primarily used at the end of a network, for example, to
build up the last layer in classification tasks so that the set of neurons corresponds
to the set of classes. Each neuron of the input layer is connected to each neuron
of the output layer via a weighted connection. In Figure 2.2, for example, three
fully connected layers are inserted, from which it can be seen that the number of
parameters p increases strongly with the number of neurons in the input n and
output m as p = m(n+ 1) with +1 for the bias neuron’s weight.

2.2 Training

The supervised training of neural networks is an optimization problem. An error
is calculated, which is to be minimized by adjusting the weights in the network.
One or more loss function(s) (see section 2.2.2) are used to describe the error
the network makes for given in- and outputs. Rumelhart et al. have introduced
the backpropagation algorithm that propagates the error values back through the
network to determine the influence of each weight in the network on the total error,
thus allowing specific optimization of each parameter. During training, values will
first pass through the network from the input to the output layer (forward pass).
Afterwards, for each node in the output layer, the influence on the result of each
node of the previous layer is calculated. This procedure is repeated by the chain rule
for each layer. The network is traversed backward until the input layer is reached,
and the error is propagated back through the network accordingly (backward pass).
Since the gradients of the output layer determine the influence on the error and
the influence of all other nodes is also known, the network can be optimized to
minimize the error value. There are different optimization methods, but basically,
a value corresponding to the negative gradient is changed by a small amount (see
gradient descent in section 2.2.3). The backpropagation algorithm to update the n
weights w1, ..., wn of a network is shown in equation 2.1.
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∆wi(t) = −ε
∂E

∂wi(t)
+ α∆wi(t− 1) for i = 1, ..., n (2.1)

∂E
∂wi(t)

represent the gradient calculated from the deltas of the current error rate
E with respect to the weight parameter wi. ε represents the learning rate, which
controls the rate at which the weights are updated [103, pp. 329-330]. ∆wi(t − 1)
is the result of the calculation from the previous training epoch. α represents the
momentum, an inertia term that determines the influence of previous gradients [103,
p. 330]. Thus, the previous gradient is included in addition to the current gradient,
which is intended to achieve more stable and faster learning. The optimization
behavior is visualized by an example for different α values in Figure 2.4. Using
gradient descent without the momentum (see figure 2.4a) the x value gets changed
so little with each iteration, that the minimum is not reached after 50 iterations.
Using α = 0.8 (see figure 2.4b) the minimization is stable and reaches the minimum.
Using too high values for the momentum is displayed by setting α = 0.9 (see figure
2.4c), which leads to overshooting the minimum first before going back towards the
minimum.

−3 0 3

−3

0

3
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y

(a) α = 0.0

−3 0 3

−3
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(b) α = 0.8

−3 0 3

−3

0

3

x

y

(c) α = 0.9

Figure 2.4: Error surface plot which shows the influence of the momentum on min-
imizing the error in 50 iterations for the function f(x, y) = x2 + 2y2

which has its minimum at x = 0; y = 0. The blue line visualizes
the process of the gradient descent, starting its optimization from
x = −3; y = 3.

2.2.1 Weight Initialization
To train an ANN, initial values for each parameter in the network are required.
Initialization is possible with random values, for example. As shown in 2.2, the
training process is strongly dependent on gradients. By a random initialization of
the weights from a standard distribution between [−1, 1], it is possible to reach limit
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values of an activation function (for example, close to −1 or 1 for a tanh function),
resulting in very large (exploding) or very small (vanishing) gradients. This slows
down the training process, worsens the result, or makes the training impossible. To
overcome this issue, the weights of all layers must be scaled so that they are neither
too small nor too large. If the inputs x and weights wij of a neural network layer
are normalized using standard normal distributions, the result of every product of
the element-wise multiplication during a forward pass (see section 2.1) would also
have a mean of zero and a standard deviation of one. For n input connections this
would result in a layer output x with a mean of zero and a standard deviation of√
n, which, then, will be used as an input for the next layer. This continues and

the deeper a neural network becomes, the higher or lower the gradients become
to work with the corresponding inputs. One approach to solve this issue is to
scale the layers’ weights by 1√

n
which ensures that the outputs have a mean of

zero and standard deviation of one again. Thus, the initial weights for a layer are
random variables from a standard distribution between [− 1√

n
, 1√

n
]. However, since

activation functions affect the output of a layer in addition to inputs and weights,
this approach does not work optimally in practice and can still lead to vanishing
or exploding gradients. Therefore, some alternative approaches to initializing the
parameters, such as the Xavier initialization [104] for linear activation functions,
exist to overcome those issues. They use a distribution as represented in equation
2.2 [104].

W ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
(2.2)

U is the uniform distribution in the specified interval. nj and nj+1 represent the
number of input and output connections of a layer. They have shown experimentally
that this approach results in fast convergence and higher accuracy on the CIFAR-10
image classification task.

He at el. have shown that instead of using 1√
n
as in linear activation functions, the

use of
√

2
nj

results in a standard deviation of one for the nonlinear ReLU activation
function [99] and thus results in faster convergence and better performance when
using the ReLU activation function. This kind of weight initialization is also called
He initialization.

2.2.2 Loss Functions
A loss function Li for a sample i is used to express the correctness of outputs of
a neural network. The optimization function is used to minimize this loss during
training. The loss function is problem-dependent, for example human body joint
estimation requires expressing the loss as geometric distances while loss functions in
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classification tasks usually operate with probabilities. The following loss functions
were used in parts of this work.

The mean absolute error (MAE) loss function, also called L1 loss, calculates
the absolute difference between the correct output ŷi and a predicted output yi as
follows:

Li = |ŷi − yi| (2.3)

Instead of using the absolute value, it is also possible to just use Li = ŷi − yi,
which is called mean bias error (MBE). Yet, the MBE is usually not used as a loss
function because errors of different directions could cancel each other, leaving an
uninterpretable error value.

The mean square error (MSE) loss, also called L2 loss, is equal to the MAE
but squares the difference between the correct and the predicted output (see eq.
2.4). Due to the squared value, outliers can heavily influence the result of the MSE
function. The MSE function is usually used on regression tasks [1, p. 133-134],
such as human body joint positions in pose estimation algorithms [27, 30]. In such
tasks, it is desirable to punish values further away from the true value.

Li = (ŷi − yi)
2 (2.4)

The cross entropy loss (CE) loss is usually used in classification tasks [105, p. 236].
For multiclass classification, it is formulated as [105, eq. 4.108]:

Li = −
C∑
c=1

yi,clog(ŷi,c) (2.5)

where c is a class and C is the number of all classes. yi,c is the true label and can
be either one or zero. ŷi,c is the predicted output of the network after an applied
softmax, and thus, taking the form of a probability distribution. As multiclass
classification problems are labeled with one-hot vectors and due to the true label
yi,c only the prediction of the true class is considered.

For multi-label classification, the CE loss is adapted to one binary classification
problem per class, with the two possible classes C ′ true and false. The binary form is
called binary cross entropy loss (BCE) loss and can be expressed as follows 2.6 [105,
eq. 4.90]:

Li = −
C′=2∑
c=1

yi,clog(ŷi,c) = − [yi log ŷi + (1− yi) log(1− ŷi)] (2.6)

where ŷi,c is the output of the neural network, but in contrast to the general CE
loss with an applied sigmoid instead of a softmax [105, pp. 202-203]. The global
loss is just the sum of all BCE losses for all classes in C. This binary form is used,
for example, in the action recognition approach described in section 4.2.
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2.2.3 Optimization
A basic optimization method is the gradient descent (GD) [106, pp. 536-538, 107,
pp. 22-26]. Starting from an initial value (see section 2.2.1), the negative gradient
of a parameter update, determined with a loss function over the parameter space
(see section 2.2.2), is used as the direction of parameter updates. In this way, it
follows the descent of an error curve and thus minimizes the error.

2.2.3.1 Gradient Descent

The gradient descent assumes a differentiable loss function L, which is calculated
for each sample i of a dataset with the size N (see equation 2.7).

L(W ) =
1

N

N∑
i=1

L(f(xi,W ), yi) (2.7)

The loss function represents the error between the predicted value of the model
f(xi,W ) and the ground truth yi. This function is derived accordingly to W to
calculate the gradients. Then the parameters are updated in the optimization step
t + 1 by multiplying the gradients with a learning rate η > 0 (see equation 2.8).
This process is repeated until a certain termination condition is fulfilled.

Wt+1 = Wt − ηt
1

N

N∑
i=1

∇WL(f(xi,Wt), yi) (2.8)

2.2.3.2 Stochastic Gradient Descent

The computational effort for the gradient descent, however, scales linearly with the
size of a dataset. Thus, it is O(n). Since today’s datasets, especially in the field
of computer vision, can have several million entries (see section 1.3), the gradi-
ent descent is impractical with today’s computing power. To avoid this problem,
the stochastic gradient descent (SGD) can be used [108, 109]. In this case, an
optimization is performed according to each sample in the dataset (see equation
2.9).

Wt+1 = Wt − ηt∇WL(f(xt,Wt), yt) (2.9)

Since there are also outliers among the samples and there is generally noise in
the feature space, the approximation of the gradients is also affected by noise. The
mini-batch gradient descent (MBGD) is a variant between the (batch) gradient
descent and SGD. With this method, a dataset is divided into batches with a fixed
size and the weights are optimized after each batch of size M (see equation 2.10).
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Wt+1 = Wt − ηt
1

M

M∑
i=1

∇WL(f(xi,Wt), yi) (2.10)

This approach is usually used in practice since it achieves better computing
efficiency compared to the gradient descent. In addition, the noise of the gradient
approximations is also reduced since averaging the error values is again used for
optimization. SGD is often equated with MBGD in general linguistic usage, for
example, the PyTorch implementation1 of SGD also corresponds to MBGD with a
batch size > 1.

2.2.4 Batch Normalization
Batch normalization is the normalization of weights for hidden layers, which accel-
erates the training of a network. The basic idea is to calculate the mean value and
the variance of inputs x to a layer in a neural network over a dataset or minibatch
and then normalize the inputs before using them in the layer [110]. Thus, a layer
would receive BN(x) instead of x where BN stands for batch normalization. The
influence of weight changes of previous layers is reduced accordingly, whereby a
more stable training can be achieved, especially with deep neural networks, since
the deep layers do not have to react so strongly to changes of previous layers [110,
p. 450]. This decoupling of the layers should minimize the problem of internal cov-
ariant shift, which the authors define as ‘the change in the distribution of network
activations due to the change in network parameters during training’ [110, p. 449].

Let X = (x(1)...x(n)) be the set of input values of a layer. For each x(k) ∈ X the
mean µ(k) (see equation 2.11) and the variance σ(k) (see equation 2.12) is calculated
by the input values x(k)

1 ...x
(k)
m for mini batch size m resulting in the normalized set

of input variables X̂.

µ(k) =
1

m

m∑
i=1

x
(k)
i (2.11)

σ(k) =
1

m

m∑
i=1

(x− µ(k))2 (2.12)

For the normalization, a small constant ε is added for numerical stability as
follows [110, p. 450]:

x̂(k) =
x(k) − µ(k)

√
ε+ σ(k)

(2.13)

1https://github.com/pytorch/pytorch/blob/master/torch/optim/sgd.py (accessed on
2022-03-06)
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Because the normalization of x would limit the expressiveness of a layer, the
authors introduced the learnable parameters γ and β which provide a possibility
to scale and shift the normalized values as follows [110, p. 450]:

yk = γkx̂k + β (2.14)

where yk is the output value after the normalization step, resulting in BNγ,β(x)
as an input for a given layer.

2.2.5 Regularization
The more parameters a neural network has, the more complex functions can be
represented by it. This enables the neural network to fit a training dataset very well
by using complex functions, including outliers. This behavior is called overfitting
and usually leads to a function which is very specific for the given training set, which
results in poor performance on data outside the training dataset. To overcome this
issue, the network can be regularized [1, p. 248ff]. A usually used way to regularize
a neural network is to add a regularization term to the loss function:

L̃(W ) =
1

N

N∑
i=1

L(f(xi,W ), yi) +
1

N
λΩ(W ) (2.15)

where L̃(W ) denotes the regularized loss with {λ ∈ R | 0 ≤ λ ≤ 1} as a hy-
perparameter for the regularization term Ω(W ), thus setting λ = 0 results in
L̃(W ) = L(W ) [1, p. 230]. The effect on the training is demonstrated in Fig.
2.5. The unconstrained network overfits to the training dataset, resulting in a
rather complex function (see Figure 2.5a). A heavy regularization of the network
leads to a too simple function that cannot approximate the optimal function (see
Figure 2.5b). A slightly regularized network leads to a function better representing
the distribution of the samples from the training dataset (see Figure 2.5c).

L2 Parameter Regularization One common regularization term is the L2 reg-
ularization Ω(W ) = 1

2
||W ||22 [1, p. 231] also known as weight decay. This regulariz-

ation term penalizes large weights, which should simplify the model.

Dropout One regularization technique used especially often in computer vis-
ion [21, 10, 9] is dropout. Using dropout means that in each optimization step, a
portion of the neurons of one or more layers is removed randomly [111, p. 1930].
The main idea behind this removal of neurons is to force the neural network to con-
sider multiple features to achieve its optimization goal rather than relying heavily
on some robust features [111, p. 1932]. It results in a reduction of high weight
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Figure 2.5: Visualization of the influence of weight decay as a regularization term.
20 data points are sampled from y = x2+ξ where {x ∈ R | −1 ≤ x ≤ 1}
and {ξ ∈ R | 0 ≤ α ≤ 0.3}. ξ is a random variable to add noise to
the parabola. A neural network was used to approximate the original
function sampled from with noise. The used neural network contained
two fully connected layers with about 6000 trainable parameters and is
regularized using weight decay with different λ values.

values. Dropout can be applied on each layer, but in most cases, it is applied on
layers with many neurons, which are mostly responsible for overfitting.

Batch Normalization Batch normalization is not directly a regularization method,
rather than a technique to accelerate the training process (see section 2.2.4). Nev-
ertheless, it leads to a slight regularization of neural networks, which experimental
studies suggest [110, p. 454]. This slight regularization effect can be enough to
make dropout unnecessary [1, p. 268].

Early Stopping Another method to regularize a neural network is early stop-
ping. The idea behind early stopping is to observe the validation error during the
training, and if the validation error starts to increase, the training is stopped [105,
p. 259-260]. In practice, the model parameters are saved when the validation error
decreases. If for a predefined number of iterations no reduced validation error is
observed, it is concluded that the network is overfitting, and the training has to be
stopped.

Data Augmentation As Goodfellow et al. state, ‘The best way to make a
machine learning model generalize better is to train it on more data. [1, p. 240]’.
Part of this work is the rapid generation of data via simulation, with which networks
should be regularized better. An additional approach to increase available data
is the application of data augmentation techniques. The main idea is to apply
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transformations on available data to alternate the appearance. In computer vision,
rotations, scaling, or changes in color are often used.

2.2.6 Convolutional Neural Networks
A CNN is a neural network that contains one or more convolutional layers. Most
neural networks in this work are CNNs. This section gives an overview of the layers
of which the CNNs in this work are composed. Those building blocks are combined
with techniques highlighted previously, such as activation functions (see section
2.1.1) and batch normalization (see section 2.2.4).

2.2.6.1 Convolutional Layer

0 0 0 0 0 0
0 15 5 5 10 0
0 11 13 1 5 0
0 1 18 30 19 0
0 14 0 40 12 0
0 0 0 0 0 0

Padding(P ) = 1× 1

Sliding(S) = 1× 1

Kernel(K) = 3× 3

0 0 0 0 0 0
0 15 5 5 10 0
0 11 13 1 5 0
0 1 18 30 19 0
0 14 0 40 12 0
0 0 0 0 0 0

Dilation(D) = 1× 1

Figure 2.6: Overview of common convolutional layer parameters. The kernel is
highlighted in green. The padding pads the actual matrix content with
n constant values. This provides control over the output size in the
subsequent layer. Sliding defines a constant value by which the kernel
window is moved through the input data. The left example highlights
the old position of the kernel in blue and the new position after moving
1 step to the right in green. Dilation defines the space between the
kernel rows and columns. The kernel size defines the size of the kernel,
which is moved over the input data.

Most networks in this work use convolutional layers, which learn the kernel para-
meters. A kernel has a size K = m× n and is applied in a sliding window manner.
The sliding parameter S controls the movement of the sliding kernel in the hori-
zontal and vertical directions. The application of such a kernel usually leads to
a reduction of the input size. It is possible to overcome this by adding padding
around the input data, which is defined by parameter P . The usual method is to
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use zero padding, but it is possible to use other approaches, such as copying adja-
cent input data. It is also possible to control the horizontal and vertical distance
of the sliding as well as the kernels’ shape by skipping lines or columns, which is
called dilation, which parameter D specifies the distance between kernel cells. An
overview of the parameters with which a kernel’s behavior can be controlled is given
in Figure 2.6. The upper case parameters in all equations in this section refer to
symmetric parameters to prevent separate formulas for both width and height. The
output size can be determined using these parameters as follows:

O =
I −K +D(K − 1) + 2P

S
+ 1 (2.16)

where O is the output size, I the input size, K the kernel size, D the dilation size,
P the padding size and S the sliding step size and may be calculated separately if
different values are used for the height and width of the specific parameter.
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Figure 2.7: Example of the application of kernels in CNNs on RGB input data with
one output channel. The example shows an input image of size I = 4×4
with a padding size of P = 0×0 and a sliding of S = 1×1 and a kernel
size of K = 3×3 without dilation resulting in the output size O = 2×2.
Highlighted in green is the first filter applied on all channels, as well as
the calculation of the one output channel.

As shown in Figure 2.7, the actual calculations of the output of a convolution
are just a combination of products and sums. For each channel, there is a kernel
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with different parameters. This kernel is moved stepwise (S) over the input data.
Every input value in the current window is multiplied by the kernel parameter at
the specific position. Afterwards, all values in the window are summed up, and
the sum is written to the corresponding continuous position in the output. The
final result is composed of all the data of all channels, where the individual values
are added according to their position. The kernel parameters are shared across
all locations of the input and reapplied through the sliding window approach. As
such, a CNN contains fewer parameters than FCNNs. The actual number of kernels
can be derived from the number of input channels Ci and output channels Co as
described in equation 2.17.

Nk = CiCo (2.17)

2.2.6.2 Transposed Convolutional Layer

Another layer that is frequently used in the context of this work is the transposed
convolutional layer. This is often referred to as a deconvolutional layer, which is
incorrect because it does not perform deconvolution but also convolutions, but it
performs upsampling instead of downsampling. This process is shown exemplary
in Figure 2.8.

Transposed convolution also uses one kernel per input-output channel combina-
tion. In contrast to convolutions, however, each input value Ii is multiplied by each
element in the kernel Kj so that the output is scaled up accordingly.

In contrast to this more intuitive representation of transposed convolutions, Fig-
ure 2.9 shows how transposed convolutions are actually implemented as convolu-
tions.

A padding of K − 1 is added to the input. Afterward, the input is convolved as
in standard convolutions. Note that the parameters used in convolutions need to
be handled differently in transposed convolutions. First of all, the kernels must be
flipped vertically and horizontally (cf. Figure 2.8 and 2.9). The padding parameter
is used to reduce the actual padding around the input. For example, in PyTorch,
the padding is implemented as D(K − 1)−P with defaults D = 1 and P = 0, thus
the padding parameter P reduces the padding size which then leads to a reduced
output size2. The stride parameter also differs in its behavior. When using the view
in figure 2.9, the stride parameter adds S−1 spaces between the values of the input
data, behaving more like the dilation parameter in standard convolutions. Using
stride values, S > 1 may result in ambiguities in the output size. For example,
a convolution from 5 × 5 and 6 × 6 inputs with P = 0 and S = 2 both lead to
the output size of 2 × 2. This also applies to the transpose, which will usually
generate an output of size 5 × 5 given an input of size 2 × 2. Suppose a network

2https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html (ac-
cessed on 2022-03-06)
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Figure 2.8: Example of a transposed convolution. Note that the stride of S = 1× 1
is applied on the output not the input by defining the step size of which
the results, after applying the kernel, are combined. Thus, S directly
influences the size of the output. For example, S = 2× 2 would result
in an output size of O = 5 × 5. The colored areas show the result of
the transposed convolution applied on one input value, for example the
red 1 in the input results in the red 3× 3 area. The colors in the final
result are mixed according to their overlap (cf. the red 0 in the upper
left without overlaps and the 1 below with an overlap between red and
blue).

design requires symmetric behavior of convolution and transposed convolution an
additional parameter Po where Po < S is required, which defines if there should
be one-sided padding added to the output. As such, the size of the output of a
transposed convolution can be calculated as shown in equation 2.18.
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0 0 0 0 0 0
0 0 0 0 0 0
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Figure 2.9: Example of a transposed convolution in an alternative view, which
shows how convolutions are used.

O = S(I − 1) + (K − 1)− 2P + Po + 1 (2.18)

Transposed convolutions are mostly used to scale up a feature map, for example,
to display a heatmap, segmentation, or depth map. In this work, 2D and 3D human
poses as well as orientation heatmaps are generated using transposed convolutions
(see sections 4.2 and 4.4).

2.2.6.3 Pooling Layer

Pooling layers are another method to downsample input data. The input data is
divided into a grid shape using a filter parameter of size m × n and stride S. A
corresponding pooling operation is applied to each filter. Examples are max pooling,
where the maximum value in the filter range is used, or average pooling, where the
average value is used. There are other pooling methods, such as L2 norm pooling,
but the neural networks used in this work apply max pooling or average pooling
exclusively.

2.3 Metrics
Depending on the learning task, various metrics are used for validation, testing,
and within loss functions. In the following, metrics are presented that are used in
the context of this work.

2.3.1 Classification
The classification task can be divided in the following subtasks [112, p. 428].

Binary An input will be classified into one of two non-overlapping classes C1 or C2.
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Ground Truth
P N

Prediction P TP FP
N FN TN

Table 2.2: Binary Confusion Matrix

Multi-class The input will be classified into one of n non-overlapping classes C1 to
Cn.

Multi-labeled The input will be classified into several of n non-overlapping Classes
C1 to Cn.

Hierarchical The input will be classified into one class, the class labels are struc-
tured in a hierarchical way.

Binary, multi-class, and multi-labeled classification tasks are used in parts of this
work. The following parameters characterize a classification tasks:

Total number of samples (NS) The number of all samples.

True positives (TP) are the number of positive samples recognized correctly.

True negatives (TN) are the number of negative samples recognized correctly.

False positives (FP) are the number of positive samples not recognized.

False negatives (FN) are the number of negative samples recognized as positive
samples.

These parameters can also be represented together in a binary confusion matrix
(see Table 2.2).

It is also possible to display classification results of multiple classes in a confusion
matrix. This is shown in Figure 2.10 using the example of a three-class classification.

There are various metrics that can be used to quantify the quality of a classifica-
tion algorithm. Most of these metrics should not be used alone, but in combination.
Otherwise, not all aspects of the results are covered. For example, a 100% true pos-
itive rate does not mean anything, as this can also be achieved with a ‘classifier’
that simply always returns the same label.

2.3.1.1 Accuracy

The accuracy metric simply describes the correct predictions in relation to the total
number of samples and is calculated as shown in equation 2.19.

Accuracy =
TP + TN

NS
(2.19)
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Figure 2.10: Example of an unnormalized three class confusion matrix.

The problem with accuracy alone is that it may be misleading, especially in
uneven datasets. For example, a dataset with 10 true positives and 90 true negatives
may lead to 90% accuracy if a classifier vote all samples negative. Nevertheless,
the classifier would be useless. This information cannot be retrieved from the
accuracy value only. Therefore, precision and recall metrics can be used in addition
to accuracy.

2.3.1.2 Precision

The precision metric describes the relation between true positives and the total
number of positively labeled samples (see equation 2.20).

Precision =
TP

TP + FP
(2.20)

Thus, the precision describes how relevant the positive label is. Since the preci-
sion value excludes false negatives, it is usually used together with the recall.

2.3.1.3 Recall

The recall is also called the true positive rate and describes the true positives in
relation to the false negatives (see equation 2.21), thus describing the effectiveness
of a classifier to identify positive labels [112].

Recall = TP

TP + FN
(2.21)
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2.3.1.4 Specificity

The contrast to recall is the specificity metric, which describes the relation of true
negatives to false positives (see equation 2.22) and thus how effectively a classifier
can identify negative labels [112]. It is also called true negative rate.

Specificity =
TN

FP + TN
(2.22)

2.3.1.5 F1 Score

Closely related to recall and precision is the F1 score, which is the harmonic mean
of precision and recall (see equation 2.23) [112].

F1 = 2× precision× recall
precision+ recall

(2.23)

2.3.1.6 Multi-label Classification Metrics

For multi-label classification, the following metrics are mostly used:

OP =
TP

TP + FP
(2.24)

CP =
1

C

∑
i

= 1C
TPi

TPi + FPi

(2.25)

OR =
TP

TP + FN
(2.26)

CR =
1

C

∑
i

= 1C
TPi

TPi + FNi

(2.27)

OF1 = 2× OP ×OR

OP +OR
(2.28)

CF1 = 2× CP × CR

CP + CR
(2.29)

where P is precision, R is recall and F1 the F1 score. O(…) describes accordingly
the F1, precision and recall metrics over all classes and C(…) the mean of the
metrics per class. It should be noted that C(…) gives a distorted representation for
unbalanced datasets. On such unbalanced datasets, the balanced accuracy (BA)
can also deliver valuable information and is defined as:

BA =
recall+ specificity

2
(2.30)
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(a) bounding boxes (b) Area of overlap (c) Area of union

Figure 2.11: Bounding box IoU metrics visualized. The green bounding box is the
ground truth and the red bounding box the prediction.

2.3.2 Detection
An example for a detection task is shown in Figure 2.11a.

The example shows a pedestrian as well as a predicted and a ground truth bound-
ing box. A metric for detection tasks should contain a measurement for the correct
position and scale of the bounding box and a measurement for the predicted class
in multi-class detection tasks. To measure the quality of the predicted bounding
box, usually, the intersection over union (IoU) is used. Let Agt and Apred be the
area of the ground truth and predicted bounding boxes as well as Ainter the area of
overlap, the IoU is calculated as follows:

IoU =
Ainter

Agt + Apred − Ainter
(2.31)

The IoU is the ratio of the area of overlap of a ground truth bounding box and
the predicted bounding box (see Figure 2.11b) against the area of union (see Figure
2.11c). The IoU is often used in loss functions. However, research results are usually
reported as the mean average precision (mAP), which uses the IoU to determine
if a bounding box is a valid bounding box and checks the correct class labeling
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afterward.

