
Two-Dimensional Pose Estimation of Industrial
Robotic Arms in Highly Dynamic Collaborative

Environments

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Thomas Gulde

aus Geislingen

Tübingen
2022



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 04.04.2023

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr.-Ing Cristóbal Curio

2. Berichterstatter: Prof. Dr. rer. nat. Andreas Schilling



Abstract

In modern collaborative production environments where industrial robots and humans

are supposed to work hand in hand, it is mandatory to observe the robot’s workspace at

all times. Such observation is even more crucial when the robot’s main position is also

dynamic e.g. because the system is mounted on a movable platform. As current solutions

like physically secured areas in which a robot can perform actions potentially dangerous

for humans, become unfeasible in such scenarios, novel, more dynamic, and situation-

aware safety solutions need to be developed and deployed.

This thesis mainly contributes to the bigger picture of such a collaborative scenario

by presenting a data-driven convolutional neural network-based approach to estimate

the two-dimensional kinematic-chain configuration of industrial robot-arms within raw

camera images. This thesis also provides the information needed to generate and organize

the mandatory data basis and presents frameworks that were used to realize all involved

subsystems. The robot-arm’s extracted kinematic-chain can also be used to estimate the

extrinsic camera parameters relative to the robot’s three-dimensional origin. Further a

tracking system, based on a two-dimensional kinematic chain descriptor is presented to

allow for an accumulation of a proper movement history which enables the prediction of

future target positions within the given image plane. The combination of the extracted

robot’s pose with a simultaneous human pose estimation system delivers a consistent

data flow that can be used in higher-level applications.

This thesis also provides