2.3.2.1 Average Precision (Detection)

The average precision (AP) represents the average precision value in respect to recall
values between zero and one [113, pp.158-161]. To calculate the average precision
value, first, the detected objects are transformed in classification results by using an
IoU threshold in combination with the classification label to decide if the detection
is a true positive (TP). Afterward, the results are ranked, for example, by using the
confidence score. Next, for all samples, the precision, and recall value is calculated.
The precision value always takes all samples up to the current rank into account.
Thus, as the recall value increases, the precision decreases. This mechanic may
be used in applications to either prefer true positives with a low number of false
positives (high precision) or to include a low number of false negatives at the cost
of more false positives (high recall). An example is plotted in Figure 2.12, such a
plot is called precision-recall curve [113, p. 158]).

Figure 2.12: Example of a precision-recall curve.

The precision values in the graph are usually interpolated as pinterp for a certain
recall value r which is defined as [113, p. 159]:

pinterp(r) = max
r′≥r

p(r′) (2.32)

The AP metric represents the area under this graph. The value is usually inter-
polated by sampling the recall values, to overcome the computational expense of
calculating the integral (see equation 2.33).
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AP =
1

11

∑
r∈{0.0,0.1,...,1.0}

pinterp(r) (2.33)

where 11 corresponds to the traditional 11-point interpolated average precision
which samples the recall levels 0.0, 0.1, 0.2, ..., 1.0 [113, p. 159]. For multiclass de-
tection, usually the mAP is reported. For a set of C classes, the mAP is calculated
as follows:

mAP =
1

C

C∑
c=1

AP (c) (2.34)

2.3.3 2D Human Pose Estimation
2.3.3.1 Percentage of Correct Keypoints (PCK)

The percentage of correct keypoints (PCK) metric introduced by Yang and Ramanan [114,
p. 2884] evaluates how well individual human joints are detected by an algorithm.
It defines a joint to be correctly detected when it falls within α ·max(h,w) pixels
of the ground truth joints’ position, where h and w denote the height and width
of the bounding box of a person and α the relative threshold for considering the
correctness of the joints position. Equation 2.35 highlights the calculation of the
PCK metric for a skeleton with N joints and Euclidean distances di between the
predicted and the ground truth joint positions.

PCK =

∑N
i=1 TPi

N
with TPi =

{
1, if di < α ·max(h,w)
0, otherwise

(2.35)

There is also a variant of the PCK metric called PCKh, which uses the head
bounding box instead of the full-body bounding box as a threshold reference size
to overcome the influence of articulation [33, p. 3689-3690]. The PCK score is
usually reported together with the used threshold value, for example, PCK@0.2
denotes the PCK value with a threshold size of 20% of the bounding boxes’ largest
side [114, p. 2884].

The PCK metric is thus heavily dependent on the bounding box size, the chosen
threshold, as well as the ground truth labels. Figure 2.13 highlights how this might
influence the expressiveness of the PCK metric. Except for the right elbow, the
pose estimation algorithm delivers a fairly accurate pose from a human perspective,
but the PCK@0.05 score is only at 36%. The problem is that the labeling of 2D
human joints is not a task with a single correct solution, since the individual joints
cannot be assigned exactly to one pixel. For example, the position of the hip joints
in Figure 2.13a were labeled rather on the top outside, but the predictor in Figure
2.13b rather outputs the center hip position. Both can be correct, but this is
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not reflected in the PCK score. One could increase the threshold to ignore these
labeling inaccuracies. However, the higher the threshold, the higher the risk that
incorrectly labeled joints, such as the right elbow in the example, will be recognized
as correct predictions.

(a) GT (b) Prediction (c) Comparison

Figure 2.13: 2D human pose estimation example with an PCK@0.05 score of 36%.

2.3.3.2 Percentage of Detected Joints (PDJ)

The percentage of detected joints (PDJ) metric is similar to the PCK metric, but
uses the bounding box diameter

√
w2 + h2 instead of the largest side max(w, h) of

the bounding box as reference value [115, p. 5]. The original paper used the torso
diameter, which leads to problems with people standing sideways. Thus, the full
bounding box diameter is usually used, which is heavily influenced by a person’s
articulation.

PDJ =

∑N
i=1 TPi

N
with TPi =

{
1, if di < α

√
w2 + h2

0, otherwise
(2.36)

Equation 2.36 shows the calculation of the PDJ metric for a skeleton with N
human joints and Euclidean distances di between the predicted and the ground
truth joint positions.

2.3.3.3 Object Keypoint Similarity (OKS)

The object keypoint similarity (OKS) score is another approach to define a met-
ric for joint distances. It is mainly used in the evaluation of the COCO dataset
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benchmarks3. The main difference to the PCK or PDJ metric is the usage of a
joint-specific, constant factor k, which controls the influence of individual human
joints. For example, joints in the face are weighted less than body joints. They
also use a scale value s to normalize the joint distances based on the human scale.
This scale is usually derived from the ground truth segmentation area or, if this is
not available, from the object’s bounding box area4. Equation 2.37 shows the OKS
metric for one skeleton with N joints and the Euclidean distances d between the
ground truth and the predicted joints.

OKS =
N∑
i=1

exp
(
− d2i
2s2k2

i

)
(2.37)

2.3.3.4 Average Precision for Keypoint Estimation

As in detection metrics, results in pose estimation algorithms are also often reported
using the AP metric. Instead of the IoU in detection metrics, a joint distance
score, for example, the OKS score, is used to determine TP human joints. The
threshold for accepted joints is usually reported as AP threshold. For example, in the
COCO dataset benchmark, usually AP 50 and AP 75 are used. The COCO dataset
benchmark also uses separate evaluations of small, medium, and large bounding
boxes, which are denoted as AP S, APM , and APL.

2.3.4 3D Human Pose Estimation
3D human pose estimation is similar to the 2D human pose estimation in its eval-
uation. What must be taken care of in 3D human pose estimation is the 3D
coordinate system that is used. In most available datasets and benchmarks, the
metrics are applied in a coordinate system that has its origin at the person’s body
to be recognized. All joint positions are then specified relative to this point. The
pelvis is most commonly used for this purpose.

2.3.4.1 PCK3D

The PCK metric can also be applied to 3D human pose estimation. It uses the
Euclidean distance of the ground truth and predicted human joints in 3D space.
Yet, it differs in the threshold retrieval, which is based on the scale of a person in
2D human pose estimation. The to be predicted 3D body size is independent of the
distance to the camera. Thus, it depends solely on the actual size of a human. As

3https://cocodataset.org/\#keypoints-eval (accessed on 2022-03-06)
4https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.

py (accessed on 2022-03-06)
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such, the threshold for PCK3D is usually set to 150mm, which roughly corresponds
to half of the head size.

2.3.4.2 Mean Per Joint Position Error (MPJPE)

A metric that is often used in 3D human pose estimation is the mean per joint
position error (MPJPE) metric, which reports the Euclidean distance between the
ground truth and predicted joint position. As the distance to the camera does not
influence the skeleton size, the only influencing factor besides the quality of the
estimator is the actual human size. A large enough dataset, with a considerable
variety of human body sizes in the test set, should average out this factor.
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Simulation

The simulation must provide ways to generate automatically annotated sensor data.
The focus of this work is on RGB image data. Therefore, only the generation of
RGB camera sensor data is addressed. The principles of the generation of data can
be extended to other sensors. One example would be LiDAR sensor data, which
could be simulated using ray casting [116, p. 1]. Since this work is aimed at human
detection, the focus of the simulation is likewise put on the simulation of human
avatars. The basic prerequisites to simulate a human being are human motion,
human shape, and an environment. In general, it is desirable to create a high data
variability to achieve better performance of data-driven algorithms. High variability
is significant in human movements, as movement executions can vary from person
to person and in different situations. Increased variability can also be reached by
placing virtual sensors that observe people from various perspectives. This free
placement of sensors in the virtual environment is one of the biggest advantages
of a simulation. Different perspectives offer many variations in the representation
and help to achieve a better generalization. In addition, sensors can be easily
rearranged based on requirements to obtain more sensor information. Examples
would be sensor positions in different locations of different vehicles approaching a
simulated person from different angles.

3.1 General Requirements

The requirements for the simulation environment can be divided into three areas.
On the one hand, the user should be supported in obtaining the required raw data,
such as the animations and the 3D avatars, by automating laborious or error-prone
tasks. On the other hand, there are requirements for the generation of simulation
content, for example, the actual sensor data. Last, there are requirements for the
labels to be generated.
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3.1.1 Required Data in the Simulation Framework
The most important part of the simulation framework is the data that the simula-
tion environment should use to generate sensor data. This part also requires the
most manual effort to obtain the data, prepare it for the simulation, and annotate
it. The user should be supported by automating complex and error-prone tasks.
For example, the rigging of 3D scanned models should be automated. Furthermore,
many different movements should be recorded, which means a high effort in a mo-
tion capture lab to instruct participants, perform recordings, label recordings, and
prepare the simulation of data. This process should be supported to minimize the
manual effort.

3.1.2 Data Generation
Sensor data should be generated as automatically as possible within the simulation
environment. Thus, one of the main requirements is to reduce manual intervention
as much as possible. A user must be able to load raw data such as animations and
3D characters into the simulation and use them directly with each other without
having to make manual adjustments. The simulation should create a high variab-
ility in the generated sensor data by automatically generating different movements
with different human 3D models. The simulation must do this independently and
generate the data without further human intervention. This should also allow the
generation of many data that takes a long time. The user must be able to specify
which raw data to use before a simulation run. For this purpose, there must be
filtering options, such as included actions, size of avatars, or the age of persons from
whom a movement originates. Furthermore, the user should also receive support
in the placement of sensors for cases in which as many perspectives as possible are
required, but the sensors do not have to be placed in special positions, such as in
a vehicle windshield.

3.1.3 Ground Truth Labels
The requirements for the ground truth to be generated can be derived from the tasks
to be fulfilled as well as the metrics used (see section 2.3). There are many use cases
and correspondingly different requirements for labels. In this work, the focus is on
classification (for example, actions), detection (pedestrians), 2D and 3D human
pose recognition, as well as orientation estimation. Thus, the main requirement on
labels to be generated is classification labels, 2D and 3D joint positions as well as
the orientation of the body and the head. However, information about all elements
is available in the simulation environment, which can also be used to generate other
types of labels. Areas like variation of environments, crowd simulation, or weather
simulation affect the generated sensor information and the simulated individuals.
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However, the inclusion of these elements would be beyond the scope of this work.

3.1.3.1 Classification

Every object in the simulation must be identifiable. For each object in the simula-
tion, it must be specified to which class it belongs. In addition, each object must
be uniquely identifiable to differentiate between objects within the same class.

3.1.3.2 Detection

The simulation must provide information about the position and rotation of objects
relative to the observer. 2D and 3D bounding boxes must be made available for
this purpose.

3.1.3.3 2D and 3D Human Pose Estimation

The simulation should provide the 2D and 3D positional information of joints of
the human body. Using these joints, the skeleton structure of the human can be
reconstructed, and the exact execution of an action is represented. For 2D human
poses, the joint positions should be output as x and y image coordinates. Further-
more, a skeleton structure must be selected covering various skeleton formats from
benchmarks such as COCO [25] or Human3.6M [48]. For 3D human poses, x, y,
and z coordinates shall be provided in 3D space. These must be provided either for
each sensor coordinate system or in global form, with additional information about
the sensor’s intrinsic and extrinsic camera calibration.

3.1.3.4 Action Recognition

For tasks such as action recognition, it is important that generated data can be
temporally associated. To provide temporal context, every sensor information must
be annotated with a timestamp. This global timestamp can be used to infer local
temporal context. For example, a person flinches after another person screamed.
Furthermore, it is necessary to specify the period of time over which the actions
are performed.

3.1.3.5 Semantic Segmentation

Semantic Segmentation tasks are not directly part of this work. However, for
example, the OKS metric derives the scaling of a person from segmentation data.
Therefore, the simulation should also be able to segment objects and especially
persons in a camera sensor image.
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3.1.3.6 Depth

Another type of annotation that is not directly addressed in this thesis, but is chal-
lenging to annotate from real monocular camera data correctly, is depth data. In
a 3D simulation (see section 3.2), these are already generated during the rendering
process and can therefore be output quickly, but are not used for machine learning
tasks in this work.

3.2 Simulation Framework
The simulation framework is visualized in Figure 3.1 and can be used to generate
annotated data to train data-driven algorithms. The simulation framework requires
motion capture data as well as 3D human models to generate simulation data.
The left half of Figure 3.1 shows the data acquisition part and describes that
participants are recorded with real-world sensors, like a motion capture system
to capture movements or a 3D scanner to generate 3D avatars. Some of these
recorded data already provide information that can later be used as ground truth
labels. For example, information such as the age or weight of a person who has been
motion captured and scanned in 3D can be stored and later output in addition to
simulated sensor data. In the simulation, the collected motion data is transferred
to 3D human models, which then move accordingly in the 3D environment. We
place virtual camera sensors in this 3D environment that record the 3D models as
they move. Since every aspect of the simulation is known, information is available
for each virtual sensor that can be stored as a ground truth label. Examples are
human joint locations, object locations, as well as the current action of a person.

Two crucial aspects of the proposed framework are the ability to modify the
environment and the content within with fully known and observable elements, as
well as having access to metadata. Metadata has two primary purposes. The first
purpose is to make relevant data available in simulations. Knowing a participant’s
gender, age, race, height, and weight enables the selective querying of models based
on these parameters. For example, it can be used to create a simulation that only
contains models with the visual characteristics of people over 60 years of age. The
second purpose of metadata is its usage in the output of the simulation. Metadata
of simulated components can be used directly as additional ground truth for the
training and validation of machine learning algorithms. It is ground truth that
usually cannot be derived directly from a sensor output but has to be interpreted
from visual stimuli, context information, and background knowledge.

The key benefits of using a simulation for the use-cases in this work are:

1. To generate training data, only 3D human models, motion capture data, and
an environment are required.
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Figure 3.1: Architecture of the simulation-driven recording setup, showing the com-
ponents to observe a human in a lab setup, obtain data from this human,
and generate simulated sensor information enriched with this data. The
kind of ground truth data produced by the different components of the
simulation framework is displayed at the bottom.

2. The human models in the simulation can be perceived by various sensors,
which can be placed freely around the humans. This allows fast adaption to
various applications (for example, in-car sensors and infrastructure cameras).

3. In the simulation environment the positions, and properties of all elements in
the three-dimensional space are known and can be used to generate annota-
tion data automatically. For example, 3D human pose joints can be easily
read out, and the animation files can be used to determine at any time which
action a 3D avatar is currently performing, if annotated correctly.

4. It is possible to have camera sensors record how a person’s movements are
captured in a motion capture lab. Then, the lab environment, including
the exact camera positions, can be simulated to evaluate how the simulation
behaves compared to real sensor data under the same conditions.

3.3 Required Data To Generate Simulations
To generate appropriate simulations, the simulation environment requires content,
such as 3D human models, animations, or environment models. The following
shows how these required raw data for the simulation environment are obtained
and generated.
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3.4 3D Models
The appearance of simulation data is mainly influenced by the 3D models used.
There are various possibilities to obtain and create corresponding models. For a
basic simulation, the environment, 3D human models, and other 3D objects like
vehicles are required. The following is a brief description of how the 3D model data
for the simulation are obtained.

3.4.1 3D Environments
The 3D environment to be used depends strongly on the purpose of the simula-
tion. For some experimental constellations, no actual environment is necessary.
An example would be the work on corner cases (see section 4.1), in which a pose
recognition algorithm should be taught rare human poses. It was important to
vary the background strongly to focus on the human appearance and the skeleton
configuration, so the background was generated using random 2D image data. A
3D environment was not used. When real 2D images are used as backgrounds, it
is important to select them based on the training data requirements. For example,
in human recognition algorithms, care must be taken that no humans are visible
on the 2D background images since no annotations are generated for them. In
other applications, the environment is very relevant. Such an application could be
time-dependent algorithms like action detection, where scene consistency between
frames is necessary. An example would be the detection of pedestrian actions like
hitchhiking. It is important to have a scene with a street and a sidewalk, so that
appropriate context information is available. There are numerous 3D environments
that are available for free or can be purchased commercially. There is also the
possibility to create the environments manually or to use 3D scanning. The 3D
environments used in the experiments in sections 4.2, 4.3 and 4.4 are manually
created or obtained from third-party providers.

3.4.2 3D Objects
The use of 3D objects depends on the application requirements. For example,
objects could be used to cover parts of bodies to make learning algorithms more
robust against occlusions in real sensor data. In other applications, objects with
which a human interacts could be relevant. An example could be a robot that
is supposed to collaborate with a human and therefore is taught how a human
interacts with different tools. Here it would be essential to use 3D models of the
tools. Other examples would be crossing a street with a stroller or crossing a street
with a trolley. The focus of this work is on the movement of people. Therefore,
objects were not simulated, and machine learning algorithms should learn actions
and intentions from the movement of the simulated people. Large databases with
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3D objects of high quality already exist. For example, many vehicle models can
be easily obtained. It is also possible to manually create the models or use 3D
scanning methods for more specific requirements.

3.4.3 3D Humans
3D human models are the most important part of the simulation presented here,
besides the motion data. Many visual appearances are required for the simulation of
humans in the framework. The 3D human models are either created with a Vitronic
VITUSbodyscan full-body scanner1, are generated by software such as MakeHuman2

or the Reallusion Character Creator3 at the sacrifice of realism or are obtained from
a third-party provider (see Figure 3.2).

(a) Make Human2 (b) Reallusion
Character Cre-
ator3

(c) 3D Scan (d) 3D scan with
manual post-
processing

Figure 3.2: Example 3D models from different sources and with different quality
levels. (a) Procedurally generated with Make Human2, enables fast
generation but with low level of detail. (b) Procedural generation with
the Reallusion character creator3, higher level of detail but sometimes
error fragments when using extreme values. (c) 3D scanned models from
full-body scanner with automatic post-processing, rapid generation of
models, but low fine details. (d) 3D scanned model with manual post-
processing from a commercial supplier, high level of detail but costly in
production.

The body scanner is laser-based, so unlike methods using photogrammetry, dark
clothing does not pose any issues. With this system, a full-body scan can be
performed in under ten seconds. To animate a 3D human model, it must first be
rigged and skinned. Rigging means that an internal skeleton (rig) must be created

1https://www.vitronic.com (accessed on 2022-03-06)
2http://www.makehuman.org (accessed on 2022-03-06)
3https://www.reallusion.com/de/character-creator/ (accessed on 2022-03-06)
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that represents the bones and joint structure of the model and determines the
freedom of movement of the model accordingly. Once this skeleton is created, it is
determined how the surface of the 3D model deforms based on skeletal movement,
a process known as skinning. Autorigger [117] is used to automatically rig and
skin the 3D scanned models. Besides the self-scanned models, there are several
suppliers of scanned and rigged 3D models. We use several 3D models acquired in
this way, as they are of much better quality than software-generated models, and the
respective provider is in charge to fulfill the GDPR data protection requirements.
With self-scanned models, the legal situation is often not clear. This problem is
mostly present in very high-resolution models where biometric details, such as the
iris, are mapped in detail (Article 9 EU GDPR). In addition, with self-scanned
models, scanned persons can withdraw their consent to the publication of the data
(Article 7, paragraph 3 EU GDPR), which makes it more difficult to provide data
in a dataset or benchmark. In addition, metadata is also collected. This includes
the age, weight, height, gender, and skin color of the 3D human avatar. These are
used as filter options in the simulation and can be output as ground truth labels
for sensor data.

3.5 Animations
Human avatars need to be animated to perform actions in a simulated environment.
Literature divides animations into three categories [118, p. 64]:

Keyframe animation originated from the early approach to animation, where each
frame was drawn manually. Frames can be interpolated between two key-
frames in keyframe animation to reduce the manual effort. This type of
animation allows a high degree of control over the animation but requires
expert knowledge to make movements look realistic [118, p. 64, 119, p. 2].
Besides the creation of the keyframes, the type of interpolation is important.
A linear interpolation usually leads to unnatural-looking movements because
human movements are noisy and follow a slightly circular path [120, p. 62].
It is difficult to get variations in the animations due to the static nature of
keyframes.

Procedural animation is a category under which various methods for automat-
ically creating animations are summarized. Predefined procedures generate
the animations. These procedures can have various rules, constraints, and
parameters [121, pp. 141-142]. Examples are animations generated by ap-
plying inverse kinematics based on the current environment or physics-based
simulations. There are also data-driven character animation techniques4. For

4It must be noted that DNN based animation techniques are categorized as procedural animation,
while usually requiring large amounts of motion capture data to be trained on.
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example, machine learning techniques can be used to learn various motions
as well as transitions between motions based on data. User input, such as a
direction or a velocity with various constraints from the environment and the
skeletal structure, can be used as input for such neural networks to synthes-
ize realistic movements [122, 123, 124]. Procedural methods enable physic-
ally realistic movements and allow their adaptation, for example, a change in
walking speed [125, p. 72]. Furthermore, it is possible to react interactively
to environmental details such as obstacles or other people. Since parameters,
rules, and constraints of movements are given, it is also possible to include
secondary movements (for example, of hair or clothing) using these paramet-
ers [125, p. 72]. However, the same rules, constraints, and parameters always
result in the same movements.

Motion capture animation describes animations that are created by tracking and
recording movements. There are various technologies to achieve such track-
ing. Examples are IMUs or optical tracking systems. The process of mo-
tion capturing usually consists of capturing motions, independent of the ap-
pearance [119, p. 51]. The motion is then transferred to digital models.
This process is called retargeting. Motion capturing usually allows the fast
creation of animations but often requires expensive hardware and advanced
post-processing technologies such as retargeting systems. High-quality mo-
tion capture systems capture fine details of movements. Thus, it creates many
variations when recording the same movement multiple times with multiple
people. Since the animation is fully based on recorded data, it is not possible
to define important properties of the motions and often hard to determine
how to edit the motion data to achieve a desired effect [119, p. 53]. Edit-
ing motion capture data is sometimes required just because of errors in the
recording process. The editing itself is usually complicated because data in
every time frame has to be edited. The challenges associated with editing
motion capture data also mean that it is inflexible in use and difficult to
adapt to new environments or situations.

It is possible to combine approaches of these three categories. For example,
motion capture data can be adapted via procedural methods to react dynamically
to environmental details. An example would be to decouple the neck joint from the
animation and let the head follow an object in the virtual scene. Motion capture
data can also be adjusted using inverse kinematics to simulate a step from the
sidewalk to the street, even though the data was recorded on a flat surface.

Since the motion data is to be used in a simulation to train data-driven al-
gorithms, one main requirement is the variability in the execution of movements.
If certain movements are always executed in the same way, overfitting problems are
likely to occur. For example, a neural network may learn the exact execution of

49



Chapter 3 Simulation

an action, leading to recognition problems in case of deviations of this execution.
By capturing motion several times and recording several people, one automatic-
ally gets a high variance of the same movement. If only the type of movement is
specified, but the execution of the movement is not restricted, even executions can
be recorded that individual persons might not even think of. Movements that are
recorded by motion capturing can also be transmitted live to a simulation. This al-
lows online validation of algorithms, which could be used to determine, for example,
whether an algorithm has problems with certain types of actions or a certain type
of execution of an action. The use of motion capturing presents a corresponding
challenge in the design of scenes. Due to the static nature of the recordings, it
is not a simple task to transfer movements to other scenarios or represent them
realistically in different environments. By using approaches like inverse kinematics,
some of these problems can be solved, and some of them are irrelevant due to the
fast producibility of motion-capture animations. Despite these disadvantages, mo-
tion capturing is the best method for creating animations in the use cases, due to
the realistic animations and high variability in the movement execution by several
recorded people.

Nevertheless, large-scale motion capture data acquisition is a complex process.
Recordings have to be made by several people who have to perform complex motion
sequences with individual characteristics. In addition to the actual recording, the
recording must also be prepared by creating a recording catalog for each person to
be captured, for example, by providing data protection agreements, experimental
consent forms, and selecting concrete sequences to be captured. Each individual
recording of a movement sequence places high cognitive demands on the supervisor
and the person being recorded. Information must be perceived, such as the move-
ment to be performed, the speed of movement execution, the start position, which
accessories are to be used on which body part, and which specific steps are to be
executed. In addition, appropriate post-processing steps must be taken after each
recording. Thus, available information about the content of a recording must be
assigned to the actual motion data. Figure 3.3 highlights the recording process for
a single participant.

The most time-consuming steps in this process are as follows:
• Preparation: The creation of a recording catalog is done by randomly com-

piling a catalog of n concrete scenes from a large general catalog of possible
sequences, accessory combinations, movement speeds, etc. The catalog is then
used as a basis for the creation of the recording catalog. The individual ele-
ments in this catalog must be assigned unique identifiers (UIDs) that are also
used as identifiers for the motion capture files and thus enable the matching
of metadata and recorded movements.

• Record: During recording, the participant must be told for each sequence
what is to be recorded, in what form, and with which boundary conditions.
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Figure 3.3: Procedure for a motion capture session with one participant, including
preparation and post-processing.

The participant must then equip appropriate accessories, go to the starting
position, mentally internalize the steps to be performed and carry out the
recording.

• Post-processing: In post-processing, each recording must be qualitatively
judged retrospectively to cut superfluous parts, to individual label actions
in the overall sequence, and, finally, to generate a corresponding metadata
file for each recording, in which it is indicated, for example, which sequence
was recorded, which individual actions are contained, which characteristics
the participant had. The metadata file must be created in such a way that it
can be used as a basis for the recording.

Going further, some parts of this process are particularly prone to error. Due
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to numerous short sequence recordings, it is often difficult for participants and
supervisors to maintain concentration over an extended period. Therefore, during
test recordings, sources of errors frequently occurred in the following areas:

• Preparation errors: When manually creating recording catalogs, the super-
visor selects randomly from the overall catalog, and individual scenes from
the comprehensive catalog may be forgotten.

• Record errors 1: During recording, the supervisor may slip in the line for
individual components of a recording description or entire record descriptions.
As a result, something is recorded that no longer matches the description in
the recording catalog.

• Record errors 2: It often happened that side mix-ups, such as cell phone in
the right hand instead of the left hand.

• Record errors 3: In some cases, the UIDs from the recording catalog were not
entered correctly, which meant that recordings could no longer be assigned
to the corresponding metadata.

• Post-processing errors one: When labeling individual actions in a sequence,
there were sometimes typing errors in the corresponding time specifications.

• Post-processing errors two: When creating the metadata file for each re-
cording, typing errors can occur in the UIDs or actual metadata, recording
sequences can be mixed up by slipping in the list, or individual information
can be forgotten to be included in the metadata file.

To minimize the manual time required as well as the possible sources of error, a
motion capture management system was generated as part of this work. It supports
the generation and management of recording catalogs, guides the actual capture,
provides information to the participant and supervisor, automatically links recorded
data and metadata, bundles the information, and makes it available for use by the
simulation framework. Further, to support post-processing, an action labeling tool
was created and integrated directly into Vicon’s motion capture software.

3.5.1 Motion Capture Manager
The motion capture management system is designed to support the user in all three
phases of a motion capture session. The system is optimized for the situation in the
motion capture lab of Reutlingen University to record different scenes of pedestrian
movements. Figure 3.4 shows the motion capture lab from the perspective of a
participant. There are two large monitors visible to both the participant and the
supervisor. The supervisor’s workstation is at the end of a row of workstations,
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Figure 3.4: Reutlingen University Motion Capture Lab: Participants’ View

so it should be avoided that the supervisor has to get up and go into the motion
capture volume to instruct the participant. In the picture, the motion capture
management system can already be seen supporting a record by displaying all
relevant information on the two screens.

The requirements for motion capture recordings were designed primarily for ped-
estrian movement recording. However, the system can easily be extended for other
use cases by adding further master data, new master data types, or simply creat-
ing a new recording catalog. In the following, it will be shown how exactly the
motion capture management system supports the three phases of a motion capture
recording session.

3.5.1.1 Preparation

The focus of the preparation phase is to create a recording catalog for the par-
ticipant. For this purpose, the motion capture management system supports the
following master data:

Genders Possible genders for participants; currently, only females and males are
used.
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Skin colors Skin colors are used to describe the skin color of a participant. This
information is mostly useful if a 3D full-body scan is created from this parti-
cipant in addition to motion capture records. Within the scope of this work,
the Fitzpatrick skin phototype5 is used as a categorization of skin colors.

Accessories Accessories that participants can use. Examples are a smartphone, an
umbrella, or a stroller.

Human body parts Human body parts are used in combination with accessories.
Examples would be the right and left hand or the right leg.

Impairments Possible impairments of human body parts. Examples would be
fractures or sprains.

Human configurations Human configurations are used to manually control com-
binations of accessories, injuries, and human body parts. They describe an
actual human state. One example would be a person with an injury on the
right leg and a crutch in the left and right hand.

Movements Movements are used to define a general movement in a scene. Ex-
amples would be standing, walking, or running.

Movement speeds Movement speeds are a further subdivision of movements. They
define, for example, that a movement should be executed slowly or quickly.
Only adjectives such as fast or slow are deliberately used so that the parti-
cipants execute the movement as they interpret the corresponding adjective.

Scenes Scenes define the basic environment in which the movement is to be ex-
ecuted. The participant should build up a mental image of the environment
through the scene description and move accordingly. An example would be a
straight street with two sidewalks.

Locations Locations are used to control the positioning of a participant. They
are used in combination with scenes. For example, if a scene contains two
sidewalks, two possible locations would be the left or right sidewalk.

This master data must be created in the system once and is used when creating
recording catalogs. Pictorial descriptions are used in addition to textual descrip-
tions for movements, movement speeds, accessories, and scenes. The pictograms
are displayed via a user interface during recording (see Figure 3.5). To create a re-
cording catalog, the sequences to be recorded must first be described. A sequence
always describes motion sequences for a specific scene. It consists of movements,
movement speeds, human configurations, and a list of instructions, each consisting

5https://dermnetnz.org/topics/skin-phototype/ (accessed on 2022-03-06)
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of a location and a description. It should be noted that several movements, move-
ment speeds, and human configurations can be used for a sequence. The system
can randomly mix these to achieve a greater variation. Accordingly, a recording
catalog is composed of n sequences and differs from project to project. The user can
choose a certain amount from the list of sequences and create a project description
from it, supported by the system, that specifies how many concrete recordings are
needed to record each sequence at least once. This information can then be used
to determine how many participants are needed to complete the related project.
All described steps must be executed once at the beginning of a project. During
the preparation of a recording, the supervisor only needs to create a participant
and create a record plan by selecting the participant and the associated project.
The system will then automatically select a predefined number of recordings ran-
domly from the project’s entire recording catalog and create corresponding entries
for the recordings in the database. Once the recording plan has been created for
the specific participant, the system can also control the specific recording sessions.

3.5.1.2 Recording

By creating a recording catalog for the participant, the system knows all the vari-
ables for each sequence to be recorded. This information can be displayed directly
by the system during the recording sessions. This eliminates the need for the su-
pervisor to instruct the participant before each recording exactly what to do in
the next sequence. The two screens in the motion capture lab are used for this
purpose (see Figure 3.4). On one of the screens, the individual steps to be per-
formed are displayed. An example would be the three steps of ‘walking straight
on the sidewalk’, ‘looking for traffic’, and then ‘crossing the street’. The second
screen displays the boundary conditions for the shot, for example, the scene, the
movement, the movement speed, and the accessories to be used. An example of
this screen is shown in Figure 3.5.

In addition to this information, the supervisor is shown a recording ID with
a copy option on a separate screen. This ID must be taken over in the motion
capture software and set for the current recording. In this way, all files belonging
to this recording are provided with the corresponding ID and can thus be assigned
to the database entry with the sequence description. The ID is not the internal
UID from the database, but a continuous integer ID because the standard motion
capture programs offer a possibility to iterate integer values in recording names
automatically, so the ID must be set only once at the beginning and on repetitions.

By using this symbolic view, all boundary conditions for a record sequence can
be quickly captured. The participant looks at the information, gets the required
accessories, goes to the start position as indicated in the instructions, and is then
ready to perform the record. The supervisor can remain at the workstation and
monitor the recording process, but does not have to give any further instructions.
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Figure 3.5: Motion Capture Manager: Sequence conditions during a record. The
blue bar shows the total progress of the record session.

He only controls the start and stop of a recording, or initiates a repetition if neces-
sary.

We have used the motion capture manager to record a large-scale pedestrian
action recognition dataset. Details about the required recording times are presented
in section 4.4.4.3.

3.5.1.3 Post Processing

The time-consuming creation of metadata for the recordings in post-processing
becomes obsolete through the use of the motion capture management system. All
metadata is available to the system and can be exported directly accordingly and
assigned to the corresponding recording data utilizing the UID. The only time-
consuming step that cannot yet be automated with the motion capture management
system is the generation of action labels within a sequence. However, a labeling
tool has been created for this purpose, which is intended to simplify labeling. The
tool was integrated into the interface of the Vicon Shogun6 software, in which the
user can view the motion capture data and scroll through the time sequence as
desired (see Figure 3.6).

The labeling tool provides a list of all individual actions, such as walking, looking
around, or stumbling. The user can then go to a specific point in the recording,
select an action and add it to that point in time. It is also possible to select multiple
individual actions simultaneously, for example, running and looking around. The

6https://www.vicon.com/software/shogun/ (accessed on 2022-03-06)
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Figure 3.6: Action labeling tool, which is directly integrated in the motion capture
software of the Reutlingen University Motion Capture Lab.

selected actions are then valid until other actions are selected later or the recording
stops. Besides the concrete actions, there is a particular keyword ‘Stop’, which is
used as an indicator for the stop of the recording sequence. This is necessary if the
recording was stopped after the sequence was completed and contained movements
that did not belong. The tool then exports the information in which time individual
actions took place into a metadata file, which can be assigned to the actual recording
and the other metadata through the file name. In the end, the metadata from the
labeling tool and the motion capture management system are merged via a script,
packed together with the exported animation, and can then be used directly in the
simulation environment.

3.6 Asset Database
The asset database represents the database of the simulation. All required raw
data and the metadata must be processed and stored in this database. In the Unity
game engine, the asset database is file-based. In this work, the mapping between
raw data and metadata is also file-based by using the same file name for raw data
and metadata. The file extension defines the type of data. Table 3.1 summarizes
which data was used in the simulation during experiments in this work.

The metadata files are in standard JSON format, which is supported by all
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Data 3D human models
Metadata Age, weight, size, gender, skin color, UID
Sources 3D scanned, MakeHuman, 3rd party

Data Human animations
Metadata Age, weight, size, gender, skin color, UID, accessory usage, in-

structions, movement, movement speed, actions per frame, project,
scene, sequence description

Sources Motion capture system, CMU motion database

Data 3D Objects
Metadata Dimensions, color(s)
Sources 3rd party

Data Environment
Metadata Classes, object identifiers
Sources Images, hand-modeled, third party

Table 3.1: Overview of all data in the asset database. For each data object, there
can be corresponding metadata that contains further information about
the object. The sources of the data in the simulation used are also
indicated. The exact data used, and its sources are specified in the
respective experiment descriptions.
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major programming languages. Thus, the metadata files are easily usable in scripts
and applications as well. An example for a motion description file is provided
in Appendix B.2 and an example for the character description file is provided in
Appendix B.1.

3.7 Simulation
The simulation is based on the Unity game engine. The simulation’s primary
purpose is that it offers to generate highly generic scenes easily with various en-
vironments, human models, and motions. In addition to these main components,
various other parameters, like the position, light intensity, and cameras, can be
varied, resulting in different simulations. The import consists of the actual data,
3D models, motion capture files, and their corresponding metadata, which will be
appended to the actual data in the game engine. So, for example, a 3D model
would have properties like age, weight, height, and motions could have properties
like intention or executed actions. The metadata of 3D models and motions are
integrated directly into the Unity user interface as filter options (see Figure 3.7).
This allows the user to select, for example, a specific gender for the 3D model and
an age range for the 3D model and motion. In addition, scene-specific parameters
such as the time of day, lighting, or the possible position of 3D models can be
defined.

3.7.1 Asset Import
During the import of 3D models and animations, various settings are applied to use
the elements in the simulation without further manual intervention. For example,
layer masks are automatically set for 3D models and a categorization flag for the
output of segmentation data. For human models, the following further adjustments
take place:

• Automatic creation of an animator, which controls the character’s animation.

• Automatic setting of basic animation settings. This includes the application
of root motion and the addition of a grounder, which uses inverse kinematics
to ensure that the character’s feet remain on the ground. This is important,
for example, when stepping off a curb.

• Setting a cylindrical collider based on the size of the 3D model read from the
metadata.

• Setting the physical model based on the weight of the 3D model read from
the metadata.
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Figure 3.7: 3D Human avatar and motion filter options included in the Unity user
interface. The filtering is based on the collected metadata.

• Adding scripts that provide ground truth information from the character data
(see section 3.7.4).

• Assignment of skeletal elements to the ground truth skeletal model (see Figure
3.13), if necessary, with the calculation of human joints not included in the
rig.

When importing animation data, settings are automatically made that tell the
Unity game engine that it is a humanoid animation. This allows it to be used in
the internal Unity retargeting system to animate 3D human models. This internal
Unity retargeting system usually works very well and allows one to use arbitrary
animations with arbitrary 3D human avatars. However, care must be taken that
the body dimensions are not significantly different from the person from which the
animation data originates to the 3D human model. Otherwise, errors such as limbs
passing through the torso may occur (see Figure 3.8).

The metadata is also used to read out which actions the animation file contains.
Based on this data, the animation file is automatically trimmed to remove unwanted
movements. For example, an animation could include a T-pose at the beginning or
movements at the end that do not belong to the actual recording.
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Figure 3.8: Example of a retargeting error. The movement was recorded by a slim
person and transferred to the avatar of a more corpulent person. Since
the arm of the slim person was close to the body and the retargeting
process does not consider the shape of the target model, the arm now
goes through the torso.

3.7.2 Content Generation
Content spawn modules mainly control the generation of a scene. As a base, scenes
that contain only the environment model and static objects are used. All other
elements, such as pedestrians, are created by content spawn modules during the
execution of the simulation. Each content spawn module is responsible for gener-
ating a specific object type in the scene. A content spawn controller is responsible
for the timing and execution of the actual content spawn modules. Several content
spawn modules can exist in one controller. This allows the controller to create ob-
jects that are time-dependent on other objects. An example of this is a particular
lighting situation that should be constant while creating a predefined number of
human models. Most of the modules provide the possibility to create their content
randomly, sequentially, or by explicitly selecting the object to be used. Currently,
the following spawn modules have been implemented:

Character Spawn Module A character spawner handles the creation of 3D char-
acter models. The models can be from different sources (see section 3.4.3).
Metadata descriptions of each model are required to enable model filtering
and the automatic provision of annotation data. 3D models can be selected
directly or randomly with possible restrictions by filtering descriptions.

Motion Spawn Module Motion spawn modules look for available 3D models spawned
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in the same spawner context and apply a specific motion as animation on
them. Animations in this work are retrieved from the CMU Motion Data-
base7 or are self recorded (see Section 3.5).

Position Spawn Module Objects created by a spawner can be positioned in the
environment by using the position spawn module. It is possible to use some
predefined positions. It is also possible to use random placement, which re-
quires defining some areas where objects are allowed to be placed, for example,
by using a tag on the 3D environment models like ‘left sidewalk’. Additionally,
it is possible to define a minimum required space to place an object. This
can be useful to give a character enough room to play its animation without
colliding with walls or other objects.

Skybox Spawn Module ‘Skyboxes are a wrapper around your entire scene that
shows what the world looks like beyond your geometry.’8 So basically, in a
simulation, the main contribution of a skybox is the look of the sky and the
delivery of environmental lightning. Skyboxes can be freely exchanged to
simulate different environmental conditions like weather or time of the day.

Light Intensity Spawn Module Usually, there are predefined light sources, like
the sun or lamps, in a scene in addition to the environmental lighting. The
light intensity spawn module can control these light sources. It can set the
intensity of these lights randomly, progressively, or based on the current sky-
box.

3.7.2.1 Spawner

A so-called spawner controls the spawn modules. A Spawner contains several spawn
modules and handles the creation, lifetime, and destruction of elements in the
simulation. The timing of spawns can be set by either a fixed interval or the
lifetime of spawn objects. If all objects of the current spawned iteration are ‘dead’,
a new generation will be spawned. The tasks of a spawner can be summarized as
follows:

1. Spawn modules register themselves on a specific spawner. Modules that
should share timing must use the same spawner. Modules can assign them-
selves priorities to handle the spawn order. This is, for example, required by
motions and animations, which require a spawned 3D model to be applied.

2. For each frame, the spawner checks if some spawned objects should be deleted
based on their lifetime. If so, the objects are destroyed and removed from the
spawn objects.

7http://mocap.cs.cmu.edu/ (accessed on 2022-03-06)
8https://docs.unity3d.com/Manual/class-Skybox.html (accessed on 2022-03-06)
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3. If the current time is higher than the next spawn time, new objects will be
spawned. The number of objects that can be spawned simultaneously is only
limited by hardware. For each parallel spawn, a container is created, which
will hold all objects from the spawn modules. For each container, each spawn
module will spawn its objects in the container.

4. Each spawn module can assign a lifetime to its spawned object(s). It sends
this time to the spawner, which will destroy the objects after their time of
death. The lifetime can also be used for local timing, for example, to trigger
a new spawn if all objects of the current spawned iteration are dead. If a
module does not deliver a lifetime, the objects will be alive until another
spawn is triggered.

5. The spawner assigns an UID to each spawned object, which is used to identify
objects in the outputted ground truth data.

3.7.3 Virtual Sensors
The simulation environment currently supports camera sensors. The Unity game
engine already offers a physical camera model, which can be used for standard focal
lengths. The focal length and the sensor size can be adjusted, determining the
field of view. Since fisheye cameras are often used in the automotive environment,
the simulation framework supports them through cubemaps generated from five
different virtual camera sensors. This ensures a 360° panoramic view, and fisheye
cameras with different field of views can be simulated based on this 360° view.

Figure 3.9: Top-down view of a simulated scene which contains multiple cars with
front facing camera sensors. The cars would normally occlude each
other, but the vehicle cameras mask out all other cars, which allows
recording a scene from eight different cars in parallel.

The Unity game engine offers a layering system, whereby elements in the simu-
lation can be grouped, and different actions and reactions can be included based
on the layers. This is used in the virtual sensor environment to mask unwanted
objects from a virtual camera image. For example, various vehicles can be inser-
ted into a simulation that would typically occlude each other (see Figure 3.9). The
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other unwanted vehicles in the vehicle cameras can be masked using an appropriate
culling mask. This makes it possible to record parallel data for different vehicles
in different positions without other vehicles being included in the respective sensor
data.

3.7.3.1 Camera Sphere

ϕ = 0°|360°

θ = 0°

r

θ1

ϕ1

θ2

ϕ2

Figure 3.10: Example of a camera sphere with r = 3, θ1 = 60°, θ2 = 30°, ϕ1 = 180°
and ϕ2 = 300°.

One main benefit of a simulation environment is the possibility of freely placing
a sensor in the scene. Some use-cases require specific sensor locations, for example,
in a car’s front window. Other use-cases just require many perspectives to reach a
good generalization. One example of such a use-case is the corner-cases experiment
(see section 4.1), in which many sensors used to capture the dataset are handheld,
for example, smartphone cameras. The simulation framework supports such use-
cases by providing a camera sphere generator. This generator provides a method
to place camera sensors in spheres around a given target (see Figure 3.10). Using
spheres provides the possibility to control the camera placement just by the three
parameters radial distance r, polar angle θ and the azimuthal angle ϕ (see equations
3.1-3.3). The following definitions follow the Unity game engine’s convention of a
y-up, left-handed coordinate system.

px = r cos(ϕ) sin(θ) (3.1)
py = r cos(θ) (3.2)
pz = r sin(ϕ) sin(θ) (3.3)

After positioning the camera, it needs to be rotated towards the object, in the use
case, the human. The Unity game engine uses a left-handed y-up coordinate system
as well as column-major matrix notation. Let x, y and z the camera coordinate
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system axis representing the right, up and forward vectors, z is calculated from
camera position p and target position t (see equation 3.4). The up vector u (in the
Unity game engine [0, 1, 0]T ) is required to calculate the last two axes of the camera
coordinate system (see equations 3.5 and 3.6).

ẑ =
t − p
|t − p| (3.4)

x̂ =
ẑ × u
|̂z × u| (3.5)

ŷ = ẑ × x̂ (3.6)

The axes of the camera’s coordinate system are the parameters for the rotation
part of the so-called LookAt matrix, which is composed of the rotation matrix and
the translation matrix based on the position vector of the camera [126, p. 96].

With the defined camera coordinate system, it is straightforward to rotate the
camera object accordingly using the LookAt rotation matrix R shown in equation
3.7.

R =


x̂x x̂y x̂z 0
ŷx ŷy ŷz 0
ẑx ẑy ẑz 0
0 0 0 1

 (3.7)

The simulation frameworks support a random assignment of the parameters r,
θ, and ϕ as well as just a definition of how many camera sensors should be placed
in an even manner.

3.7.4 Ground Truth Data Generation
Immediately available ground truth data is an essential part of the simulation and
is the direct interface with which to train and validate the perception module of
an autonomous system. In principle, each element is known within the simulation
and can be annotated as required. Examples of generated ground truth data are
visualized in Figure 3.11.

The corresponding raw camera image is shown in Figure 3.11a. In general, every
object in a simulated scene is known in detail, and each object can be uniquely
identified at any time. This is essential for object-level segmentation, action de-
tection, and tracking, where a lot of detailed information about an instance of an
object and its current state is required. In terms of human models, every bone in
the underlying skeleton is known. This information can be directly used to annot-
ated human joints and may indirectly be used, for example, to calculate bounding

65



Chapter 3 Simulation

(a) Simulated Raw Sensor Data (b) Bounding Box & Human
Pose

(c) Semantic Segmentation (d) Simulated Depth Data

Figure 3.11: Example of a simulated scene with visualized ground truth.
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boxes. All of this information enables us to generate sensor data which have an-
notated classes for semantic classification, 2D and 3D bounding boxes for detection
(Figure 3.11b), 2D and 3D human joints for human pose estimation (Figure 3.11b),
pixel-wise classes for semantic segmentation (Figure 3.11c) as well as depth inform-
ation for every pixel (Figure 3.11d). Furthermore, human metadata is added in
each frame for each human instance, which may be represented, for example, by
a bounding box or human pose. This leads to a list of humans and their corres-
ponding metadata generated for each camera image. One example for this kind of
ground truth is action and intention information added to a human instance, for
example, a frame where a human performs the action ‘walking’ with the intention
‘crossing the street’. The creation of ground truth data in the simulation involves
collecting the information and outputting this information in a suitable form. Some
ground truth data is internally based on the same collected data. Examples are the
2D and 3D human poses and the bounding boxes of humans, which are also based
on this pose data. In the following, it will be shown which ground truth types are
supported by the simulation and how they are obtained.

3.7.4.1 3D Joint Positions and Orientations

It is important to define a skeletal structure for pose ground truth data. As de-
scribed in section 1.3, there are various datasets which differ in the used skeleton
structure (cf. Figures 3.12a and 3.12b).

Nose LEyeREye
LEarREar

LShoulderRShoulder

LElbowRElbow

LWristRWrist
LHipRHip

LKneeRKnee

LAnkleRAnkle

(a) COCO

LShoulderRShoulder

LElbowRElbow

LWristRWrist
LHipRHip

LKneeRKnee

LAnkleRAnkle

HipCenter

SpineCenter

Neck
HeadLower

HeadUpper

(b) Human 3.6M

Figure 3.12: Skeleton structures used in COCO [25] (a) and Human3.6M [48] (b)

Therefore, in the simulation, a skeleton structure is used, which covers multiple
skeleton structures used, for example, in the COCO [25] dataset, the Human3.6M
dataset, and the MPII dataset [33] (see Figure 3.13).

Human joint positions are already available in the system due to the underlying
skeleton of a 3D human model, and their position and orientation data can be
read out correspondingly via the Unity game engine. However, depending on the
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Nose LEyeREye
LEarREar

LShoulderRShoulder

LElbowRElbow
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LKneeRKnee
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SpineCenter

Neck
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LFootEndRFootEnd

LHandEndRHandEnd

Figure 3.13: PedRec skeleton structure used in this work

source of the 3D models or the rigging method used, these skeletons may differ,
and sometimes not all joints are available (for example, the position of the nose).
These non-existing positions are calculated during the import of the human models
based on the body proportions and stored as a virtual joint in the character model,
allowing these positions to be retrieved. In each frame, all joint positions are queried
for each 3D human model. Additionally, for each virtual camera, ray tracing is
used to check whether there is an obstacle between the camera and the respective
joints which obscures the joint. Since the camera positions and calibration data
are known, the 3D position of the joints can be calculated for each camera in the
respective camera coordinate system. The positions are then stored as ground truth
for each frame together with boolean flags, indicating whether they are visible in
the camera image and if an obstacle obscures them. Further, the orientation data
of the head and the center of the hip are written out as quaternions. These data
can be used as ground truth for the head and body orientation.

3.7.4.2 2D Joint Positions

The 2D joint positions are simply calculated from the 3D joint data by projecting
it over the camera calibration data onto the 2D image plane. The x and y image
coordinates are then written out as ground truth. Again, boolean flags indicate
whether the human joints are visible on the camera image.

3.7.4.3 Bounding Boxes

Since this work focuses on the detection of pedestrians, mainly ground truth data
for humans are output. This fact can be exploited to simplify the calculation of
bounding boxes. For human avatars, the already available joint positions from
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the pose ground truth are used. The bounding boxes can be calculated from the
minima and maxima of the x, y (and z in the 3D case) coordinates of the human
joints. Additionally, a margin of 5% of each side length is added. This results in
a small margin around the person, similar to manually annotated bounding boxes.
Unity also uses bounding boxes internally, for example, to calculate collisions or
to check whether an element should be rendered. These internal bounding boxes
are in the world coordinate system and can therefore also be converted to camera
coordinates. This method is used to calculate and output bounding boxes for non-
human objects in the simulation. For bounding boxes, it is also indicated whether
the bounding box is in the image or whether parts of the bounding box are hidden.
The occlusion of human avatars is calculated based on the occlusion information
of the joints; if n ≥ 1 joints are occluded, the bounding box is also occluded. For
other objects, a fine mesh grind of ray casts is used to check if there are objects
between the camera and the object. Note that there is a possibility that there are
smaller objects between the joints or between the ray cast grid for both methods.
However, it is assumed that occlusion by small elements is trivial, and therefore,
the object is considered unoccluded.

3.7.4.4 Actions

Actions like walking, looking for traffic, or kicking are annotated in the used motion
capture files and provided as metadata. They are annotated with the frame rate in
which the animation data is exported. Thus, the metadata contains the information
on which actions were present at a frame for a given frame rate. The Unity game
engine provides methods to get the current time t of a played animation in a
normalized form between zero and one. The frame number at the animation clip
frame rate has to be retrieved from this normalized time to get the actions in this
frame. Let fr be the frame rate of the animation clip and l the full length in
seconds. The total number of frames tf in the animation clip can be calculated as
tf = frl. The current frame number to query the action labels can be retrieved by
cf = tf t.

3.7.4.5 Semantic Segmentation

Each element in the simulation has a label defining the segmentation class. The
list of segmentation classes is equal to the list of classes used in the Cityscapes
dataset [127, Table 8]. An additional virtual segmentation camera is created for
each camera in the scene. In this camera, every element’s shader is replaced by an
unlit shader with a fixed surface color defined by the segmentation class. This unlit
shader is unaffected by the lighting. Thus, always a fixed color is output. This
segmentation image is saved in addition to the actual camera image and provides
the segmentation class in color per pixel.
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3.7.4.6 Depth

Unity provides access to the values from the depth buffer. As such, the depth
ground truth can be directly taken from the depth buffer and is output as a depth
image in addition to the actual virtual camera image.

3.7.4.7 Other Ground Truths

Various other possible ground truth data can be extracted from the simulation,
but are not used in this work. For example, ground truth for ground contact of
a person’s feet can be easily retrieved by ray casting from the foot’s end joint
towards the floor and thus retrieving the current height above the floor for the
foot. Another possible ground truth is the goal of a simulated person. This ground
truth is available from the motion capture manager data in the form of the recorded
participant’s received instructions. Thus, there are many possibilities to generate
additional ground truth for various tasks using a simulation.

70



Chapter 4

Applications

In the following, the applicability of simulation data for training deep neural net-
works will be verified through the use and development of recognition systems.
Based on the results of previous work (see section 1.3), the following main hypo-
theses are posed for this purpose:

1. The use of simulation data for training deep neural networks for vision tasks,
which receive purely visual sensor information as input, leads to overfitting
on simulation data.

2. By using abstraction layers, such as human joint positions, instead of direct
features from the visual input, action recognition systems can be trained with
simulation data only.

3. Labels, that are not currently present in real datasets, can be created with
the simulation framework and used to train DNNs to achieve functionality
which would not be possible with current, freely available datasets.

These hypotheses have been tested in various projects to investigate the useful-
ness of simulation data in deep-learning applications. First, section 4.1 investigates
how a deep-learning-based pose recognition algorithm, that has problems recogniz-
ing specific poses from corner cases, can be fine-tuned with simulation data. In
section 4.2, a system for action recognition in a pedestrian parking lot situation
was developed and enriched with simulation data. The action recognition experi-
ments were continued in section 4.3 to investigate how the human abstraction ‘2D
Human Pose’ can be used to generalize from simulation data to real data. For this
purpose, a system was trained purely on simulation data and evaluated on similar
real data. Section 4.4 shows how simulation data can be used to train algorithms
that required very complex labels. For this purpose, a system was developed that
performs multiple perception tasks in a multitask approach and can be used to
recognize 2D and 3D human poses as well as head and body orientation. Finally,
in Section 4.5 it is shown that the 3D human pose data enables action recognition
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based on 3D joint information located in the local human coordinate system. This
makes the system independent of camera movements. The system will be tested
on a large simulation dataset specifically designed for pedestrian situations.
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Figure 4.1: Results of OpenPose, trained on MS COCO, on real (left) and simulated
(center) data as well as the result after fine-tuning on simulated data
(right). Real image by M. Wildner (2017).

4.1 Improving the Detection of Corner Cases in
2D Human Pose Estimation

By using a simulation environment, content can be easily and quickly replaced
to create a high level of data variation. This applies especially to most technical
and behavioral parameters, which are hard to obtain in real-world scenarios and
3D human models. The ability to control these kinds of parameters is important
because they influence the foreground appearance, of which a large number must
exist to cover all visual characteristics of scenes, objects, and people. The focus
of this application of simulated data is on corner cases in human pose estimation.
There are successful algorithms available, which perform well in most cases. How-
ever, there are human movements that are not covered by standard datasets used
to train these algorithms and to which they cannot generalize. There is a demand
for the possibility to train specific problematic cases which are not recognized by
algorithms without having to recreate a lot of real-world data for them. Examples
are pedestrians overseen by autonomous cars or people who are undetected by in-
frastructure cameras of critical locations like train stations. It could be observed
that a SOTA algorithm [27] for pose recognition had problems recognizing hand-
stands, flips, and kicks (see for example Figure 4.1). As such, the focus of this work
is on these action types to demonstrate and evaluate the simulation framework.
Although these scenarios are often associated within sports venues, the ongoing
public interest in parkour and the rising trend in urban yoga practice brings such
human poses out onto urban sidewalks. Given the dynamic and unexpected nature
of such human motions, autonomous driving systems must be able to perceive and
respond to them, for although they are rare, they pose a critical threat that should
not be overlooked.
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It is investigated if and how well a SOTA algorithm can be trained to recognize
corner cases by using only simulated data. The simulation framework presented
in this work is suitable for use in various applications, including the autonomous
driving context. For such a use-case, the first step towards developing algorithms,
which allow vehicles to react to atypical pedestrian behavior, is to extract examples
of such scenarios from vehicle sensors and public camera recordings. Afterward,
simulation data for such human poses are created and tested on the autonomous
recognition algorithms. Cases that proved challenging and in which the algorithms
fail to recognize a pedestrian due to the obscurity of their pose are then used to
train the algorithm in the next stage. In this way, the simulation framework allows
for developing autonomous driving algorithms that react to obscure yet critical
pedestrian poses by creating sufficiently sizeable simulated datasets of these poses
with which the algorithms can be trained.

There is little literature addressing the possible poses of individuals in urban
scenarios. Most of the work in this realm is focused on predicting the motion of a
person or group of individuals. Völker & Kistemann observed the average number of
persons per hour on a promenade in Cologne [128]. They tracked 1.838 pedestrians,
339 cyclists, 32 joggers, and Nordic walkers, as well as eight skaters. This example
alone shows that skaters, joggers, and cyclists are considerably underrepresented
in contrast to the average pedestrian. Autonomous systems should be able to
recognize and interpret uncommon human motions correctly. An example of this is
illustrated in Kidder’s work on observing people who run through a parkour course
in urban spaces [129]. Such activity includes many jumps and interactions with
the environment, actions which, at present, are not found in datasets used to train
algorithms for pedestrian recognition. Due to the low availability of such empirical
data, alternative possibilities must be found to detect, record, and label relevant
motions.

There has not yet been evidence showing that simulations improve the perform-
ance of human pose recognition for corner cases. The advantage of employing a
new data generation and simulation framework for human poses and its benefit for
retrained 2D human pose estimation is demonstrated.

The contribution in this application is to show if and how a well-working human
pose estimation algorithm can be fine-tuned using only simulated data to recognize
corner case poses that it could not detect when trained only on standard datasets.

4.1.1 Data Generation
In the experiments, 3D avatars are supposed to perform rare actions. Whole bodies
without occlusions are considered. To generate the required data with the simula-
tion framework (see chapter 3), 3D full-body scans as well as motion capture data
were used. The 3D scans were generated in a laboratory at Reutlingen Univer-
sity. Motion capture data from the CMU motion capture database [130] was used,
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Figure 4.2: Example of the generated training data. View from two perspectives
on a 3D avatar doing a backflip in front of a random background.

which already contains sequences of handstands, kicks, and flips. An example of
the sensor data generated can be seen in Figure 4.2.

4.1.2 Experiments

The experiments show how well algorithms, which are fine-tuned on simulated data,
perform on data with which they had issues before. A small evaluation dataset -
RARESIM - was created, containing people doing handstands, flips, and kicks. In
total, 44 real-world pictures were collected and annotated manually. Some pictures
are shown in Figure 4.7. Further, two different simulated datasets were used for
training. One rather small dataset - SIM - contained 36, 225 images collected from
35 camera positions (1, 035 images from each camera). Every image contained one
3D model, out of only two, performing one of the actions handstand, flip or kick.
The background was changed only on a change of the replayed motion. The models
were trained together with the full COCO 2017 training dataset, which contains
123, 758 images, leading to a simulated to real image ratio of �0.29 to 1. Second, a
bigger simulated dataset - BIG-SIM - was created. In this dataset, the same motion
capture data as in SIM were used, but with more repetitions, different backgrounds
for each frame, ten foreground appearances, and 48 cameras. It contains 6, 880
images per camera, leading to a dataset size of 453, 998 images in total with a
simulated to real image ratio of �3.6 to 1.
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Table 4.1: PCK results on the RARESIM dataset.
Method Ears Eyes Head Shoulder Elbow Wrist Hip Knee Ankle Total
baseline 39.1 46.7 55.4 51.1 48.9 48.9 30.4 29.3 28.3 42.0
SIM 56.5 71.7 69.6 64.1 62.0 63.0 41.3 38.0 33.7 55.6
SIM-fixed 53.3 67.4 73.9 60.9 56.5 55.4 46.7 39.1 40.2 54.8
BIG-SIM 58.7 70.7 67.4 65.2 57.6 59.8 40.2 42.4 39.1 55.7
BIG-SIM-fixed 57.6 72.8 65.2 56.5 52.2 54.3 42.4 39.1 40.2 53.4

4.1.2.1 Algorithm

For the experiments, a custom implementation1 of the OpenPose pose estimation
algorithm proposed by Cao et al. [27] was used. The network was reimplemented in
PyTorch and the weights of the trained CMU model were used as a baseline model.
The CMU model was trained on the COCO dataset, containing around 250, 000
people annotated with keypoints. The model achieves SOTA performance with an
AP of 60.5% on the COCO 2017 keypoint test challenge, as well as a mAP of 75.6%
on the MPII full testing set. It also offers real-time performance on GPUs, making
it interesting for applications in autonomous systems and public space surveillance.
As the authors state in their paper [27], the most common failure causes include
rare pose or appearance, as well as missing or false part detections.

The network model outputs heatmaps for joint positions as well as part affinity
fields which encode the location and orientation of limbs (see 4.3). The first part of
the network structure is a feature extractor F , for which the first ten layers of VGG-
19 are used. F was trained on ImageNet and fine-tuned during the CMUs training
process. After the feature extractor, a six-stage approach is used for extracting the
joint maps St as well as the part affinity fields Lt where t stands for stage one to
six.

S1 = ρ1(F ) (4.1)

L1 = ϕ1(F ) (4.2)

Stage one is the bootstrap stage and uses the image features computed by F
to produce first proposals for the joint map S1 and the part affinity field L1 (c.f.
Equation 4.1 and 4.2). ρt and ϕt denote the network layers for inference at stage
t, which have the same structure for each stage.

St = ρt(F, St−1, Lt−1),∀t ≥ 2 (4.3)

Lt = ϕt(F, St−1, Lt−1),∀t ≥ 2 (4.4)

On stages t ≥ 2 the outputs St and Lt of each stage are used together with
the image features from F as input for the following stage in a recursive manner.

1https://github.com/noboevbo/openpose-pytorch
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(a) Example Input (b) Joint Heatmaps (c) Part Affinity Fields

Figure 4.3: Open pose network outputs. Based on input a the network outputs
joint heatmaps b as well as part affinity maps c from which the joint
positions are derived in post-processing.

Most of the descriptors which are directly dependent on the visual appearance are
hypothetically contained in the feature extractor F as well as in the bootstrap
phase S1 and L1.

At the current stage, the focus of this work is on rare poses and on false or
missing part detections caused by the pose rarity. In the ‘fixed’ experiments, the
layers F, S1 and L1, which probably rely primarily on visual appearances and only
train later stages, which hypothetically use more abstract features, were frozen.
This kind of training is intended to not disrupt descriptors for visual appearances
in the real world by using simulated data, assuming a considerable domain shift
between real and simulated data. The abstract features from layers t ≥ 2 should be
sufficient to learn new skeleton configurations with the existing visual descriptors
trained on the huge real-world datasets ImageNet [16] and COCO [25].

The L2 loss function and the stochastic gradient descent optimizer with para-
meters learning rate 0.0008, momentum 0.9, and weight decay 0.0005 were used for
training. A batch size of ten for training on an NVIDIA Titan X (12 GB Memory)
were used. The evaluation was done using a concatenation of the original image
results with scales 0.5, 1.0, 1.5, and 2.0, which leads to a better recognition rate.
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Figure 4.4: Example of training improvements. (left) results trained on COCO only
(middle) results trained on COCO, used as training data (right) results
after training on SIM. Real image by Y. Ayalon (2014).

4.1.2.2 Metric

The PCK metric (see section 2.3.3.1) was used to compare the performance of the
different model states. As a second consideration on the performance of a model,
it should be considered if the performance on the more general datasets decreases
when the model is fine-tuned to corner cases via simulation. For this consideration,
the OKS based evaluation metric was used that has been proposed for the validation
dataset of COCO 2017 [25] (see section 2.3.3.3).

4.1.2.3 Results

The models are based on the OpenPose implementation using pre-trained weights
from the original OpenPose caffe model. All models were trained for �700.000
iterations. The following list shows on which datasets the evaluated models were
trained on, as well as if and which of their layers were fixed during training:

• baseline: COCO 2017

• SIM: COCO 2017 and SIM

• SIM-fixed: COCO 2017 and SIM, fixed layers F , S1, L1

• BIG-SIM: COCO 2017 and BIG-SIM

• BIG-SIM-fixed: COCO 2017 and BIG-SIM, fixed layers F , S1, L1
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Figure 4.5: Examples from the dataset, which are not recognized or still contain
errors, after training on simulated data. From left to right (1) only
very few human joints recognized (2) missing human joints / limbs
(3) no limbs detected / bad joint proposals (4) left / right confused.
Real images (1-3) by X. Navarro (2014), P. Dep (2009) and Wikimedia
(2013).

As seen in Table 4.1 as well as in Figure 4.6 the overall performance of the
OpenPose algorithm increases on the small corner case dataset by 13.7% on the
BIG-SIM model and 13.6% on the SIM model. The fixed models performed a
little worse, but still improved the performance by over 11%. Especially the poses
which are near to sensor information included in the simulated dataset, and are not
recognized by the algorithm trained on COCO only, seem to be greatly improved
(see Figure 4.4). There is also an improvement on missing parts caused by rare
poses (cf. the kick in Figure 4.7 (lower right)). The performance on the COCO
2017 validation dataset is mostly constant for the baseline and the SIM models, but
drops for the BIG-SIM models by 3.5% for BIG-SIM and 2.1% for BIG-SIM-fixed.
Having such a big portion of specialized poses in the simulated training data leads
to overfitting the model towards simulated data, decreasing performance on real-
world data. Thus, using too big of a simulated data portion introduces a heavy
bias towards simulated data, causing severe domain transfer problems, regardless
of fixing layers. This leads to the conclusion that the OpenPose algorithm is also
heavily dependent on visual appearance at later stages. Nevertheless, a remarkable
improvement of 13.6% was achieved with the SIM model on the RARE dataset while
keeping comparable performance on COCO (see Table 4.2), hinting that simulated
data can deliver benefits in teaching algorithms to recognize corner cases.

As seen in Figure 4.5, there are cases that are not recognized even after training
on simulation, which may be caused by simulation data being too different to
the poses in these images or requiring better visual feature descriptors. It may
be possible to gain those visual feature descriptors, creating more variability by
including more 3D human models while generating simulated training data.
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Table 4.2: Performance on the COCO 2017 validation dataset. AP 50 is for
AP@IoU=0.50 (all person scales). APM is for medium scale persons.

Method AP AP 50 AP 75 APM APL

baseline 56.8 78.5 60.9 54.7 62.5
SIM 56.6 78.6 60.9 54.1 62.6
SIM-fixed 56.4 78.6 60.0 54.2 62.5
BIG-SIM 53.3 76.4 56.4 51.2 59.6
BIG-SIM-fixed 54.7 77.4 58.6 52.7 60.1

Figure 4.6: PCK result plot on the COCO 2017 challenge using the OpenPose al-
gorithm trained on COCO only and COCO fine-tuned with specific
simulated data.
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Figure 4.7: Examples of improved pose recognition on the dataset after training on
simulated data (SIM). left is before training, right after training. Real
image (upper left) by D. Shawn (2007).
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4.1.3 Discussion
The application of the simulation framework demonstrated the possibility to acquire
relevant data for the design and systematic test of camera perception systems. The
usage of virtual sensor data for the training of algorithms based on the example of
a SOTA pose estimation algorithm was evaluated. By fine-tuning the model with
simulated data only, a significant detection accuracy improvement on a dataset
mainly containing poses that caused false joint prediction has been demonstrated.
The results show that it is beneficial to use simulations at least in addition to real-
world data to train poses that are rare in real-world datasets. Furthermore, the
experiments hint, that hypothetically the same kind of problems that cause trouble
in predictions in real-world images exist in simulated data. This observation is
investigated further, as it motivates the potential increased reliance on simulated
data to evaluate algorithm performance at large scale. The following chapters will
therefore examine in more detail how systems can be trained purely with simulated
data and whether the results are applicable to real data.
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4.2 Pose-based Action Recognition
As a continuation of the application of simulated data on corner cases (see section
4.1), there is great potential in the application of simulated data for the training
of action detection algorithms. Yet, the experiments showed a domain shift from
simulated visual data to real data. As stated in hypothesis two, an abstraction from
the actual visual sensor data might help to overcome such domain transfer issues.
Thus, in this part of the thesis, it will be demonstrated how human pose can be
used as an abstraction layer for visual sensor input in human action recognition.
One focus is on the development of a suited 2D human pose estimation pipeline,
that includes tracking to provide temporal human pose data as input for the human
action recognition. Another focus is on the human action recognition system, and
first experiments with simulated and real training data. The developed pipeline
will be modular to enable adaptability for further applications and experiments.

This application of the simulation framework as well as the development of the
pose-based action recognition approach was part of the project ‘Open Fusion Plat-
form’2, which was centered around an autonomous vehicle with a valet parking
function. It should automatically search for a free parking space on a parking lot
and automatically be able to drive back to a pick-up point. Pedestrians can be
present in the parking lot. Thus, it is important to recognize them. In addition
to the pure recognition of pedestrians, it is also important to recognize what they
are doing. In the use case, they can be in front of the parked vehicle, as long as
the vehicle is not moving. To drive off while a pedestrian is detected in front of
the vehicle, the pedestrian must indicate, by a waving gesture, that the vehicle is
allowed to drive out. Thus, the pedestrians have to be detected, and further, their
current actions have to be classified. For the parking lot use case, the actions ‘idle’,
‘walk’ and ‘wave’ were specified to be detected.

The contributions in this part of the work are:

1. A recognition pipeline, which operates on 2D monocular camera images in
real-time. It contains functionality to detect objects, humans, and their poses
and track and estimate humans and their actions.

2. A pose-based action recognition algorithm, based on Encoded Human Pose
Image (EHPI) input data as shown in figure 4.8, with SOTA performance on
sensor-based pose recognition data.

3. A demonstration on how to improve the action recognition algorithm with
simulated data.

2https://www.hella.com/ofp-project/de/index.html (accessed on 2022-03-06)
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Figure 4.8: From skeletal joints to an EHPI, exemplified by the right wrist. The
x and y coordinates are normalized (for the visualization the normal-
ization process is simplified and ranges between 0 and 255 for RGB
values), afterwards the x value is used as the red component and the
y value as the green component. This RGB value is set for each frame
in an n-dimensional vector at a fixed location. In the example n = 15
joints are used, the right wrist is set in row 9. The full EHPI is of size
32× 15× 3.
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Figure 4.9: Real-time action recognition pipeline from a monocular camera moun-
ted in the car observing the gesture of a potential user of the autonom-
ous vehicle. From left to right: 1) Raw camera image, 2) Object detec-
tion [131], 3) Pose Recognition [30], 4) Pose-based human tracking and
5) Pose-based action recognition

4.2.1 Recognition Pipeline
All steps in the pipeline3 are shown in Figure 4.9. In the first step, objects are
recognized in a 2D camera image, especially people (see section 4.2.1.1), resulting
in bounding boxes around the respective objects. If a person is recognized in a
frame, a pose recognition algorithm is applied to the image information within that
person’s bounding box (see section 4.2.1.2). A top-down pose recognition algorithm
was used, thus pose recognition has to be done for every human in the image. Based
on the human poses in successive frames, a pose-based tracking (see section 4.2.1.3)
of humans was developed. The action recognition is performed on these tracked
human poses (see section 4.2.2).

This modular approach allows the more complex algorithms, such as pose recog-
nition, to be applied only specifically. For example, pose recognition could only
be applied, if a person is close to the autonomous system. This also allows using
different training data at different steps and with different levels of abstraction,
which in turn enables one to train the action recognition algorithm with simulated
data (see section 4.2.3.1).

4.2.1.1 Object Detection

An object detection algorithm is used to obtain an initial estimate of humans’
presence in the image. In addition to the algorithm’s accuracy, the running time
is the main criterion for selecting the object detection algorithm. Possible false
detections of the object detection algorithm can be compensated by the pose es-
timation and the tracking of humans (see section 4.2.1.3). In the developed pipeline,
Yolo V3 [131] is used as a compromise between runtime and accuracy, which was
pre-trained on ImageNet [16] and the COCO [25] dataset. The object detection al-
gorithm can be replaced by alternative object detection algorithms, depending on

3Code available at https://github.com/noboevbo/ehpi_action_recognition
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accuracy and runtime requirements. The input into the object detector is an RGB
camera image, which may be scaled down to allow faster processing. The algorithm
then estimates possible object locations in the image in the form of bounding boxes
and classifies their content. After post-processing, the resulting data is a list of
classified bounding boxes. In this work, only bounding boxes are used, that have
been classified as humans.

4.2.1.2 Pose Estimation

The approach from Xiao et al. [30] is used for human pose estimation, with its
network pre-trained on the COCO [25] and MPII [33] datasets. The algorithm
requires human bounding boxes as input and estimates a human skeleton in this
cropped region. Like in most SOTA pose recognition algorithms, a heat map is
predicted for each joint, indicating the estimated probability for each joint. During
the post-processing, non-maximum suppression is performed, and a human skeleton
is reconstructed in the form of 2D joint positions and their connections. In com-
parison to OpenPose, used in the experiments shown in section 4.1, this algorithm
has a much simpler architecture, is faster and, as a top-down approach, is more
suited for a modular system.

4.2.1.3 Human Tracking

For the action recognition algorithm, a person’s skeletal information is required
across multiple frames. Since the pose recognition algorithm described above is
applied to single images, the skeletons in several frames are initially independent.
Skeletons are tracked based on their joint positions to establish the reference of skel-
etons across several frames. The pyramidal implementation of the Lukas Kanade
Feature Tracker [132] is used with the joint positions of the human skeletons in the
image as features to be tracked. This results in an estimated skeleton in frame n
for each skeleton in frame n − 1. With these tracked skeletons from frame n − 1
and newly detected skeletons from frame n, several skeleton proposals exist, which
need to be merged as follows.

A merge is done by measuring the similarity of two human skeletons. If they
are sufficiently similar, the two skeletons will be merged into one human skeleton,
thus tracking the human over time. In addition to comparing detected and tracked
people for a possible merge, all detected people must also be compared. The same
person could be detected several times by false detection of the object or pose
recognition algorithm.

The first step to merging two human skeletons is to find the similarity between
them. Let a and b be human skeleton hypotheses from a list of detected or tracked
skeletons. ∆a is defined as the maximum distance between joint i in two skeletons
to be considered part of the same skeleton. ∆a is calculated by using the bounding
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box width wa and height ha of human a (see equation 4.5).

∆a = F (
√
w2

a + h2
a) (4.5)

Factor F denotes a hyperparameter, which corresponds to the percentage of the
human’s bounding box diagonal. Setting F = 0.025 has proven good in practice.
Subsequently, the Euclidean distance δabi of joint i between human skeleton a and
b is calculated (see equation 4.6).

δabi =‖ai − bi‖2 (4.6)

This distance is only considered if a and b contain joint i with a minimum prob-
ability of TJ that specifies the minimum joint quality required to use joints in
the tracking process. Setting TJ = 0.4 worked well in practice. This constraint
is included to enable tracking even when some joints are not recognized or only
poorly recognized, for example, due to occlusion. Then the similarity score (Sabi)
is calculated for joint i by comparing the actual joint distance with the maximum
acceptable distance (see equation 4.7).

Sabi =

{
1− (δabi/∆a), if δabi < ∆a

0, otherwise
(4.7)

The similarity (Sab) between human skeleton a and b is calculated by combining
all joint similarities Sabi (see section 4.8).

Sab =
1

I

I∑
i=1

sabi (4.8)

Factor I denotes the number of joints used for tracking. Afterward, all detected
human skeletons are tried to be merged with other detected human skeletons to
avoid repeated recognition of skeletons belonging to the same person. A threshold
of TS = 0.15 is defined to specify when two human skeletons are similar. If the sim-
ilarity score is above TS for two detected humans, the detection with the lower score
is removed from the detection list. After merging the detected human skeletons,
they are merged with all tracked humans from previous frames. In this merge pro-
cess, every detected human skeleton is compared to every tracked human skeleton.
Suppose the similarity score of two skeletons is above TS. In that case, the identifier
of the tracked skeleton is assigned to the detected skeleton, and the tracked skel-
eton is removed from the tracking list. Further, suppose that some tracked human
skeletons are leftover after the merge process, meaning that the object detector did
not provide a human proposal at the location of a tracked human skeleton. In that
case, the pose estimation is applied on the bounding box of the tracked human,
and if a human skeleton with a score higher than TJ is estimated, this human will
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be kept with its identifier as a detected human. With this approach, false negatives
from the object detector can be compensated, and it allows the deactivation of the
object detection to improve performance (see section 4.2.1.4).

4.2.1.4 Runtime Performance

The runtime of the pipeline scales with the number of people to be detected. Usu-
ally, only the humans in the immediate surrounding area of the autonomous system
are relevant, so the entire pipeline may typically not have to be used for all humans
in the image. For one human with an input image resolution of 1280x720, down-
scaled for processing to 640x360, the entire pipeline runs on average with 29 FPS.
For two people, the FPS is reduced to around 21 FPS, which still ensures real-time
processing. To improve performance in exceptional cases, object detection, usually
performed for each frame, can be disabled once a person has been detected. The
pose and action detection can then be continued for this person based on bounding
box proposals from the tracking process. On average, by switching off the object
detection, 57 FPS can be achieved for one person. Depending on the requirements,
it would be possible to perform object detection only on a limited number of frames.
It is also important to note that the implementation is not designed for perform-
ance, as more emphasis was placed on code readability. It can be assumed that the
performance can be increased with appropriate adaptations. All performance tests
were carried out on a laptop with an Intel i7-8700 six-core CPU and an NVIDIA
GTX 1080 GPU using Ubuntu 18.04 with CUDA 10.0 and CUDNN 7.4.2.

4.2.2 Pose-based Action Recognition
Since a substantial amount of progress has been made in the field of convolutional
neural networks, it was decided to investigate an approach in which human skeletons
are encoded overtime in an image-like data structure.

The basic process is shown above in Figure 4.8. Once the pose of a human has
been extracted from the camera image, the basic idea is to encode the x, y, and
z positions of the joints as red, green, and blue values in an RGB image. In this
work, 2D human pose estimation is applied on monocular camera images, so the
z value is not used, and thus the blue channel is set to zero. The channel could
also be removed as long as only the x and y coordinates are used. To convert
the global joint coordinates into corresponding ’color values’, they are normalized.
This process is described in more detail in section 4.2.2.2. Note that the values
are normalized as network input in the continuous range from zero to one and not
as discrete integer values from ranging from zero to 255. Thus, the analogy of an
image is therefore not entirely accurate. However, for visualization purposes, the
joint positions are normalized between zero and 255 for the figures. Any number
of joints can be encoded. In the current work, the nose, neck, pelvis, left shoulder,
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Figure 4.10: Simple network architecture that is used to classify the EHPIs on the
JHMDB dataset.

left elbow, left wrist, right shoulder, right elbow, right wrist, left hip, left knee,
left ankle, right hip, right knee, and right ankle are used in this particular order.
The encoded joints are assigned in a fixed order in a 1 × n × 3 matrix, where
n stands for the number of joints. After the human pose for a frame has been
encoded into such a matrix, it is appended as the last column to a m×n×3 matrix
and replaces the first column of this matrix if it already contains m frames. Each
column represents an encoded human pose in a frame. The full matrix represents
an Encoded Human Pose Image. In the current work, m = 32 is used because about
one to two seconds of movements should be analyzed to give an action estimate.
Additionally, it corresponds to the standard image width used in machine learning
applications. The recognition results of the last 20 frames are considered, and the
action class with the highest summed probability in the last 20 frames is used as
the prediction to stabilize the action recognition.

4.2.2.1 Network

For the classification of the EHPIs straightforward network is used. It consists of six
convolutional layers, of which each has a 3× 3 kernel and both padding and stride
of one. A fully connected layer is placed at the end for the final action classification
(see Figure 4.10). Each convolutional layer is followed by batch normalization [110].
As an activation function, ReLU is used in the convolutional layers. After the
second and fourth convolution, a max-pooling layer with a kernel size of 2 × 2
reduces the spatial resolution by factor two. After the last convolutional layer, a
global average pooling layer is applied. Xavier initialization is used [104] for all
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convolutional layers. The deeper the network is, the more spatio-temporal context
should be encoded in the learned features due to larger receptive fields.

Since the use case contains considerably more data than the JHMDB [81] data-
set contains (see section 4.2.3), the network is no longer sufficient. Expanding the
network with further convolutional layers and also increasing the size of the fully
connected layer would result in the network having more parameters than some
existing and efficient CNNs for classification. Therefore, ShuffleNet v2 [133] archi-
tecture was applied, with which also the application of standard computer vision
algorithms to EHPIs is demonstrated.

4.2.2.2 Preprocessing of EHPIs

The normalization of the EHPI takes place on the entire m × n × 3 matrix. The
encoded x and y joint positions are normalized independently between zero and
one. This type of normalization is intended to ensure the independence of the body
size of different people while maintaining the relative change in scale through a
different distance to the camera. The local range of motion for a time window of
length m is considered correspondingly. Before normalization, human body joints
outside the image are removed as a preprocessing step by setting their coordinates
to zero. When joints are not recognized or have a probability below TJ , the x and
y values for them are set to zero. The same applies to human poses, which are not
recognized at all. In this case, the complete 1 × n × 3 matrix is set to zero. An
EHPI requires at least two frames with human poses to be considered.

4.2.2.3 Example EHPIs

Figure 4.11 shows the EHPIs and a camera image of the last frame (rightmost
column) of the EHPI for three examples of the actions ‘idle’, ‘walk’ and ‘wave’.
The row representing the joint of the right wrist is plotted in an enlarged view,
since it is diagnostic for describing the actions of interest in the following example.
For the action ‘idle’ the color representation is relatively constant over the whole
period because there is hardly any movement of the joint. For the action ‘walk’,
one can notice a smooth transition from green to orange. This is because the joint
of the right wrist moves from left to right of the image during the EHPI period.
Therefore, the normalized x value increases towards one (in the visualization, thus
the red value towards 255), while the y value (in the visualization, the green value)
remains relatively constant. During the ‘wave’ action, one can notice a repetitive
color gradient from green to red because the joint of the right hand repeatedly
moves in the x direction during the wave movement.

Figure 4.12 shows a sequence of a wave movement in more detail. At the end
(right) part of the EHPI for the joint of the right wrist, the color encoding gets
redder when the joint is on the right side of the picture. Further, the effects of false
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Figure 4.11: EHPI examples of different actions. The example of the right wrist,
which is explicitly shown at three times its height, clearly shows that
a smooth color gradient is visible in the idle action, a color gradient
from green to orange is visible during walking and a repetitive gradient
from green to red is observable during waving.
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Figure 4.12: Five frames from a sequence with camera image, EHPI (right wrist,
enlarged) and the full EHPI. The EHPI for the right wrist moves during
waving towards red (maximum value in x direction). The first picture
shows false detection of the left wrist (EHPI, row 6), which is filtered
by the application of noisy training data of the action detection. In
the last image, the whole EHPI is shifted more into the red. This is
because there are no more extreme false detections of the left wrist
that shift the maximum x value during normalization.
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detection of body joints are displayed clearly. In this example, the left ankle (row
six in EHPI) is partially recognized incorrectly and thus is encoded much further to
the right than it actually is. This becomes clear with the strongly red coded areas,
which appear without a clean transition from green to red. The joint of the left
ankle was recognized with a probability above TJ by the pose estimation algorithm.
Thus, it is not encoded as zero. Due to the distorted, more extreme red values of
the left hand, the entire EHPI is shifted a little into the green area, which becomes
clear in the last image (frame 71), where most of the joint recognition errors are no
longer present. The color of the entire EHPI shifts towards red.

4.2.3 Datasets
The JHMDB [81] dataset consists of 928 videos, of which each has an annotation
label denoting one of 21 action classes. Each video has a resolution of 320 × 240
pixels. The evaluation is done on three splits, of which each uses about 30% test
data. Results are reported as the overall mean splits. From here on, JHMDB refers
to the entire dataset, while JHMDB-1 refers to JHMDB split 1 with pose data from
the pipeline. JHMDB-1-GT refers to JHMDB-1 with pose data from the JHMDB
ground truth.

The automotive parking lot use case dataset SIM consists of various camera se-
quences. Different videos were recorded with a Logitech C920 webcam, an iTracker
GS6000 dashcam, and a Yi 4k+ camera. It is a very use case-specific dataset,
which only contains the actions ‘idle’, ‘walk’ and ‘wave’. Recordings were partly
taken inside buildings, partly also in use case situations in the vehicle. In addition,
the dataset contains some simulated elements, which are described in more detail in
section 4.2.3.1. The entire dataset consists of 216 labeled sequences and a total of
61, 826 EHPIs. All videos have a resolution of 1280× 720 at 30 FPS. All sequences
contain actions from the same person. For the evaluation, 27 sequences with a total
of 8, 351 frames are used. All sequences are cuts from one scene, which corresponds
to the use case. The scene was recorded simultaneously from the dashcam and the
action cam to get data from two different sensors in slightly different locations.

4.2.3.1 Simulated Data

The experiments in section 4.1 have shown that the use of simulation can signific-
antly improve the performance of pose recognition algorithms. Thus, simulation
data is also used in this experiment to enrich training data further. The advantage
of the modular pipeline is that simulation data can be used as training data at
different steps in the pipeline, while real data is used at other steps. In action
detection, this offers the great advantage of having the abstraction layer of the
pose data between the sensor information and action detection. The underlying
hypothesis is that this abstraction layer prevents sensor domain transfer problems
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between simulation and real data. In principle, motion capture data alone is suf-
ficient to generate ground truth data for the pose-based action detection. By a
corresponding 2D projection of the 3D joint coordinates for any number of cam-
era positions in 3D space, 2D human pose information can be obtained without
generating camera sensor simulations. Since pose recognition algorithms are not
perfect and artifacts like a slight jittering of the joint positions, false recognition of
joints or not recognizing joints can occur, additionally simulated camera images are
generated to apply the pose recognition algorithms and use the output as ground
truth with such kind of natural noise for the action recognition. In previous work,
evidence was provided that pose recognition algorithms have similar problems on
simulated data as on real data [5]. Thus, the same bias on estimated human poses
on simulation data as on real data is expected. The motion data of the actions
‘idle’, ‘walk’ and ‘wave’ were recorded in our motion capture laboratory. One per-
son performed every action ten times for ten seconds. The motion data is used to
animate a 3D scanned human model in the Unity-based simulation. A flat area
with a skybox for the background without any other environmental details is used
as the environment (see Figure 4.13). Finally, various virtual camera sensors can be
placed around the person, generating corresponding sensor information. For each
virtual camera image, the ground truth, in this case, the 2D human pose and the
corresponding action, can be generated automatically [5]. Figure 4.13 shows some
examples of simulated sensor information. A total of six camera positions is used
in this work.

SIM (gt) contains the perfect pose data from motion capturing directly, SIM
(pose) contains the pose data from the output of the pose estimation pipeline, and
SIM contains the data from both sources.

4.2.3.2 Data Augmentation

Augmentation is applied to increase the variance in the training data. Joints are
flipped horizontally in 50% of the cases. If the image is flipped, in 50% of the
flipped images, the indexes of the left and right joints are also switched, thus in
25% of the cases, a person looking in the other camera direction than originally is
simulated. In addition, joints are partly removed to simulate occlusion. In 25% of
the cases, the joints of both feet and in 6.25% of the cases also the joints of the
knees are removed. This type of augmentation is primarily the result of the use
case, in which it can happen that the feet and partly also the knees are covered by
the hood of the vehicle.

4.2.4 Training
33% of the JHMDB-1 training data is used for validation. The focus was not on the
tuning of hyperparameters and therefore only varied the batch size, the learning
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Figure 4.13: Demonstration of virtual sensor information used to train the action
recognition algorithm. On top a picture of a real sensor of the motion
recording in the motion capture lab and below the simulated scene
from two different camera positions.
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rate, and the number of epochs to ascertain how to train the network fast and
stable. The network is trained with a batch size of 64, an initial learning rate of
0.05, and a standard momentum of 0.9 for 200 epochs (140 on JHMDB-1-GT) for
the experiments on the JHMDB dataset. Since the JHMDB dataset is small, a
weight decay (L2 regularization [134]) of 5e−4 is used to counteract overfitting. For
optimization, stochastic gradient descent (SGD) and cross-entropy loss are used.
The learning rate is reduced every 50 epochs by a factor of ten. The classes in
the JHMDB dataset are not evenly distributed, especially as far as the number
of EHPIs per video sequence is concerned, as they vary in length. Therefore, a
sampling per epoch is applied that outputs a balanced number of samples for each
class by reusing samples from classes with few samples and using only a subset of
samples from classes with many samples. The same parameters are used for the
use case dataset, but since there is considerably more data available, the batch
size is adjusted to 128. The network is trained with five different seeds to exclude
random effects during weight initialization and ensure the results’ reproducibility.
Therefore, results are reported as the mean value with standard deviation over
these five runs.

4.2.5 Experiments
4.2.5.1 JHMDB Evaluation

The PoTion [76] approach, which was SOTA during the development of EHPI,
combines their pose-based action detection with the multi-stream approach I3D [77]
and achieves a total performance of 85.5% on the JHMDB dataset. Since only the
three actions ‘idle’, ‘walk’ and ‘wave’ are required in the use case, which can also
be distinguished purely with pose data, and real-time is a prerequisite, the pure
pose-based EHPIs are used in this work. Therefore, the results are compared with
parts of other work that also report results for pure pose-based algorithms. The
results are summarized in Table 4.3 in terms of accuracies. JHMDB results are
reported as the mean value over the three dataset splits. In cases where the pose
recognition pipeline was unable to find a human in a video sequence, the action
recognition algorithm could not be applied. Thus, that sample was counted as
recognized falsely. In 904 of 928 videos, the algorithm was able to recognize a
human skeleton in at least two frames and thus created an EHPIs and performed
the action detection. For cases where more than one person was detected in a video,
the one with the highest pose score is used.

PoTion [76] was outperformed by a margin of 3.5% on the whole JHMDB dataset.
On JHMDB-1 Zolfaghari et al. [70] provided results too. PoTion was outperformed
by a margin of 1.2% and Zolfaghari et al. [70] by a margin of 14.8%. Using only
the ground truth pose information provided by the JHMDB Dataset, the results
of PoTion outperform our results by a margin of 5.3%. This can be either caused

96



4.2 Pose-based Action Recognition

Table 4.3: Mean classification accuracy on the JHMDB dataset compared to other
pure pose-based algorithms.

Method JHMDB JHMDB-1 JHMDB-1-GT

PoTion [76] 57.0 59.1 70.8
Zholfaghari et al. [70] N/A 45.5 56.8
EHPI (ours) 60.5 ± 0.2 60.3 ± 1.3 65.5 ± 2.8

because our pose recognition pipeline provides superior pose information or because
PoTion was applied to a cropped image around the actuator.

4.2.5.2 Automotive Parking Lot Use Case Evaluation

To evaluate the system, two types of results were compared. First, it is reported
how many action sequences were correctly recognized, denoted by Accuracy (Seq).
Since a sequence can sometimes last several seconds and the total detection consists
of the accumulated predictions of the individual EHPIs, it is also useful to indicate
how many of the individual EHPIs are correctly detected, denoted by Accuracy
(EHPIs). The results are shown in Table 4.4.

Table 4.4: Mean classification accuracy on use case data
Method Accuracy (Seq) Accuracy (EHPIs)

SIM (Pose) 80.74 ± 2.77 69.72 ± 1.80
SIM (GT) 79.26 ± 3.78 67.78 ± 1.86
SIM 81.48 ± 3.31 70.64 ± 2.60
Real only 99.26 ± 1.48 95.75 ± 1.65
SIM + Real 99.26 ± 1.48 97.07 ± 1.80

With real data only, 99.26% of the test sequences were classified correctly. The
misclassified sequence is an ‘wave’ sequence that has been classified as ‘idle’. The
false detection was probably caused by the fact that the waving in this sequence
was executed with the left hand, for which only little training data was available.
The overall great results are because the use case is rather focused and sufficient
similar training data is available. With 81.48% correctly recognized sequences and
70.64% correctly recognized EHPIs when trained purely on simulated data, there
appears to be no considerable domain shift between simulated and real training
data. It was also found that the performance is slightly better when the noisy pose
data from the proposed pose estimation pipeline is used as ground truth rather
than using the pose information directly from the motion capture system, hinting

97



Chapter 4 Applications

that it is beneficial to use both ground truth sources. This is probably because the
algorithm is also challenged with noisy pose estimation information on real-world
data. As the standard deviation shows, the hyperparameters are not yet optimal for
training, but network tuning is not the focus of this work. By combining real and
simulated training data for action detection, overall detection rate of all EHPIs was
increased by 1.32% to 97.07%. Considering how easily and quickly the simulated
data can be generated, using the simulation approach, at least as an addition to
real data, is very promising.

4.2.6 Discussion
An efficient pipeline was built to recognize humans in real-time, estimate and track
their poses, and recognize their current action. Human poses were encoded over a
fixed period into an image-like data structure which can be used in classification
CNNs to perform action recognition. The EHPI based action detection delivers
SOTA performance compared to other pose-based algorithms and still runs in real-
time. In future work, it should be investigated how scene properties and context can
be encoded into an EHPI to be able to recognize actions that are not distinguishable
on pose data only. In addition, the requirements of the automotive parking lot use
case were realized with the presented pipeline. Action recognition results could
be transferred to other sensors, environments, and people in first tests. It was
shown that using simulation data in combination with real data is suitable for the
enrichment of training of action detection algorithms. The results obtained on
the purely simulated training data are also auspicious. This approach is further
evaluated in section 4.3 to determine if the portion of real data for the training
can be reduced further or even be omitted. Since the 2D human pose data is
dependent on the camera position, this method is not yet directly applicable on
moving platforms. To enable stable detection on moving platforms, one could
either try to calculate out the own motions, but this is error-prone. Alternatively,
a different approach is investigated in section 4.5 to estimate 3D human pose data
in a local pose coordinate system independent of the camera position.
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4.3 Action Recognition Using Only Simulated
Training Data

The work shown in section 4.2 showed the potential of using 2D human pose data
as an abstraction layer to pure visual input to neural networks. This observation is
investigated further in the following application of simulated data on the example
of action recognition. Section 4.3.2.1 contains a demonstration of how a model can
be trained with purely simulated data and then used directly on real data. To
achieve this, abstract input data is used for a recurrent neural network in the form
of human joints instead of raw sensor data. The effect of using noisy human pose
data from an algorithm compared to perfect ground truth pose data to train the
network is also investigated. This work further shows how only simulation data
can be used to train a simple pose-based action recognition algorithm that can be
applied to real data without the application of domain transfer methods.

The main contributions in this part of the work are:

1. It is shown how to produce raw data for the simulation framework and how
to use this framework to simulate camera sensors that generate data with the
corresponding ground truth for the two scenarios demonstrated in this work.

2. It is shown if and how a human pose estimation algorithm can be fine-tuned
using only simulated data based on motion capture data and 3D avatars to
recognize corner case poses, which it could not detect when trained only on
standard datasets.

3. With data produced in a laboratory environment, it is demonstrated that the
training of a human pose-based action recognition algorithm is possible on
synthetic data only, which can be directly applied to real sensor data.

4.3.1 Simulated Data
A 3D scanned model of the person performing the motion recordings in the motion
capture lab has been used for the action recognition experiment. The movements
in this work vary from ‘idle’, ‘walk’, ‘wave’ and ‘sit’ to ‘jump’. The environment
is not very relevant in the experiments in this work because the action recognition
algorithm is purely based on pose data. Thus, it is only secondarily dependent,
through the pose recognition, on visual features, if at all. Thus, a static background
consisting of a flat area surrounded by a simple skybox (see Figure 4.14) is used.

4.3.2 Virtual Content Generation
Figure 4.15 shows some examples of automatically generated ground truth data.
Virtual camera sensors were used to record the use cases’ data with annotated 2D
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Figure 4.14: Demonstration of virtual sensor information observing a sitting human
used to train the pose-based action recognition algorithm. Note that
no actual chair was simulated because only the pose is relevant. The
real camera sensors were positioned such that there is no occlusion
from the real chair.
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Figure 4.15: Automatically generated ground truth data for a frame recorded by a
virtual camera sensor.
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human joints as training ground truth for the corner cases and an action label for
each frame for the action recognition experiment.

4.3.2.1 Experiments

In the following, two laboratory experiments are presented to investigate whether a
recurrent neural network for action recognition can be trained with purely synthetic
data and how it performs on real data. To achieve this, RGB cameras captured real
test data during the recording of a participant in the motion capture laboratory.
The real lab setup was reproduced accurately in the simulation by using virtual
cameras positioned in a similar position as the real cameras. 3D scans of the
person recorded in the motion capture lab were used, yet with different clothing, to
rule out transfer effects between different body proportions. A purely pose-based
algorithm for action recognition was applied. As such, temporal action recognition
will not be confounded by noisy visual features.

4.3.3 Datasets
4.3.3.1 ActionSim

In the motion capture lab, one person performed the five actions ‘idle’, ‘run’, ‘wave’,
‘jump’ and ‘sit’ continuously ten times for about 11.5 seconds each. These actions
were selected for this experiment because for a first demonstration of the transfer
from a model, which was trained on purely simulated data, to real data, well dif-
ferentiable actions should be used. Every motion capture sequence contains only
motions that fall into one action class. Transitions between different motions are not
recorded. This allows the motion sequences to be used in the simulation without
manual post-processing. The person was recorded by two real camera sensors,
which were placed directly in front and on the participant’s right side. The virtual
camera arrangement is visualized in Figure 4.16.

The dataset consists of 100 sequences, recorded with a resolution of 1280x720
at 30 FPS, resulting in around 17, 800 frames per camera. Using this data three
training sets were created, ‘ActionSim (GT)’, ‘ActionSim (Pose)’ and ‘ActionSim
(Both)’. ActionSim (GT) and ActionSim (Pose) contain the joint positions for the
human for each frame of each of the six virtual camera sensors. The datasets differ
in the source of the joint positions. In ActionSim (GT), the human joints are from
the simulation ground truth data produced by the simulation framework. The
ActionSim (Pose) dataset was created because the pose-based action recognition
algorithm has to work with joints from pose recognition algorithms that may be
noisy and have problems with false detections or no detection. In this dataset, the
pose recognition algorithm, demonstrated in section 4.3.4, was applied to the virtual
camera images to obtain correspondingly noisy data. Due to the similar issues on

102



4.3 Action Recognition Using Only Simulated Training Data

Figure 4.16: Six virtual camera sensors positioned around an animated human.
Every camera is oriented towards the human. Two of them are ar-
ranged similarly to the position of the real cameras, the other four
view the scene from orthogonal directions, from front, rear, left, and
right.
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simulated data as on real data, like missing and false recognized joints as visualized
in Figure 4.4, it is expected, that the pose recognition algorithm delivers noisy
outputs, similar to the output on real-world data, by applying it to the simulated
camera images. The dataset ‘ActionSim (Both)’ consists of the entire ActionSim
training dataset, thus using action pose ground truth from both ground truth data
and the pose recognition algorithm.

The test part of the ActionSim dataset consists of the 100 sequences recorded
by the two real camera sensors. Each sequence was assigned one of the five action
classes used as a label.

4.3.3.2 SimTransfer Dataset

An additional experiment is presented to test the transferability to scenarios apart
from the laboratory scenario. For this experiment, a dataset, called ‘SimTransfer
dataset’, was created in which the same person who performed the actions in the
motion capture lab was recorded performing five sequences per action in an office
environment. To record the sequences, a standard webcam was used that was
positioned differently from the lab cameras. Each sequence is ten seconds long.
Again, a resolution of 1280x720 at 30 FPS was used. This dataset was used purely
for testing, and no parts of it were used as training or validation data.

4.3.4 Pose Recognition Algorithm
To retrieve the pose data required for the action recognition algorithm, the pose
recognition pipeline described in section 4.2 was used.

4.3.5 Action Recognition Algorithm
In contrast to the previous experiments with the new EHPI action recognition ap-
proach, this work applies a standard approach based on a recurrent neural network
for pose-based action recognition, which is very fast to train. This is because only
the applicability of simulated data in a defined laboratory scenario is to be tested
and, accordingly, rapid trainability has higher priority than absolute recognition
performance. The network consists of a two-layer LSTM, with an input dimension
of m × n. Factor m denotes the time window (TW) length that is set to m = 32
frames. This means that the system looks at just over a second of motion to de-
tect an action using a 30 FPS camera sensor. Factor n denotes the number of
two-dimensional joint coordinates. 15 joints of a human skeleton are used in this
work. Thus, n is set to n = 30. The LSTM hidden layers have a dimension of 64
and are followed by a fully connected layer, which classifies five action classes. The
network was trained with the stochastic gradient descent (SGD) optimizer and use
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Figure 4.17: Confusion matrices for the time window results from ActionSim (GT),
ActionSim (Pose) and ActionSim (Both). It can be seen that the errors
in GT and Pose are different, and the combination of both pose sources
provides the best overall result.

the cross-entropy loss. A learning rate of 0.01, a momentum of 0.9, and a batch
size of 256 for 200 epochs were applied.

4.3.6 Data Preprocessing

For data normalization, first human joints outside the actual image area are re-
moved, which is especially important for ground truth data. Then the 2D joint
coordinate pairs are normalized over the time window used in the recurrent neural
network. This normalization takes place independently for the horizontal and ver-
tical positions by setting the respective minimum value over the full-time window to
zero and the maximum value to one. The remaining values are scaled accordingly.
To obtain higher variability, the training data was augmented by flipping the joint
positions horizontally in 50% of the samples. In 50% of these flipped cases, the
right and left joints’ identifier was exchanged to vary the orientation of the human
to the camera.

4.3.7 Results

The results are reported as accuracy (sequences) and accuracy (TW) of an action.
Accuracy (sequences) refers to the number of correctly classified video sequences.
The most frequently classified class during the sequence is used as the sequence ac-
tion label. Since the sequences are relatively long, the recognition accuracy of each
particular time window are reported in accuracy (TW). To counteract the possible
effects of the initial weightings, all tests were carried out five times with different
random seeds and report the results as mean values with standard deviation.
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4.3.7.1 ActionSim Dataset

Table 4.5: LSTM based action recognition baseline: Trained purely with synthetic
data, evaluated on related real sensor data from the lab dataset.
Training Dataset Accuracy (Sequences) Accuracy (TW)

ActionSim (GT) 98.6± 0.49 96.63± 0.59
ActionSim (Pose) 97.8± 1.16 95.93± 1.37
ActionSim (Both) 98.8 ± 0.40 96.81 ± 0.80

All results for the ActionSim dataset are listed in Table 4.5. The data reveals
that the transferability of the model, which was only trained with simulated data,
to real data is provided. No domain shift effect seems to influence the result. Not
only were the sequences correctly classified in 98.8% of the cases, but 96.81% of the
particular time windows were also correctly classified. As the experiment shows,
it is beneficial to use ground truth pose information from motion capture ground
truth data in combination with data from the pose recognition algorithm. The
training data created by the pose recognition algorithm gives slightly worse results,
possibly because there is a bias in it, which the real sensor data did not record.
A reason might be that four of the six virtual camera sensors placed around the
person are further away than the two real camera sensors, which challenges pose
estimation and further action recognition.

As can be observed in the confusion matrices in Figure 4.17, false recognition in
ActionSim (Pose) and ActionSim (GT) differs, which explains why the combination
of both leads to better results. In total, six of the 100 sequences were confused.
However, these differed across random seeds, indicating that the training was not
yet optimal and by adjusting the training parameters, even though erroneous se-
quences could then be correctly classified. Most of these cases were confusions
between the actions ‘idle’, ‘wave’ and ‘walk’. Figure 4.18 shows four frames from
an ‘idle’ sequence that was recognized as ‘walk’. As can be observed, in this case,
the pose recognition was often incorrect due to occlusion, which caused confusion
between the left and right legs. This is similar to the pose information that occurs
when walking and probably caused incorrect action recognition. Furthermore, with
‘idle’ sequences that were recognized as ‘waving’, incorrect pose information due to
occlusion seems to be the main problem, as strong movements of the occluded arm
occur from frame to frame.

One of the ‘idle’ sequences was falsely classified as ‘sitting’. Although this is
surprising at first, the probable reason becomes clear in Figure 4.19. If only the
normalized pose information is considered, it is very similar in the frontal view of a
‘sitting’ and an ‘idling’ person. Since not much movement was involved in the two
sequences, the network has to work mainly with spatial information. However, in
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Figure 4.18: Four frames from an idle scene that was classified as walking.
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Figure 4.19: Exemplary representation of a frontal view in which the skeletons re-
semble a sitting and an idling person.
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most cases, the network was still able to distinguish between the two actions. The
confusion only occurred with one random seed.

4.3.7.2 SimTransfer Dataset

A good transfer of the results to real data was expected because the situations were
deliberately kept very similar, but the excellent results exceeded this expectation.
Therefore, the SimTransfer dataset (see section 4.3.3.2) was created to evaluate on
an independent dataset in another scenario. The recorded person is the same as in
the laboratory experiment, so the style of executed actions is similar.

Table 4.6: Simple LSTM based action recognition baseline results: Trained purely
on synthetic data, evaluated on unrelated real sensor data from the
SimTransfer dataset.
Trainingset Accuracy (Sequences) Accuracy (TW)

ActionSim (GT) 100 96.74± 0.94
ActionSim (Pose) 99.2± 1.6 98.29± 0.95
ActionSim (Both) 100 98.52 ± 0.38

The results of this experiment are listed in Table 4.6. All sequences could be
classified correctly. The classification of the particular time windows was even
better than in the laboratory experiment itself. This may be explained by the
fact that no motion capture suit was worn, and the lighting situation was better,
which made detection easier for the pose recognition algorithm, thereby providing
cleaner input data for the action recognition algorithm. These results show a very
promising tendency towards employing purely synthetic data production to train
data-driven algorithms. Although, only a straightforward LSTM was used for the
action recognition, it performed surprisingly well on pose-estimation results based
on webcam sensor data. Based on the time window recognition rate, the inclusion of
noisy data from the pose algorithm also offers an advantage over the perfect ground
truth data. This demonstrates that it is useful to generate visual, simulated sensor
information and apply the pose recognition algorithm to this simulated sensor data
to obtain more realistic ground truth data for pose-based action recognition. The
results on the SimTransfer dataset were corroborated in a live test in which the
same person performed actions similar to those in the dataset. Only transitions
between different actions lead to misclassification. An example is a transition from
sitting to walking, during which the jump action is detected. This is caused by
a strong vertical movement of some joints, which occurs in the training data only
during the jump action. However, this is expected since transitions between actions
are not part of the training data. If the action ’get up’ was included in the data-
set, the model should distinguish between jumping and getting up by the spatial
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Figure 4.20: Example of generated simulation data to train an autonomous car
people’s intent to let them drive out.

arrangement of the joints. Action transitions would be a worthy focus of future
research.

Since the simulation environment is easily adaptable, the approaches shown in
this work can also be transferred to other simulation environments for specific
problems. For example, the simulation can be used to generate data for the training
of autonomous vehicles as in Figure 4.20, which shows simulated sensor data for a
person waving a car out.

4.3.8 Discussion
Based on action recognition, it was shown that by data abstraction through in-
termediate human pose-estimation, algorithms trained with synthetic data can be
applied to real data without domain transfer methods. An almost perfect perform-
ance of such an algorithm on real data in the laboratory experiment was achieved.
Through an additional experiment with real data, first evidence that the results
are transferable to real scenarios was provided. It was beneficial for the pose-based
action recognition algorithm to generate ground truth data by applying a pose
recognition algorithm to simulation data in combination with using perfect pose
information from the motion capture system. The experiments demonstrated, that
the use of human simulations provides sufficient data variety to improve the quant-
itative and qualitative constitution of the overall dataset. The experiments showed
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great potential to use simulation to train data-driven algorithms to understand
human pose and actions. Therefore, the usage of simulated training data seems
to be a promising and valid approach to further advance machine understanding
of human behavior, especially for encounters of autonomous intelligent transport-
ation systems with pedestrians. One shortcoming in 2D human pose estimation is
that some poses are indistinguishable in 2D, as such the following experiment will
extend the 2D approach to 3D, which will also be beneficial for further tasks, like
human body and head orientation estimation.
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4.4 PedRec: Multi-Task Pedestrian Recognition
In addition to the experiments shown on 2D human pose data in section 4.2.6, 3D
human pose data is valuable information for action recognition, as some poses might
be indistinguishable in 2D (see for example Figure 4.19 in the previous section). To
solve such problems, the following section shows a system that provides 3D human
pose data in addition to 2D human pose data. The system shall be the basis
for further experiments. Therefore, the focus is on a straightforward structure, a
simple and stable training process, high performance on consumer hardware for live
experiments, and extensibility. Furthermore, the system should be independent
of specific camera configurations. Thus, the architecture should not include any
assumptions about the sensor hardware. The focus is on single frame estimation,
since the temporal component for action recognition is already contained in the
EHPI action recognition approach. In addition to 3D human pose data, orientation
information about a person’s body and head is also relevant for human recognition
systems. Especially in pedestrian recognition, this information can be valuable
to perform path planning or to detect if a pedestrian notices a vehicle or not.
Therefore, body and head orientation estimation are added to the network as an
additional task. All tasks in the PedRecNet are related and based on the same input
data, so all tasks should be implemented in the same network using a multitask
approach. Since there are only a few real datasets available for 3D human pose
recognition and especially for body and head orientation estimation, simulation
data was used to improve these parts of the PedRecNet and to enable training in
the first place. The skeleton-based action recognition results presented in sections
4.2 and 4.3 support the assumption that using abstract pose information rather
than just visual information enables the transfer of simulated training data to real
data. This work hypothesis is corroborated in more detail in experiments using
simulated training data. The developed network, the datasets used, and evaluate
3D human pose recognition as well as the body orientation estimation on several
real and simulated datasets are described in the following.

The entire system and novel simulation data has been made public under the
MIT license4.

4.4.1 Definitions
3D skeletons 3D skeletons are represented by the PedRec skeleton hierarchy (see

Figure 3.13) in a left-handed Cartesian y-up coordinate system which is
pelvis-centered (see Figure 4.21). The skeleton is normalized to a 3 × 3 × 3
meters volume. Other approaches (for example [39]) use a volume of 2×2×2
meters, but the volume was extended in this work to be able to correctly map

4https://github.com/noboevbo/PedRec (accessed on 2022-03-06)
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Figure 4.21: Local skeleton 3D coordinate system centered at the pelvis of the skel-
eton.

ϕ = 0◦|360◦
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Figure 4.22: Visualization of the orientation estimation for each, the body and the
head. The orange dot shows an example point on a 3D sphere, visualiz-
ing an orientation. The standard notation from ISO 80000-2:2019 [135]
is used for spherical coordinates. As only the polar angle θ and azi-
muthal angle ϕ are required, a unit sphere and with r = 1 was used.

fully stretched, tall people.

Orientations Orientations are represented in a spherical coordinate system follow-
ing the ISO 80000-2:2019 (Item No. 2-17.3) standard [135], which states that
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spherical coordinates should be written as (r, θ, ϕ) where r is the radial dis-
tance, θ the polar angle and ϕ the azimuthal angle (see Figure 4.22). As the
orientation estimation only requires the angles and a unit sphere with r = 1
is used, it is only required to predict θ and ϕ.

4.4.2 Network Architecture
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Î

Lp2d

∗
∑

+ Lp3d

+ Lvis

+

+

+

+ Lo

conv
conv transposed
fully connected
softmax
softargmax
flatten
with gradient

+ concatenation

∗ product

pool
batch norm
dropout
relu
sigmoid
without gradient
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Figure 4.23: Simplified PedRecNet architecture. The input to the PedRecNet is
an RGB cropped bounding box image of a human. In this work, an
input size of 192 × 256 is used. A ResNet50 is utilized as the feature
extractor. The dotted connection lines indicate connections which are
used only in the forward pass, but do not allow gradient flow in the
backward pass.

The overall network architecture is shown in Figure 4.23. The PedRecNet ex-
pands the 2D human pose estimation approach proposed by Xiao et al. [30]. The
PedRecNet architecture is based on a ResNet50 backbone for feature extraction,
but other backbones could be used as well. The ResNet50 architecture was chosen
as a compromise between accuracy and performance. The inputs I are always im-
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ages cropped to the size of certain bounding boxes. Features Î are extracted using
the feature extraction part of the network. The following network heads are used
to fulfil the various tasks:

2D Human Pose Estimation The 2D human pose estimation part is based on
three transpose convolution blocks with which joint heatmaps are generated
from the extracted features (see section 4.2.1.2).

3D Human Pose Estimation In PedRecNet, the 2D human pose estimation archi-
tecture was extended to include 3D human pose estimation. For this purpose,
two transpose convolution blocks are used as a common basis and then split
into a 2D and a 3D path. These have basically the same structure. The
output in the 2D path corresponds to 2D image coordinates. The 3D path,
leading to Lp3d, corresponds to the estimation of the x and y coordinates of a
joint relative to the pelvis and additional depth estimation of the z coordin-
ate using a sigmoid map. Another change from the previous 2D human pose
estimation approach is the post-processing of the heatmaps. In the approach
shown in section 4.2, the heatmaps were output from the network, and a Non-
maximum suppression (NMS) was used to determine the coordinates. This
has the disadvantage that the subpixel coordinate values are not available in
the network. The NMS approach also implies that artificial heatmaps have
to be generated to be used as training data labels. The PedRecNet applies
a softargmax layer, which determines the coordinates from the heatmaps in
the network inside the network. This process is described in more detail in
section 4.4.3. The softargmax layer allows using estimated joint coordinates
as inputs into other parts of the network. For example, the 3D joint positions
are used as input into the orientation estimation part of the network.

Head & Body Orientation Estimation The head and body orientation part of
the network leads to Lo and uses the visual features Î as well as 3D co-
ordinates from the 3D human pose estimation part of the network. The 3D
joint position coordinates are scaled up into a feature space via 1D transpose
convolution blocks. These are concatenated with the visual features Î such
that the orientation estimation can use direct information from the image in
addition to the noisy and potentially erroneous, 3D human pose. This con-
catenated feature vector is input into a fully connected layer which generates
a one-dimensional heatmap for each, the polar angle θ and azimuthal angle ϕ
(see Figure 4.22) of the body as well as the head. From these one-dimensional
orientation heatmaps, the corresponding normalized angle is extracted using
1D softargmax.

Human Joint Visibility To classify the visibility of labels, a standard classification
head was added to the network leading to the path to Lvis.
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The PedRecNet outputs 2D human joint positions as pixel coordinates in the
bounding box’s coordinate system, normalized between zero and one. The 3D
human joint positions are output as 3D coordinates relative to the pelvis position,
which are normalized between zero and one. Orientations are output as angles
between 0 − 180° for θ and 0 − 360° for ϕ, and are also normalized between zero
and one.

The used loss functions are described in section 4.4.5.

4.4.3 Heatmap-based Workflow
As shown in the network overview, most task-specific paths in the network produce
outputs based on heatmaps. The general pipeline of such an approach is shown in
Figure 4.24.
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Figure 4.24: Heatmap-based Prediction Pipeline: Encoder - Decoder

Features are extracted from an input image via an encoder. A decoder produces a
heatmap from these features, representing geometric information such as a joint po-
sition. Classically, such a heatmap is output by the network and in post-processing
via a NMS the deflections on the heatmap above a certain threshold are output
(see, for example, [6], [27] or [30]). To train such a network, artificial heatmaps are
generated with deflections in the form of a noise distribution as ground truth. In
PedRecNet, the joint coordinates should be available for other network parts. For
example, the orientation estimation requires 3D joint coordinates as input. Since
a NMS cannot be performed efficiently within a network, an alternative would be
an argmax layer. However, the argmax function cannot be used directly, as it is
not differentiable, and thus, the gradient cannot be calculated. One other problem
with the argmax would be the support of fractional positions. As heatmaps are
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usually smaller than the input, the argmax would lead to imprecise results, depend-
ing on the scale difference of the heatmap and the desired output. An alternative
is the softargmax function. The softargmax for a K-dimensional vector z uses the
softmax, which is defined as:

softmax(z)j = σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, . . . , K (4.9)

The softmax σ(z)j can be derived with respect to zj as follows:
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And with respect to zk 6= zj as follows:
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As such, the gradient of the softmax function can be derived. The softargmax is
defined as:

softargmax(z) =
K∑
j=1

σ(z)jj (4.17)

Thus, the softargmax function is usable in the backpropagation algorithm. The
softargmax function has been applied in joint-based approaches before, for example
for face landmark detection [136] and human pose estimation [137, 45].

In contrast to NMS this approach can exclusively be used for heatmaps that
contain only one position per heatmap (for example, a joint position in the form
of x and y coordinates), which is given in PedRecNet. To visualize the behavior
of the softargmax function, it can be split into the softmax part and the index
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multiplication. As such, first, the softmax is calculated for every element mrc in a
heatmap M with size R× C. The 2D softargmax function is defined as:

softargmaxx,y(M) = sx,y(M) = (
R∑

r=1

C∑
c=1

r

R
σ(Mr,c),

R∑
r=1

C∑
c=1

c

C
σ(Mr,c)) (4.18)

To further highlight the principles and one downside of this approach, one can
visualize the processing steps of the heatmaps. The first step is the application of
the softmax, as shown in Figure 4.25.
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Figure 4.25: Softmax visualization

This form of a heatmap with a single maximum value of one is an optimal case.
The coordinate extraction step from such a heatmap is shown in Figure 4.26a.
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Figure 4.26: Comparison of the same softargmax outputs from different softmax
heatmaps.

Luvizon et al. use the maximum value of the softmax output as the joint con-
fidence [45]. However, it is important to note that during the PedRecNet training
process, the network has not been subject to any other constraints, such as an
enforced peakiness of the heatmap. This allows the network to learn alternative
representations. An example of this is shown in Figure 4.26b.
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If the two softmax heatmaps in Figure 4.26 are compared, it can be seen that
different heatmaps can lead to the same output. Furthermore, it becomes clear
that the numerical value of the maximum deflection of the softmax output cannot
be an indicator for confidence. Examples of an unconstrained softmax output are
shown in Figure 4.27.

(a) Input (b) Pose 2D (c) Pose 3D

Figure 4.27: Human Pose: Softmax Heatmaps learned without peakiness con-
straint. Max Val 2D: 0.00011, Max 3D: 0.0015

The Pose2D softmax heatmap is rather peaky at the actual location of the joint.
In contrast, the Pose3D heatmap contains some more peaks. The network seems to
have learned various numerical help constructs, which result in the desired output
without a single peak at the actual joint position. One-dimensional heatmaps show
similar behavior, as visualized in Figure 4.28.

The head orientation prediction of ϕ shows the actual prediction of 352°. The
body orientation prediction shows multiple peaks for the prediction of ϕ. The
prediction of the heads’ θ shows even more peaks, similar to the example of 3D
human pose estimation.

Luvizon et al. [45] added a constraint in the form of a BCE loss applied on
the maximum value of the softmax heatmap with ground truth provided from the
visibility label of a joint to enforce the peakiness of a heatmap. Figure 4.29 shows
an example output for the PedRecNet trained on Pose2D data only with the BCE
loss on the maximum value of the softmax map.

The max value was used after average pooling with a 3× 3 kernel and a stride of
1×1, as the heatmap usually takes a Gaussian form to enable fractional coordinate
output. The network can apply the peakiness in this case and reaches a similar
performance as without this constraint when trained on COCO [25]. Nevertheless,
using multiple datasets resulted in a more unstable training which got even more
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(a) Input

Body θ = 90°

Body ϕ = 305°

Head θ = 88°

Head ϕ = 352°

(b) Orientation Softmax Maps

Figure 4.28: Human Body and Head Orientation: Softmax Heatmaps learned
without peakiness constraint.

(a) Input (b) Body

Figure 4.29: Human Pose: Softmax Heatmaps learned with peakiness constraint in
form of an applied BCE loss on the softmax maximum value based on
the visibility label of a joint.
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instable when adding additional tasks, like the 3D human pose estimation. This
may be caused by the presented PedRec architecture, in which the 2D and 3D
human pose estimation share the first two blocks of transpose convolution yet work
in different coordinate spaces. The peakiness constraint seems to limit the network
in this regard. The initial intention of the peakiness is to use the maximum value of
the softmax heatmap. However, as the BCE loss uses the visibility label to enforce
peakiness or flatness of the softmax output, it is representing a joint visibility
classification task embedded in the coordinate regression task. Would one add a
dataset with valid joint coordinates but visibility labels of zero, the network could
learn to regress the joint coordinates well by using a mostly uniform heatmap
output similar to Figure 4.27c. As such, PedRecNet does not apply additional
peakiness constraints on the softmax output, enabling the network to choose its
own representation of the heatmap and thus, enable a more stable training with
this specific network architecture. Instead, a standard classification head was added
to the network, trained to classify the visibility of labels. In the experiments, the
classification rate did not differ significantly by using the separate classification head
instead of the max value of the softmax output enforced by the peakiness constraint.
It could be investigated to model the uncertainty in the network to output the actual
confidence in the coordinate regression task. One possibility would be using the
loss of the coordinate regression task as a label for the uncertainty task. However,
this is beyond the scope of this work and thus, not further investigated.

To summarize, the term heatmap and softargmax are not quite accurate without
a peakiness constraint. In an implementation without such a constraint, the heat-
maps are rather auxiliary constructs and the softargmax is not a real argmax either.
Nevertheless, the term heatmap will be used in the following because the output still
corresponds to a position on a heatmap, even if the network does not necessarily
operate with peaks internally.

Orientation Estimation Heatmaps In addition to the presented use of a one-
dimensional heatmap for orientation estimation, it is also possible to use a two-
dimensional heatmap, which allows the orientation estimation to be set up in the
same way as the 2D and 3D human pose estimation. For this purpose, the polar
coordinates can be converted into Cartesian coordinates (see Figure 4.30).

The figure shows that the ground truth coordinates lie on a unit circle for this
purpose. This method was also tested, but the performance was comparable with
the one-dimensional approach. However, the one-dimensional approach requires
significantly fewer parameters, so the one-dimensional variant was preferred due to
the better runtime behavior.
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Figure 4.30: Example of how polar coordinates could be represented as Cartesian
coordinates on a 2D heatmap.

4.4.4 Datasets
The training and validation datasets of the PedRec network are composed of the
COCO [25], the H36M [48], and self-generated simulated datasets. The datasets
support different labels, especially orientation estimation labels are only available
in the simulated data (cf. Table 4.7).

Dataset Pose2D Pose3D Orientation Action

COCO [25] X X O X
H36M [48] X X X X
TUD [67] X X O X
SIM-ROM X X X X
SIM-Circle X X X X
SIM-C01 X X X X

Table 4.7: Overview of the used datasets and the supported labels. COCO [25]
(MEBOW [65]) and TUD [67] orientation annotations provide only body
ϕ labels. The 2D and 3D human pose estimation labels differ in the
available labels as COCO [25], H36M [48] and SIM use different skeleton
structures. Legend: Xdata is available, X data is not available, O data
is partially available.

Whole-body data, including the θ and ϕ angle of the body and head orienta-
tions, are only available in the simulated datasets. Therefore, the validation of the
orientation estimation on real data can be performed with these datasets only for
the azimuthal angle ϕ of the body. All simulated datasets are created using mo-
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tions, captured in a motion capture laboratory. For action recognition, a particular
dataset, SIM-C01, was designed and recorded that is focused on pedestrian action
recognition. This dataset is described in section 4.4.4.3.

4.4.4.1 SIM-ROM

In the SIM-ROM dataset, a person was recorded performing an extended range
of motions that should include as many poses as possible. The idea behind this
dataset is to provide data from various performable body poses for 3D human pose
recognition.

4.4.4.2 SIM-CIRCLE

The SIM-Circle dataset resulted from an analysis of the other datasets. As high-
lighted in Figure 4.31, there is a substantial difference in the distribution of the
azimuthal angle ϕ of the body pose.
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(e) SIM-C01 (Train)
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Figure 4.31: Distribution of body ϕ orientations [◦] in the datasets used in this
work. The plots show the distribution of the samples in a polar plot.
The small peaks in SIM-CIRCLE are due to overlapping start and end
frames.
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Similar distribution of the azimuthal angle ϕ of the head poses were observed.
To generate further data with a uniform distribution, the SIM-Circle dataset was
created, in which 3D models walk clock- and counterclockwise in a circle at a
uniform speed (see Figure 4.31d).

4.4.4.3 SIM-C01

In the previous action recognition experiments presented in Section 4.2 and 4.3,
the elementary actions, ‘walk’, ‘stand’, ‘wave out’, ‘sit’, and ‘jump’ were binary
classified. Since the actual actions performed by pedestrians include many more
actions and combinations of these actions, a larger corpus of actions in the ped-
estrian context should be recorded in this experiment. In addition to a larger set
of actions, multiple actions performed simultaneously, such as walking and looking
around, should also be supported. The action catalog is geared for use in autonom-
ous driving and includes, for example, hitchhiking, checking for traffic, or looking
around. A list of all actions is given in Table 4.8.

Action Frames (Train) Frames (Val)

stand 409, 050 45, 652
idle 58, 206 10, 168
walk 501, 943 57, 699
jog 235, 386 16, 207
wave 47, 666 2, 970
kick a ball 9, 451 1, 144
throw something 8, 351 1, 024
looking for traffic 131, 570 14, 819
hitchhike 38, 288 4, 018
turn around 37, 380 3, 494
work 34, 580 4, 263
argue 13, 055 961
stumble 4, 967 837
open a car’s door 13, 342 1, 192
fall 8, 071 591
stand up 6, 713 873
fight 15, 512 990

Table 4.8: SIM-C01 - Number of samples per action. Only frames used during the
EHPI3D experiments are reported.

These actions were combined in different scenes. A scene could consist of only
one action, for example, ‘hitchhike on the left sidewalk’, or of several actions in a
certain sequence, for example:
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1. Walk along the left sidewalk

2. Looking for traffic

3. Cross the street

4. Turn around on the street

5. Walk back to the left sidewalk and continue there.

In addition to the instructions, various accessories, such as a smartphone, a
stroller, or a walking stick, were also used during recordings (see Appendix A.3).

The SIM-C01 dataset was split in a training part (SIM-C01T) which contains
the data from the first 9 of the recorded subjects and a validation part (SIM-C01V)
which contains the data from the last recorded subject.

Usage of the Motion Capture Manager Since this catalog requires numerous
records with complex instructions, the Motion Capture Manager (see section 3.5.1)
was used for record scheduling and execution. A list of all recorded sequences as
well as the number of records per sequence can be found in Appendix A.3. In
this project, it was possible to evaluate how quickly complex recordings can be
carried out with it. The average duration for recording a sequence (n = 936) was
28.84 s±15.58 s with an average of 21.33 s±15.44 s overhead to the actual recording,
where s stands for seconds. The actual recording lasted on average 7.51 s± 3.12 s.
The overhead includes everything from the start of a recording to the next start
of a recording, for example, the acquisition of information about the sequence, the
return of used accessories, the fetching of new accessories, the movement to the start
position, the preparation of the recording as well as pauses and interruptions. The
recordings included between one and five instructions (mean µ = 2.22, standard
deviation σ = 1.41), and between zero and two accessories each in the left or right
hand (µ = 0.96, σ = 0.74). The ten participants were between 15 yr and 32 yr old
(µ = 24.83, σ = 5.80), between 166 cm and 186 cm tall (µ = 1.77, σ = 6.55), and
weighed between 51 kg and 115 kg (µ = 76.11, σ = 17.24). Four outliers with a
total length of more than 120 s were removed, as a longer pause can be assumed.
Figure 4.32 shows the length of recording a sequence, the length of the captured
movement, and the overhead.

The Motion Capture Manager can therefore be used to record even large re-
cording catalogs efficiently. Due to the complete recording control by the motion
capture management system, post-processing is also significantly simplified after-
ward since all information about all recorded sequences is directly available and
can be automatically linked via the UID with the actual recording data.
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Figure 4.32: Motion Capture Manager: Record duration distribution

4.4.4.4 Dataset Statistics

A selection of 15 3D human models was used for all simulation datasets. The 3D
models were all 3D scanned and mostly manually post-processed to ensure high
quality. An overview of the 3D models used is given in Table 4.9.

Model # Gender Age [years] Height [cm] Weight [kg] Skin [Fitzpatrick5] ROM Circle Frames C01 (Train) Frames C01 (Val)

1 Female 6 119 20 II 37, 218 2, 628 66, 396 5, 193
2 Female 15 168 50 V 2, 639 79, 923 10, 037
3 Female 29 179 62 II 2, 638 71, 753 12, 283
4 Male 29 190 85 II 36, 827 2, 640 62, 001 8, 994
5 Male 30 170 95 II 2, 640 82, 936 4, 232
6 Female 30 173 55 VI 2, 639 81, 523 8, 523
7 Female 30 183 65 VI 36, 736 2, 640 78, 765 6, 537
8 Male 31 187 80 III 36, 948 2, 568 81, 490 7, 601
9 Female 32 183 60 I 2, 640 71, 462 5, 427
10 Male 40 186 75 II 2, 615 52, 181 9, 482
11 Male 45 185 80 II 2, 640 74, 616 15, 655
12 Male 45 185 80 II 2, 640 94, 833 3, 267
13 Male 62 191 95 II 2, 640 83, 852 472
14 Male 75 182 98 I 2, 639 77, 537 14, 722
15 Female 80 168 70 I 2, 638 82, 021 6, 832

Table 4.9: Used 3D models and number of frames containing them in the simulation
datasets.

Most models are middle-aged and have an average size. In addition to two
models of seniors, one child model is also included. However, since data from
particularly old, young, tall, or short people are challenging to obtain, they are
underrepresented. Table 4.10 provides an overview over the datasets used. This
overview shows that the H36M [48] and SIM-C01 datasets contain the most data by
far. Likewise, It is clear that the H36M [48] data was recorded in a lab with limited
space, which is why the bounding boxes are always relatively large. Comparing the
2D bounding box diameters of COCO [25], TUD [67], SIM-CIRCLE, and SIM-C01,
the distribution is similar, as each of the datasets contains individuals at various

5https://dermnetnz.org/topics/skin-phototype/ (accessed on 2022-03-06)
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distances. The SIM-C01 dataset differs in that it also contains images of pedestrians
taken at very far and very close distances.

Data COCO [25] H36M [48] TUD [67] SIM-ROM SIM-CIRCLE C01

n 149, 813 1, 559, 752 8, 322 147, 729 39, 484 1, 362, 184
b̄2D [px] 229 855 193 503 222 214
σ2D
b [px] 148 83 44 502 133 196

min b2D [px] 28 585 45 31 43 9
max b2D [px] 1, 002 1, 339 462 2, 202 830 2, 201
b̄3D [mm] 1, 712 1, 816 1, 885 1, 855
σ3D
b [mm] 197 401 194 230

min b3D [mm] 859 169 1, 202 78
max b3D [mm] 2, 769 2, 840 2, 194 2, 696
d̄ [px] 5, 170 7, 205 10, 609 16, 134
σd [px] 750 5, 578 5, 779 5, 498
min d [px] 2, 530 22 2, 321 1, 640
max d [px] 7, 690 21, 289 25, 754 76, 657

Table 4.10: Statistics of datasets used in the PedRec experiments. b represents the
2D or 3D bounding box size, and d the distance to the camera. The
number of samples is notated as n, the mean of bounding boxes and
the distances to the camera as b̄/d̄, and the standard deviation values
are notated with σ.

4.4.5 Training Procedure
The network was trained step by step in the following order:

1. 2D human pose estimation

2. 3D human pose estimation

3. Joint visibility

4. Head and body orientation

The training was performed on real data (COCO [25]+H36M [48]) and then on
simulation data in the same order.

Loss Functions The L1 loss function was used for the 2D and 3D human joint
coordinate regression losses Lp2d and Lp3d. The joint visibility loss Lvis is the
standard binary cross-entropy loss. In the orientation regression task, circular data
was represented in a one-dimensional map. Thus, the standard L1 or L2 loss could
not be used. For example, a prediction of 359° with a ground truth of 0° results in
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an error of 359°. This applies only for the azimuthal angle ϕ, the polar angle θ is
defined between 0° and 180°, and thus the standard distance metrics can be used.
As such, the following loss functions were applied:

Lϕ =

∑N
i=1 min (1− |m̂ϕ −mϕ|, |m̂ϕ −mϕ|)

N
(4.19)

Lθ =

∑N
i=1 |m̂θ −mθ|

N
(4.20)

Lo =
Lϕ + Lθ

2
(4.21)

where N is the number of samples and mϕ and mθ are the softargmax outputs
for the azimuthal angle ϕ and the polar angle θ normalized between zero and one.
As shown in equation 4.19 and 4.20 the L1 loss is incorporated. For training data
which only provides labels for the azimuthal angle ϕ only equation 4.19 is used.

In the experiments, N may be a subset of the entire training set, as various
datasets with different supported labels (see table 4.7) were combined. As such,
each loss function contains a sample selection step before the actual calculation of
the loss.

Uncertainty loss, described by Kendall et al. [138], was applied to balance the
different loss outputs. The final loss function is:

L =
1

2σ2
1

Lp2d +
1

2σ2
2

Lp3d +
1

2σ2
3

Lo +
1

σ2
4

Lvis + log (1 +
4∏

i=1

σi) (4.22)

where σ1−4 are learnable parameters. log (1 + σ) was used instead of log (σ)
to ensure a positive loss value. Using this approach resulted in slightly better
performance compared to equal-weighted losses. The training procedure remained
stable using both approaches.

Optimizer The AdamW optimizer [139] was used for optimization, which is a
slightly modified variant of the Adam optimizer [140]. The learning rate range
test [141] was applied to get an initial learning rate of 4e−3. A standard weight
decay of 1e−2 was used. In addition, the 1cycle policy [142] was used, with which
the learning rate is updated during the training process from a minimum learning
rate of 4e−3

25
to the maximum of 4e−3 and afterward back to a minimum using

cosine annealing. Smith showed that this approach results in faster convergence
and usually better results [141]. The network was trained with a training cycle of
15 epochs, from which 10 epochs were trained with frozen weights in the feature
extractor. For the last five epochs with the feature extractor unfrozen, the learning
rate for the feature extraction was reduced to 2e−4 and for the other layers to
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4e−4. The training cycle was repeated five times, which improved the performance
slightly.

Datasets The training datasets of COCO [25], H36M [48], SIM-ROM, and SIM-
Circle were used to train the PedRecNet. The validation is done on the validation
parts of COCO [25], H36M [48], and the SIM-C01 dataset. The H36M [48] training
dataset was subsampled by ten, all samples from the other datasets were used.
For the orientation estimation part, only labels from SIM-ROM and SIM-Circle
were used during the initial training. COCO [25] labels were used in an additional
training step during orientation experiments (see section 4.4.6.3). The dataset
names are abbreviated in the results as follows: C stands for COCO [25], M for
COCO [25] (MEBOW [65]), H for H36M [48] and S for SIM-Circle and SIM-ROM
combined. COCO [25] is always the base dataset of PedRecNet and is therefore
used as one of the training dataset in every experiment.

Augmentations The data were augmented by scaling the inputs by up to ±25%
and rotating them by up to ±30◦ in 50% of the cases, but only when no orientation
labels were used. The data were flipped in 50% of the cases.

4.4.6 Results
In the following evaluation, the results of 2D and 3D human pose recognition and
orientation estimation are considered. The focus of this evaluation is to determine
the influence of data from the different datasets on the results. This is in particular
the case for the use of the simulated data. Comparisons with SOTA methods are
included to provide a general performance ranking to determine whether PedRecNet
is generally suitable as a baseline against specialized networks.

4.4.6.1 2D Human Pose Estimation

We first look at performance based on results on the COCO [25] val2017 bench-
marks. For comparability, all approaches, except the bottom-up approach Open-
Pose, were compared using ground truth bounding boxes. The results are shown
in Table 4.11.

As expected, the performance between the PedRecNet, when trained only on the
COCO [25] dataset, is comparable to the approach of Xiao et al. [30] on which
the network is based. The differences in performance can be explained by an
extended test-time augmentation or post-processing in the approach of Xiao et
al. [30]. More current approaches, such as the HRNet [143], deliver significantly
better performance. Thus, it might be worth changing the backend from a ResNet50
to an HRNet [143] in the future. Additionally, results for the PedRecNet trained on
COCO [25] only using test-flip augmentation are provided. The test-time flipping
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Datasets AP AP 50 AP 75 AP (M) AP (L) AR AR50 AR75 AR(M) AR(L)

Cao et al. ’17 [27] 65.3 85.2 71.3 62.2 70.7 - - - - -
Xiao et al. ’18 [30] (ag*) 72.4 91.5 80.4 69.7 76.6 75.6 93.0 82.3 72.4 80.4
Sun et al. ’19 [143] (ag*) 76.5 93.5 83.7 74.0 80.8 79.3 94.5 85.8 76.2 84.1

ours C (2D only) (ag) 71.5 91.4 78.7 68.4 76.1 75.0 92.3 81.1 71.7 80.0

ours C (2D only) (g) 70.4 91.3 77.6 67.6 74.9 74.2 92.0 80.5 71.0 79.0
ours C+H+M (g) 68.8 90.3 76.6 65.9 72.9 72.6 91.2 79.4 69.5 77.3
ours C+S (g) 67.9 90.3 75.0 64.9 72.8 72.3 91.5 79.0 68.9 77.5
ours C+H+S (g) 67.1 90.3 74.9 64.6 71.4 71.5 91.1 78.4 68.3 76.3
ours C+H+S+M (g) 67.6 90.2 75.1 65.0 71.9 71.8 91.4 78.6 68.7 76.7

Table 4.11: Comparison of used training datasets on COCO val2017 results.
Ground truth bounding boxes were used as detection input. Dataset
Legend: C=COCO [25], H=H36M [48], M=MEBOW [65], S=SIM, (a)
used test-time augmentation (in ours only flip test is applied), (g) used
ground truth bounding boxes, *= the officially provided code was used
to evaluate on GT bounding boxes. 192 × 256 input bounding boxes
and the ResNet50, respectively the W32 architecture were used.

improves accuracy on validation data, which is more or less pronounced depending
on the architecture. However, since this leads to double the size of the input and
the usefulness of this method under real conditions is questionable, further 2D
results are presented without any test-time augmentations. In the present work,
it is more relevant to look at the relative differences between the used datasets
on the PedRecNet. Here, it can be observed that under the additional use of the
H36M [48] and MEBOW dataset [65], the AP decreases by 0.6%. If the simulation
dataset is also used, the performance decreases by another 1.2%. Looking at AP 50

versus AP 75, it is clear that the performance differences have little effect at an
OKS of >= 0.5, but become more pronounced at >= 0.75. One explanation for
the performance loss would be slight differences in the label positions of the training
data used (see discussion in section 2.3.3.1, which also applies for the OKS metric).

Table 4.12 shows the results using the PCK metric on the COCO [25], H36M [48],
and SIM-C01 datasets.

The PCK results on the COCO [25] val2017 dataset and the conclusions to
be drawn are comparable to the OKS results on the COCO [25] val2017. Going
further, it is noticeable that the network trained purely with COCO [25] already
delivers relatively good results on the SIM-C01V dataset, while performing rather
poorly on H36M [48], which only contains individuals at a short distance from the
camera. One factor influencing the performance on H36M may be the difference
in the ground truth label positions. However, it is also important to note that in
the H36M [48] dataset, there is no ground truth to the joints on the face, so the
comparison is only made on the 12 remaining joints. The H36M [48] results on the
full PedRecNet dataset improve slightly with the use of the simulation data. The
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Net Train C@0.05 C@0.2 H@0.05 H@0.2 S@0.05 S@0.2 H-MPJPE S-MPJPE

2D C 56.47 92.65 31.25 88.46 48.70 96.06 − −
2D C+H 55.26 92.47 58.44 93.07 48.88 96.14 − −
2D C+S 54.53 92.19 31.84 88.55 64.56 96.55 − −

Full C+H 54.99 92.19 60.74 93.24 49.76 96.37 63.96 158.0
Full C+H+S 53.18 91.87 61.66 93.34 65.64 96.67 64.54 91.8

Table 4.12: 2D Human Pose Estimation Results: COCO [25] Skeleton (17 joints,
see section 3.7.4.1). Note that the H36M [48] dataset does not contain
joints for the face, thus the evaluation on H36M [48] is done only on
the remaining 12 joints.

fully trained network achieves good performance on all validation datasets, with
PCK@0.05 exceeding 50% and PCK@0.2 exceeding 90%. Overall, 2D human
pose estimation is noticeably better on simulation data, although long-range data
is included. However, this can also be explained through the usage of a relatively
small corpus of 3D human models, which occur accordingly in training as well as
in the test dataset, albeit with different motions.

It is important to note that the skeletal structure differs in the datasets, so the
evaluation of 2D human pose estimation must also be considered on the official
H36M [48] skeletal structure and the PedRec skeletal structure. Table 4.13 shows
the results with the H36M [48] skeletal structure.

Net Train H@0.05 H@0.2 S@0.05 S@0.2

Full C+H 89.2 98.1 76.3 98.8
Full C+H+S 89.4 98.1 91.2 98.9

Table 4.13: 2D Human Pose Estimation Results (PCK scores): H36M [48] skeleton
with 17 joints (see section 3.7.4.1).

The results are consistently much better. This is mainly because the bound-
ing boxes in the H36M [48] dataset are larger, thus providing better visual cues.
Differences between the datasets used here only affect the details; for example,
PCK@0.05 is about 15% better on the SIM-C01 dataset, but PCK@0.2 is virtu-
ally identical, again more indicative of differences in ground truth label positions.
Table 4.14 shows the results on the extended H36M [48] skeleton which includes
hand and foot ends in addition to the other 17 joints. These joints are included in
the dataset but are not part of the official skeletal structure (see [48, p. 1335]).

The overall PCK decreases when including the foot and hand ends, but is still
at 86.3% for PCK@0.05. Accordingly, we can conclude that recognizing the hand
and foot positions works, but worse than the other joints. As in the previous exper-
iments, the result on the H36M [48] dataset is slightly better using the simulation
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Net Train H@0.05 H@0.2 S@0.05 S@0.2

Full C+H 86.1 97.5 70.5 98.2
Full C+H+S 86.3 97.6 87.8 97.9

Table 4.14: 2D Human Pose Estimation Results (PCK scores): H36M extended
skeleton with 21 joints (H36M [48] skeleton + HAND and FOOT ends.).

data. Interestingly, the PCK@0.2 result on the simulation dataset worsens slightly
when training with simulation data compared to training with H36M [48] data only.
However, due to the slight difference and the generally high level, this can also be
assumed to be a simple training effect.

Table 4.15 shows the results on the full PedRec skeleton.

Net Train S@0.05 S@0.2

Full C+H 38.0 94.5
Full C+H+S 64.1 95.8

Table 4.15: 2D Human Pose Estimation Results (PCK scores): PedRec skeleton
with 26 joints (see section 3.7.4.1).

The PedRec skeleton is a combination of the H36M [48] extended and the COCO [25]
skeletons. As expected, the performance is somewhat worse than the evaluation
with the H36M [48] extended skeleton, since the 2D joints in the face are generally
more challenging to estimate.

Figure 4.33 show an example on real ‘in the wild data’. Generally, good detection
performance is achieved, but some false detections are also visible. The detection
of the distant humans already fails during the detection with the used YoloV4
network. One example of false detections in the 2D human pose estimation is the
left foot end of the third man from the left, partially obscured by the red jacket.
The same applies to the woman in the middle, whose right foot is occluded by the
left leg. Another example is the wrist as well as the end of the hand of the man
on the far right, who is scratching his head. Occlusions thus still seem to cause
problems for the network in some cases.

4.4.6.2 3D Human Pose Estimation

For 3D human pose estimation, first the performance compared to other methods
on the H36M [48] validation dataset is reported. The results of 3D human pose
estimation are shown in Table 4.16. It summarizes further approaches, which differ
in the methods, input data, and validation data used. Some approaches use test-
time augmentations like flip-testing or temporal information to improve the results.
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Figure 4.33: 2D human pose estimation: Real-world example. Subjectively good
results, yet occasionally a few problems with occlusions and foot /
hand end positions.

Method Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Chen et al. ’17 [38](g) - - - - - - - - - - - - - - - 82.4
Martinez et al. ’17 [46](g) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Luvizon et al. ’17 [137] (gs) 49.2 51.6 47.6 50.5 51.8 48.9 48.5 51.7 61.5 70.9 53.7 60.3 44.4 48.9 57.9 53.2
Yang et al. ’18 [144] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Pavllo et al. ’19 [39](agt) 45.1 47.4 42.0 46.0 49.1 56.7 44.5 44.4 57.2 66.1 47.5 44.8 49.2 32.6 34.0 47.1
Pavllo 2018 et al. ’19 [39](ag) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Luvizon et al. ’20 [37](gs) 43.2 48.6 44.1 45.9 48.2 43.5 44.2 45.5 57.1 64.2 50.6 53.8 40.0 44.0 51.1 48.6
Shan et al. ’21 [145](at) 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.3
Gong et al. ’21 [146](ag) - - - - - - - - - - - - - - - 50.2

ours C+H+M (ag) 49.2 51.9 49.6 50.9 55.4 60.4 45.4 48.8 64.3 75.2 53.0 47.3 54.0 39.2 45.5 52.7
ours C+H+S+M (ag) 51.2 51.9 49.7 52.1 56.0 60.3 47.1 48.8 62.8 75.6 53.1 48.2 54.2 40.5 47.3 53.3

ours C+H+M (g) 50.4 53.8 50.8 52.9 57.5 62.9 47.2 50.5 65.8 78.6 54.8 49.2 56.0 40.7 46.3 54.5
ours C+H+S+M (g) 52.4 53.9 50.8 54.0 57.8 62.6 48.6 50.3 64.6 79.0 54.7 49.6 56.3 41.6 48.1 54.9

Table 4.16: Results on the H36M [48] dataset reported as MPJPE. Legend of prop-
erties (Prop.), influencing the results: (a) used test-time augmentation
(in ours only flip test is applied), (g) used ground truth bounding boxes,
(s) sampled every 64th frame of validation set, (t) used temporal in-
formation
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For better comparability, results using flip-testing are shown in addition to the
results without any form of test-time augmentation. The performance of our
method with an average MPJPE of 52.7mm is comparable to current SOTA ap-
proaches such as Gong et al. [146] with 50.2mm and Luvizon et al. [37] with
48.6mm. The use of temporal information leads to noticeable better results in
this benchmark. This becomes clear when comparing the two results of Pavllo et
al. [39] who have been able to achieve an improvement of 4.7mm by using tem-
poral information. The performance from PedRecNet is very similar, but decreases
slightly when simulation data is used during training. However, this may also be
because the simulation data is partly very different from the H36M [48] data in
terms of distances, body size of the persons and label positions.

An even better overview of the actual performance is provided by looking at the∆
between predicted and ground truth joint position per joint separately. Figure 4.34
shows these for the H36M [48] dataset and the fully trained PedRecNet. Joints
near the body center are detected much better than the extremities. This was
to be expected since the extremities have an increased degree of freedom as well
as often a greater distance from the pelvis. In addition to the MPJPE, the joint
distance is shown in x, y, and z direction. The most significant contribution to the
error comes from depth estimation.

hi
p_

ce
nt

er

rig
ht

_
hi

p

le
ft

_
hi

p

sp
in

e_
ce

nt
er

ne
ck

rig
ht

_
kn

ee

rig
ht

_
sh

ou
ld

er

le
ft

_
kn

ee

he
ad

_
lo

w
er

le
ft

_
sh

ou
ld

er

he
ad

_
up

pe
r

le
ft

_
el

bo
w

rig
ht

_
an

kl
e

rig
ht

_
el

bo
w

le
ft

_
an

kl
e

le
ft

_
w

ris
t

rig
ht

_
w

ris
t

0

20

40

60

80

100

jo
in
t
di
st
an

ce
[m

m
]

MPJPE and joint distances per joint

MPJPE
∆x
∆y
∆z

Figure 4.34: 3D joint distances between prediction and ground truth on the
H36M [48] validation dataset. Results reported using PedRecNet
trained on C+H+S+M . The colored bars show the ∆x, ∆y and ∆z
of the predicted and the ground truth joint position. The containing
white bar shows the MPJPE for the given joint.
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The results for the same evaluation on the SIM-C01 validation dataset with all
26 joints are shown in Figure 4.35. We see similar results with the most significant
errors for the extremities. The most negligible errors occur for joints near the
centerline of the body. This also includes the joints on the face. It is interesting to
note that on the SIM-C01 validation dataset, the relative contribution of the depth
estimate to the total error for extremities is smaller than when evaluated on the
H36M [48] dataset. This may be because the SIM-C01 validation dataset includes
more different body sizes and more variations in distance, making pose estimation
more difficult in the x and y directions.
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Figure 4.35: 3D joint distances on the SIM-C01 validation dataset. Results reported
using PedRecNet trained on C+H+S+M .

Figure 4.36 shows some examples on ‘in the wild’ real data. The examples are
from various sources and include different cameras, focal lengths, exposures, and
perspectives. Examples 4.36d-4.36f show that even in challenging situations a good
3D human pose can be predicted.

In contrast, some error cases are demonstrated in Figure 4.37. Figure 4.37a
shows an extreme corner case where the pose estimation fails completely. Note
that the corner case dataset from section 4.1 was not used during training. In the
second example, the body pose is roughly correct, but still shown as too upright.
The examples 4.37c and 4.37d show people with their arms stretched out, and
the left arm is estimated incorrectly. The same applies to the example 4.37e.
The pose is correct in most parts, but the outstretched left arm is not correctly
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(a) (b) (c) (d) (e) (f)

Figure 4.36: 3D Human pose estimation ‘in the wild’: PedRecNet examples. Top:
Cropped image of the person inputted in the network. Bottom: Pre-
dicted 3D human pose.
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recognized. From the pose only, it is not clear that the person is just operating a
traffic light switch. Example 4.37f shows a false recognition due to self occlusion.
The body occludes the left arm, but the 3D human pose recognition estimates it
to be hidden behind the right arm and displays it stretched out accordingly. These
false detections by occlusion could possibly be improved by further training data
or the use of temporal context.

(a) (b) (c) (d) (e) (f)

Figure 4.37: 3D Human pose estimation in the wild: PedRecNet false predictions.
Top: Cropped image of the person inputted in the network. Bottom:
Predicted 3D human pose.

4.4.6.3 Body Orientation Estimation

As described in the related work section, there are only few datasets in the context
of body and head orientation estimation for full-body inputs. For a state-of-the-
art comparison, the relatively new dataset MEBOW [65] is suitable. This dataset
provides body orientation labels for the COCO [25] dataset. However, it only
contains the azimuthal angle ϕ, labels for the head pose are not included. The
TUD [67] dataset was also used in the analysis, although it only contains 309
samples in the validation dataset. Accordingly, the significance of the results on
the TUD validation data is relatively low. Table 4.17 gives an overview over the
results on these datasets.
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Network Trainset Testset Acc.(22.5◦) Acc.(45◦) MAE(◦)

Wu et al. [65] (2020) MEBOW MEBOW 93.9 98.2 8.4
ours MEBOW MEBOW 92.3 97.0 9.7
ours SIM+MEBOW MEBOW 91.7 97.0 10.0
ours SIM MEBOW 80.2 94.7 16.1

Hara et al. [147] (2017) TUD TUD 70.6 86.1 26.6
Yu et al. [148] (2019) TUD TUD 75.7 96.8 15.3
Wu et al. [65] (2020) MEBOW TUD 77.3 99.0 14.3
ours MEBOW TUD 79.6 99.0 10.8
ours SIM+MEBOW TUD 77.3 98.7 14.3
ours SIM TUD 75.4 98.1 16.0

ours MEBOW SIM-C01 76.2 97.0 16.6
ours SIM+MEBOW SIM-C01 79.7 97.9 15.3
ours SIM SIM-C01 78.7 96.5 16.0

Table 4.17: Human body orientation (ϕ) test results on the MEBOW [65], TUD [67]
and SIM-C01V datasets. The column trainset specifies the training
dataset(s) used to train the specific networks. Testset specifies on which
test dataset the results are reported on. In addition to the accuracy in
22.5◦ and 45◦ intervals, the mean average error (MAE) is reported.

It is to notice that the PedRecNet already achieved an Acc.(22.5◦) of 75.4% on
the TUD [67] dataset and 80.2% on the MEBOW [65] dataset. For Acc.(45◦), which
is often sufficient for real-world applications, it even achieves 98.1% on the TUD [67]
dataset and 94.7% on the MEBOW [65] dataset. These are surprising results for
not using any training data from the corresponding training datasets. Especially
when compared to the earlier approaches of Hara et al. [147] and Yu et al. [148],
the PedRecNet gives better results without ever having seen any data from the
TUD [67] dataset. Accordingly, the PedRecNet provides a solid baseline, trained
with simulated data only. However, it should be noted, that 3D human pose data
is also used for orientation estimation and the training for this has included real
data from the H36M [48] dataset. When the MEBOW [65] training data are used
in addition to the simulation data, the Acc.(22.5◦) and Acc.(45◦) improve by 11.5%
and 2.3%, respectively, and are 2.2% and 1.2% worse than the results reported by
Wu et al.. In total, 159 body orientations were predicted with an error above 45◦.
These misclassifications were analyzed further, and erroneous ground truth labels
were detected for 37 images, some of which are shown in Figure 4.38.

Further, in 44 images, occlusions by different persons and thus confusions of the
detected person are present, examples of which are shown in Figure 4.39a-4.39c. 22
images contain images of persons that, even for humans, are very difficult to see.
Some examples of these problems are shown in Figure 4.39d-4.39f.
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(a) (b) (c) (d) (e) (f)

Figure 4.38: MEBOW [65] validation dataset: Examples of wrong orientation la-
bels. The red dotted arrow shows the annotated ground truth, the
black arrow shows the prediction of PedRecNet. The annotation of
people in a not upright position, for example 4.38c, is debatable.

(a) (b) (c) (d) (e) (f)

Figure 4.39: MEBOW [65] validation dataset: Examples of pictures of crowded or
occluded scenes, where it is not directly clear, which person should
be annotated (4.39a-4.39c) and examples of pictures where the per-
son is hard or not to see (4.39d-4.39f). The red dotted arrow shows
the annotated ground truth, the black arrow shows the prediction of
PedRecNet.
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(a) (b) (c) (d) (e) (f)

Figure 4.40: MEBOW [65] validation dataset: Examples of wrong orientation pre-
dictions. The red dotted arrow shows the annotated ground truth, the
black arrow shows the prediction of PedRecNet.

The remaining 65 images are clear false detections of the PedRecNet, examples
of which are shown in Figure 4.40.

4.4.6.4 Head Orientation Estimation

The SIM-C01V dataset was used for the validation of the head orientation (ϕ)
estimation. Only the ϕ estimate is considered at this point because θ is under-
represented in the SIM-C01 dataset; the head orientations are relatively horizontal
in the pedestrian actions in almost all cases. Accordingly, for the estimation of
θ, further targeted experiments and new data recordings are needed in the future.
The results for the estimation of the head ϕ orientation are shown in Table 4.18.

Network Trainset Testset Acc.(22.5◦) Acc.(45◦) MAE

PedRec SIM+MEBOW SIM-C01V 77.1 95.1 16.65
PedRec SIM SIM-C01V 76.3 94.8 17.43

Table 4.18: PedRecNet: Head orientation test results for ϕ.

The results are slightly inferior to the body orientation estimation by 2.6% and
2.8% for Acc.(22.5◦) and Acc.(45◦), respectively. In general, however, performance
on the body and head orientation estimates is relatively similar. The somewhat
inferior performance can be explained by the head region’s smaller image area than
the body region. The author is not currently aware of a larger and publicly avail-
able dataset that includes head orientation images in addition to full-body images.

140



4.4 PedRec: Multi-Task Pedestrian Recognition

Therefore, most approaches to head orientation estimation work with datasets that
only contain cropped faces. In productive applications, face recognition can then
be performed first, followed by a crop of the face, and orientation estimation can
be performed based on this cropped face bounding box. In addition, most datasets
only contain faces, which means that a side view or the back of the head cannot
usually be used for orientation estimation. In our approach, the entire body is
always considered, which enables head orientation estimation even for a side and
back view of a person. However, subjective observation of ‘in-the-wild’ examples
hint, that similar performance is expected on real data for head pose recognition
as for body pose recognition when trained on simulation data only. Figure 4.41
shows some ‘in-the-wild’ examples. Figure 4.41a shows a typical example, where
one can nicely depict the different estimates of head versus body orientation. Ex-
ample 4.41b shows a boy in a stroller, which shows that the orientation estimation
gives good results even in non-upright positions. Figure 4.41c shows a person who
was photographed from behind. Especially the correct head pose estimation is in-
teresting, although the person wears a hood and only a small part of the nose is
visible. Another interesting example is demonstrated in Figure 4.41d, where the
orientation estimation is based on input data of a person shot from behind and
only visible in a low-resolution image section of about 38× 78px.

4.4.7 Discussion
The presented PedRecNet is a simple yet efficient architecture that performs mul-
tiple tasks simultaneously and can run on consumer hardware at over 15FPS even
with multiple people. The network achieves performance that is comparable to
current SOTA methods for 2D and 3D human pose estimation and orientation es-
timation. The presented model combines all these tasks in a simple and extensible
architecture which is straightforward to train. Thus, the introduced model is also
well suited as a baseline for further research. It was further shown that the orient-
ation estimation part can be trained purely with simulation data and achieve high
accuracy on real data without requiring real sensor data for training. Further, the
3D human pose estimation of PedRecNet can be used for the following EHPI3D
action recognition experiments.
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Head

Body

(a)

Head

Body

(b)

Head

Body

(c)

Head

Body

(d)

Figure 4.41: Head and body orientation estimation ‘in the wild’: Examples. Top:
Cropped image of the person processed by the network. Bottom two
rows: Predicted head and body orientation ϕ.
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4.5 EHPI3D action recognition framework based
on 3D human pose

The detection of pedestrians, as well as their behavior, remains a challenge in the
field of autonomous driving. As shown in section 4.2 it is possible to detect ped-
estrian actions using 2D human pose recognition data, but the applied method is
susceptible to the vehicle’s own motion due to the usage of image pixel coordin-
ates of the front-facing camera in the car. In this work, pelvis-aligned 3D human
pose data are used as input to the action recognition, which are correspondingly
independent of camera movements. The following chapter will describe how the
EHPI approach is extended to 3D and show in experiments how action recognition
can be performed with this data. A novel dataset, called SIM-C01, is presented for
this purpose. This dataset contains significantly more actions than the experiments
described in sections 4.2 and 4.3. It includes various, selected actions relevant to
traffic situations and not available in other public datasets yet. Multi-label action
classification is used in this dataset and the following experiments.

The entire system and novel simulation data has been made public under the
MIT license6.

4.5.1 Generation of EHPI3Ds
The basic generation of an EHPI3D is similar to the generation of an EHPI2D
presented in section 4.2. The three RGB color channels encode the x, y, and z joint
coordinates retrieved from the 3D human pose estimation part of the PedRecNet.
These coordinates are placed in an M × N × C matrix, where M represents the
individual human joints, N represents the temporal dimension, and C represents
the three color channels. This structure allows the EHPI3D to be visualized as
an image, just like the EHPI2D. A matrix of size 32 × 32 × 3 covers a period of
1.06 seconds for a video input at 30 FPS. Likewise, up to 32 joints are supported.
The complete PedRec skeleton uses only 27 joints of this. These are raised to
32 with zero padding. The input size was chosen because all common standard
classification networks can be used with it. Alternatively, it would also be possible
to set the input size to 27 × 32 × 3 and pad the data during runtime. N is also
padded with zeros if there is not enough data from previous frames. No further
adjustment is required since the 3D joint coordinates are already normalized in a
3× 3× 3 meter volume (see Figure 4.21). This is also a major advantage over the
EHPI2D approach. By using image coordinates, the EHPI2D is usually influenced
by the camera’s ego-motion. To overcome this issue, one would need to use methods
like optical flow to estimate the ego-motion and remove it from the EHPI2D. The
3D joint positions, on the other hand, are in the local coordinate system of the

6https://github.com/noboevbo/PedRec (accessed on 2022-03-06)
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observed human and are therefore independent of the camera’s movements. Thus,
the EHPI3D approach can be used on moving platforms. However, the size of the
humans is not normalized, so the EHPI3D images of the same motions differ for
humans of different size. To compensate for this effect, the 3D joint positions are
normalized using a unit skeleton (see section 4.4.1). The difference in performance
after this normalization is shown in section 4.5.4. Figure 4.42 shows the structure
of an EHPI3D, which mainly groups nearby human joints.

head region

left arm
spine center

right arm

left leg
pelvis

right leg

Figure 4.42: Example of the EHPI3D structure (left) with the last frame of the
inputted data (right) of the action ‘walk’

.

4.5.2 Unit Skeleton
To ensure human body size constancy, a unit skeleton is defined based on standard
body proportions. Standard limb lengths in combination with the directions of the
original limbs are used to form the unit skeleton, which can be used to unify the
input data for an EHPI3D. The joint positions in this unit skeleton are calculated
sequentially starting from the pelvis for each limb as follows:

|~dl| =
√

(bx − ax)2 + (by − ay)2 + (bz − az)2 (4.23)

b̂ = a+∆l|~dl| (4.24)

where a and b are the joint positions of a limb, d is the normalized direction
vector of the particular limb l, b̂ is the position of b in the unit skeleton and ∆l is
a constant length based on the limb l represented by a and b. The values of ∆l are
derived from standard body proportions7. Figure 4.43 shows the used proportions
for the body limbs and Figure 4.44 the proportions for the facial limbs.

In the current case, it is not essential to use exact proportion values, as the same
transformation is applied to all inputs. Thus, it is only necessary not to change ∆l.

7https://de.wikipedia.org/wiki/Körperproportion (accessed on 2022-03-06)
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Figure 4.43: Human body proportions. Original from ‘Schnorch’ at Wikipedia7.

Figure 4.44: Human head proportions. Original from ‘Schnorch’ at Wikipedia7.

In Figure 4.43, the head size is used as the default unit. The average proportional
body size is eight ‘head units’. To specify the joint positions more precisely, these
‘head units’ are separated further into four equally sized parts, resulting in a body
size of 32 units. If a human is completely stretched out (arms above the head),
the body takes about 38-40 units. Instead of a metric body size, the ‘head units’
are used for the unit skeleton and the skeletal space is normalized to 40× 40× 40
‘head units’. This results in a skeletal representation with fixed limb lengths in a
fixed space, and thus a unified representation for an EHPI3D, which only encodes
the human motions and no longer individually skeletal features. An overview of all
limbs and their length in the unit skeleton is given in Appendix A.4. This work does
not contain any investigations regarding the behavior of people with non-standard
proportions, such as children.
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4.5.3 Training
The ResNet50 architecture is used for the classification of the EHPI3Ds. As a
standard multi-label classification problem, the BCE loss function is applied. A
standardized training procedure was used for all EHPI3D experiments to keep the
results comparable. Due to the small input size of the EHPI3Ds and the lightweight
ResNet50 network architecture, the network’s training with the full SIM-C01 data-
set is finished in under three hours on an NVIDIA RTX 3080.

Optimizer As in the PedRecNet experiments, the AdamW optimizer [139] was
used. Furthermore, the learning rate range test presented by Smith [141] was
applied to get an initial learning rate based on the steepest gradient. A standard
weight decay of 1e−02 is used. The one-cycle policy [142] was applied. The network
was trained with a training cycle of 20 epochs.

Datasets The EHPI experiments mostly used the SIM-C01 training dataset,
which contains 17 different actions (see section 4.4.4.3). For some experiments,
the real-world datasets used in the previous 2D human pose-based action recogni-
tion experiments (see sections 4.2.3 and 4.3.3) were added to gain some real-world
examples for the actions ‘idle’ and ‘walk’ and some data with the additional actions
‘jump’, ‘sit’, ‘wave a car out’, which are not contained in the SIM-C01 dataset. The
data was augmented by flipping the input horizontally in 50% of the cases.

4.5.4 Experiments
First, it is investigated how the different ways to generate an EHPI3D affect the re-
cognition performance on the SIM-C01V dataset. For example, it can vary whether
one uses 3D human pose data from ground truth or PedRecNet predictions for
input. Going further, the impact of using the unit skeleton is investigated. In
addition, the handling of invisible human joints, for example due to occlusion or
cropping, in the image must be defined. These joints can either be set to zero or
the unreliable estimate of the heatmap output can be used. Further, the impact
of including real data from the experiments in sections 4.2 and 4.3 in addition to
the simulated training data from the SIM-C01T dataset (A) is investigated. The
results of these experiments are shown in Table 4.19.

Since the distribution of actions in the SIM-C01V dataset is unbalanced, the
mean balanced accuracy (mBA) is reported in addition to the standard metrics
for multi-label classification. The mBA and the F1-score over the entire dataset
(OF1) are used as the primary metrics. A confidence threshold of 0.65 was used to
consider an action as recognized. An overview of all metrics used can be found in
section 2.3.1.6. The results show that it is necessary to use 3D human pose data
estimated by the PedRecNet already during training in addition to the EHPI3Ds
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Experiment ValS. mBA mAP OF1 OP OR CF1 CP CR

P 1 73.2 58.6 79.2 86.3 73.1 52.9 71.3 47.8
G 1 79.6 74.6 85.8 89.7 82.2 67.1 80.9 60.4
G+P 1 81.2 77.3 86.2 91.1 81.9 68.8 81.9 63.4
G+P+E 1 80.6 77.5 85.9 90.9 81.4 68.1 82.9 62.1
G+P+N 1 80.0 76.5 85.9 90.4 81.7 66.7 83.8 61.0
G+P+Z 1 81.6 79.2 86.5 91.3 82.1 70.6 85.0 64.1
G+P (15fps) 1 81.9 80.4 86.7 91.1 82.8 70.4 86.1 64.8
G+P+E (15fps) 1 81.8 80.1 86.2 90.9 82.0 69.8 85.2 64.7
G+P (64frames) 1 83.1 80.4 87.1 91.5 83.1 71.8 84.0 67.1

P 0 75.5 66.0 81.5 87.2 76.4 59.1 76.2 52.3
G 0 69.7 50.3 64.0 67.6 60.7 46.7 60.5 42.9
G+P 0 78.2 71.4 82.6 88.8 77.2 63.7 79.9 57.5
G+P+E 0 77.7 72.3 82.2 88.6 76.7 63.7 82.7 56.5
G+P+N 0 76.1 67.3 81.6 88.1 76.1 60.3 80.1 53.4
G+P+Z 0 78.4 73.2 82.0 88.2 76.6 64.2 81.6 57.9
G+P (15fps) 0 78.4 73.9 82.1 88.0 77.0 63.7 81.9 58.0
G+P+E (15fps) 0 78.4 73.4 82.0 87.8 76.9 64.2 81.2 58.1
G+P (64frames) 0 81.0 78.8 83.9 89.4 79.1 69.6 84.9 63.1

Table 4.19: EHPI3D action recognition results on the SIM-C01V dataset. The in-
fluence of different kinds of input pose data and preprocessing on the
performance are compared. Legend: G = 3D human pose input from
ground truth, P = 3D human pose input from PedRecNet predictions,
N = no unit skeleton was used, E = additionally used real-world data
from the experiments shown in section 4.2 and 4.3 as training data, and
Z = zeroed out invisible joints. In G+P experiments 65% ground truth
human pose data and 35% PedRecNet predicted human pose data were
used. ValS. displays whether human pose data from ground truth (G)
or PedRecNet predictions (P) were used as EHPI3D input during val-
idation. (15fps) stands for 32 frames with 15fps input = 2.12 seconds
input and (64frames) means a double width EHPI3D with encoding
also 2.12 seconds but with 30fps.
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generated with ground truth 3D human pose data. If only ground truth data is used,
the F1 score is 24.1%, which is worse than using additional estimated 3D human
pose data. This behavior was to be expected, since under real conditions, there is
always some noise in the joint coordinates due to the 3D human pose prediction,
which should be considered in the training. The usage of 100% estimated 3D human
pose data leads to good results, but better results can be reached by combining it
with ground truth 3D human pose input data. In the experiments, a mixture of
65% ground truth human pose data to 35% estimated human pose data proved to
be a good compromise. The additional use of real training data from the previous
experiments slightly decreases the performance, hinting that the action execution
might differ from the executions in the SIM-C01 dataset. However, it must be
noted here that the real data only includes examples of ‘idle’ and ‘walk’ which also
appear in the SIM-C01 dataset. Using the unit skeleton, and thus removing skeletal
size dependence in an EHPI3D, shows an improvement of 2.8% in mBA and 1.3%
in OF1-score. In contrast, zeroing out unseen human joints slightly worsens the
results. The performance can be improved further by using a larger time frame of
64 frames on 30 fps input, yet at the cost of potentially longer reaction times until
an action is recognized. Using 15fps results in slightly worse results, hinting that
some actions may be too subtle to be recognized with a lower frame rate. Overall,
with an OF1 score of 82.6% and mBA of 78.2%, good results are achieved with the
G+P approach. Those results are broken down in detail per action in Table 4.20.

The basic movements ‘stand’, ‘walk’, and ‘jog’ have reasonable recognition rates.
Some more apparent actions, like ‘hitchhiking’ or ‘looking for traffic’, are also
well recognized. For other actions, however, the recognition is significantly worse.
‘Stand up’, for example, only achieves an F1 score of 39.6%, which can be explained
by the missing context of the environment and especially of another person. An
additional factor is the composition of the action ‘fight’ which has several overlaps
with other actions, for example, ‘stand’ and ‘stumble’. For actions such as ‘throw
something’, ‘kick a ball’, or ‘open a car’s door’, further contextual information
would also be useful. The number of frames per action varies greatly, since some
actions, such as ‘fall’, only occur in a few frames during a scene. Other actions
such as ‘walk’ or ‘stand’, on the other hand, are included in almost all scenes, and
there is a correspondingly large amount of data for them. In a new dataset, care
should be taken to record some underrepresented actions separately in addition to
the overall scenes to obtain a somewhat larger training and validation basis. For
the interaction of several actions in real scenes, however, it is still relevant to re-
cord entire motion sequences. An overview of the representation of the individual
actions is also provided by Figure 4.45 which shows an example EHPI3D for each
action.

In Appendix C.1 there is another graphic where in addition to the EHPI3Ds, the
human in the last frame of the EHPI3D is also shown. The ‘idle’ (4.45b) examples
show the static nature without major movements. The examples of ‘walking’ (4.45a)
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Action BA AP F1 Precision Recall N

stand 90.0 95.3 88.2 93.3 83.6 45652
idle 64.2 59.7 42.7 81.2 29.0 10168
walk 90.2 95.4 89.6 90.5 88.8 57699
jog 86.0 87.4 79.1 85.1 73.9 16207
wave 87.5 85.8 77.7 80.0 75.6 2970
kick a ball 81.5 77.4 71.9 83.6 63.0 1144
throw something 69.5 59.2 55.0 93.0 39.1 1024
looking for traffic 88.7 89.2 82.3 85.7 79.1 14819
hitchhike 91.2 88.8 82.1 81.0 83.1 4018
turn around 75.1 66.1 60.9 76.2 50.7 3494
work 75.1 81.7 65.0 91.3 50.4 4263
argue 89.4 78.3 76.7 74.4 79.1 961
stumble 65.3 34.8 41.5 64.1 30.7 837
open a car’s door 65.6 66.1 46.8 92.6 31.3 1192
fall 87.7 58.7 55.6 43.9 76.0 591
stand up 58.7 50.4 27.8 69.4 17.4 873
fight 63.5 40.4 39.6 72.7 27.2 990

Table 4.20: EHPI3D action recognition results on the SIM-C01V dataset per ac-
tion. The results are from the G+P+E experiment and ordered by the
number of samples (N) per action.
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(a) walk (b) idle (c) jog (d) looking for traffic

(e) work (f) hitchhike (g) turn around (h) wave

(i) open a car’s door (j) kick ball (k) throw something (l) fight

(m) argue (n) stand up (o) stumble (p) fall

Figure 4.45: EHPI3D examples. Stand is not contained as a separate action, as it
would equal idling.
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and ‘jogging’ (4.45c) both show a sinusoidal motion pattern of the two legs, but
differ in their frequency. In the example ‘hitchhike’ (4.45f) one can see clearly the
color shift of the right arm, which is lifted. Likewise, in the example ‘turn around’
(4.45g) one can see how the colors shift in time due to a rotation of the human.
Something similar can be observed in the ‘stand up’ (4.45n) example, where the
colors shift in the head and upper body area. In the ‘wave’ (4.45h), ‘fight’ (4.45l),
‘throw something’ (4.45k), and ‘argue’ (4.45m) examples, movements of the two
arm parts are mainly visible. Interesting are also the examples ‘stumble’ (4.45o)
and ‘fall’ (4.45p), in which abrupt accelerations are to be recognized, which is atyp-
ical opposite the normally smoother movement sequences. The action recognition
should be able to distinguish these actions from standard movements. However,
since these two actions are among the actions with by far the least sample data,
it can be assumed that more data could significantly improve the overall result for
detecting people stumbling or falling.

4.5.5 Discussion
This work introduced an elaborate action recognition dataset that includes im-
portant pedestrian-related actions as multi-label classification data. On the novel
simulated pedestrian action dataset it was shown that recognition of basic motion
types such as standing, walking, and jogging is possible with an OF1 score above
80%. Many other actions are also well recognized, but the usage of only 3D human
pose data as input to the action recognition becomes problematic for some actions.
For the recognition of, for example, fighting, kicking a ball, or throwing something,
additional context information would be beneficial. In subjective evaluations on
real data, the action recognition shows promising results, especially in basic move-
ment types. However, a quantitative analysis based on a real dataset is future work.
Through the simulation approach, it could be investigated how the classification
behavior of the EHPI approach extended to 3D human pose recognition.

4.6 Conclusions from all experiments
Through the applications of simulated data shown in this chapter, the following
hypotheses were to be investigated:

1. The use of simulation data for training deep neural networks for vision tasks,
which receive purely visual sensor information as input, leads to overfitting
on simulation data.

2. By using abstraction layers, such as human joint positions, instead of direct
features from the visual input, action recognition systems can be trained with
simulation data only.
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3. Labels, that are not currently present in real datasets, can be created with
the simulation framework and used to train DNNs to achieve functionality
which would not be possible with current, freely available datasets.

In the corner case experiments in section 4.1, hypothesis one was confirmed.
The recognition rate of corner cases by a 2D human pose recognition algorithm
was improved through targeted simulation. However, the experiments showed that
overfitting occurs due to an excessive amount of simulation data, and performance
on real data decreases. Training purely on simulation data and applying it to real
data is not possible with the demonstrated methods.

Hypothesis two was investigated in the experiments in section 4.3 and section 4.4
using examples from action recognition as well as head orientation estimation. It
was shown that by using human pose estimation data as an abstraction layer, it is
possible to train systems purely on simulation data and that the results apply to
real data. Hypothesis two can thus also be confirmed.

Sections 4.4 and 4.5, showed how the motion capture manager and simulation
environment allowed us to generate simulation data with labels for body and head
orientation estimation as well as special pedestrian-related action recognition labels
that do not exist in this way in any real datasets. The systems perform well on a
simulated validation dataset. Accordingly, hypothesis three can also be confirmed.
In first subjective tests, the systems trained with this data could be used for real
data. Objective tests on real data are currently not possible due to missing datasets.
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Conclusion

This work shows how simulation data can be used in many ways to improve deep
learning applications, validate them, or enable applications that would otherwise
not be possible due to a lack of data. With the demonstrated motion capture man-
agement system, it is possible to efficiently record motion data in a motion capture
lab, annotate it, and integrate it into the presented simulation environment. The
simulation framework makes it possible to generate a huge amount of data from
different persons, movements, environments, and situations without much manual
effort and to generate training data for machine learning methods. It has been
shown that this allows 2D human pose estimation methods to be adapted to detect
corner-case motions. Further experiments have shown, that 2D human pose-based
action recognition can be trained with simulated data, and that the results can
also be transferred to real data. This procedure was continued and resulted in the
development of a 3D human pose-based action recognition approach (EHPI3D).
An extensive action catalog with pedestrian-related actions was generated. The
recorded motions were used in a simulation dataset that contains specific ped-
estrian actions and even supported multiple actions simultaneously (multi-label).
The EHPI3D human pose recognition approach can predict these actions with high
accuracy. However, for even better accuracy in the future, the context has to be
included in the action recognition and the pose information. Furthermore, in the
context of this work, the PedRecNet was developed, which can simultaneously per-
form 3D human pose recognition as well as head and body orientation estimation in
addition to 2D human pose recognition. The network can perform these recognition
tasks on a consumer GPU at 15-30 frames per second, including action recognition,
depending on the number of people. In the experiments, the PedRecNet could be
trained stably and without significant effort. The individual tasks of the network
achieve competitive performance against specialized SOTA methods, though not
outperforming them. It is very well suited as a baseline for diverse work. The
network supports a correspondingly large number of tasks in the field of human
recognition, yet the training procedure is stable and straightforward. Furthermore,
it achieves competitive performance compared to other SOTA approaches in the
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respective tasks.
In conclusion, simulation data, especially when not working directly on visual

input data, is well suited to train and validate machine learning methods. However,
it is usually advisable to additionally use real data, especially to train the parts
of a neural network that are directly based on visual input. To work directly on
visual data, it appears to be helpful to investigate methods in the field of domain
adaptation to further reduce the gap between simulation and real data on visual
sensor data.

Finally, the developed system is to be reviewed against possible open questions
in the field of pedestrian recognition shown in Figure 1.1 in the introduction. Fig-
ure 5.1 shows an exemplary integration of all technologies and an execution on real
data, recorded with the same action catalog used for the SIM-C01 dataset.

Figure 5.1: PedRec application with all available information recognized by the
PedRecNet (2D- and 3D human pose estimation, head and body ori-
entation estimation) and EHPI3D (action recognition). The eye symbol
indicates that the person is looking towards the observing sensor plat-
form. This function is based on the head orientation estimation.
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The figure shows that in addition to object detection and 2D and 3D human
pose estimation, head and body orientation estimation, and, based on these, an
estimation of whether one’s vehicle is within the pedestrian’s field of view were
integrated. Labels for these tasks hardly exist in conventional datasets, but thanks
to the simulation, they can be generated quickly and easily. In addition, the ac-
tion recognition output, based on the EHPI3D network, is visualized. It shows
good results on this real data example and contains labels that do not exist in
other datasets but provide valuable inputs for further functions in the context of
pedestrian recognition.
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Tables

A.1 Reutlingen University - Motion Capture
Lab: Hardware Overview

Reutlingen University - Motion Capture Lab: Hardware Overview. These cameras
were utilized for recordings used in this work.

Camera Type Quantity Resolution (MP) Max Frame
Rate (Hz)

Focal
Length
(mm)

Vantage V8 IR 8 8 260 12.5
Vantage V5 IR 12 5 420 12.5
Vue RGB 2 2.1 120 6− 12

A.2 SIM-C01: Record Catalogue
The sequences where varied in using different accessories and actions (see Ap-
pendix A.3) in either the left hand, right hand or both hands, movements (stand,
walk or jog) and movement speeds (slow, normal, none).

Sequence name Num. Records

Cross the street between cars 11
Cross the street between cars and back up 11
Move (left to right) 77

continues on next page
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Sequence name Num. Records

Move (right to left) 77
Cross the street on a crosswalk and carefully look (right side-
walk)

66

Carry a shopping bag (right sidewalk) 22
Cross the street on a crosswalk and no look (right sidewalk) 20
Wave to someone on the opposite sidewalk (left sidewalk) 11
Hitchhike (left sidewalk and walking) 11
Yell at someone and argue 11
Wave car in 11
Load a vehicle (right sidewalk - automatic) 11
Move (left to right, jogging) 55
Cross the street on a crosswalk and no look (left sidewalk) 20
Throw a ball 22
Carry a shopping bag (left sidewalk) 33
Cross the street on a crosswalk and carefully look (left sidewalk) 66
Hitchhike (right sidewalk and walking) 11
Wait for somebody on a crosswalk (left sidewalk) 22
Cross the street on a crosswalk and quick look (left sidewalk) 66
Hitchhike (standing and right sidewalk) 11
Move (right to left, jogging) 55
Wave to someone on the same sidewalk (right sidewalk) 11
Hitchhike (standing and left sidewalk) 11
Getting called by someone behind (right sidewalk) 11
Get called by someone on the opposite sidewalk (right sidewalk) 11
Move and fall 22
Cross the street on a crosswalk and quick look (right sidewalk) 66
Fight with someone 11
Load a vehicle (left sidewalk - manual) 11
Lean against a wall waiting 22
Cross the street on a crosswalk and carefully look and turn
around (right sidewalk)

66

Wave to someone on the same sidewalk (left sidewalk) 11
Move and stumble 22
Cross the street on a crosswalk and carefully look and turn
around (left sidewalk)

66

Wait for somebody on a crosswalk (right sidewalk) 22
Load a vehicle (right sidewalk - manual) 11
Wave to someone on the opposite sidewalk (right sidewalk) 11

continues on next page
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A.3 SIM-C01: Used Accessories

Sequence name Num. Records

Open a car door (right sidewalk) 11
Kick a ball 22
Open a car door (left sidewalk) 11
Load a vehicle (left sidewalk - automatic) 11

A.3 SIM-C01: Used Accessories

Accessory Possible Actions

Smartphone Phone, Text
Stroller Push
Crate Carry, Load, Unload
Shopping bag Carry
Ball Kick, Throw, Catch
Rolling suitcase Pull
Umbrella Hold
Walking stick Use

A.4 EHPI3D: Unit Skeleton
Overview of all limbs and their length in the unit skeleton used in our EHPI3D
experiments. Limbs are represented by their starting joint la and end joint lb.

159



Appendix A Tables

Limb (joint la) Limb (joint lb) Limb length ∆l [‘head units’] (see 4.5.2)

pelvis left hip 2
pelvis right hip 2
pelvis spine center 5
right hip right knee 8
right knee right ankle 8
left hip left knee 8
left knee left ankle 8
left ankle left foot end 4
right ankle right foot end 4

spine center neck 6
neck head lower 1
head lower head upper 4
neck left shoulder 3
neck right shoulder 3

right shoulder right elbow 6
right elbow right wrist 5
left shoulder left elbow 6
left elbow left wrist 5
left wrist left hand end 3
right wrist right hand end 3

head lower nose 2.25
nose right eye 1
right eye right ear 1.25
nose left eye 1
left eye left ear 1.25
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Listings

B.1 Character Description File
Example of a character description file which contains meta information about a
3D human avatar.

{
"age": 31,
"size": 187,
"sizeIsEstimated": false,
"uid": "42721607-8067-4247-8cb0-fe864368ad2e",
"weight": 80,
"weightIsEstimated": false,
"gender": "Male",
"skinColor": "(III) Medium, white to light brown"

}

B.2 Motion Capture Description File
Example of a motion description file which contains meta information about a
motion capture record.

{
"createdAt": "2019-10-01T11:15:39.625Z",
"dir": "2020/01/15/1",
"humanBodyParts": [],
"humanConfiguration": "Normal",
"id": "1",
"instructions": [

{
"description": "Walking",
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"location": "Left sidewalk"
},
{

"description": "Hitchhike",
"location": "Left sidewalk"

}
],
"movement": "Walking",
"movementSpeed": "Normal",
"participant": {

"age": 30,
"size": 185,
"sizeIsEstimated": true,
"uid": "cd4dc166-51ea-41ea-88c5-2c1e65225d43",
"weight": 93,
"weightIsEstimated": true,
"gender": "Male",
"skinColor": "(II) White, fair"

},
"project": "C. Katalog #1",
"scene": "Straight street with two sidewalks",
"sequence": "Hitchhiking (left sidewalk, walking)",
"actions": [

{
"frame": 63,
"actions": [

"Move"
]

},
{

"frame": 272,
"actions": [

"Looking for traffic",
"Move"

]
},
{

"frame": 400,
"actions": [

"Hitchhike",
"Move"

]
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},
{

"frame": 791,
"actions": [

"Hitchhike"
]

},
{

"frame": 1001,
"actions": [

"Stop"
]

}
]

}

163





Appendix C

Figures

C.1 EHPI3D Examples
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Appendix C Figures

(a) walk (b) idle (c) jog (d) looking for traffic

(e) work (f) hitchhike (g) turn around (h) wave

Figure C.1: EHPI3D Examples (A)
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C.1 EHPI3D Examples

(a) open a car’s door (b) kick a ball (c) throw something (d) fight

(e) argue (f) stand up (g) stumble (h) fall

Figure C.2: EHPI3D Examples (B)
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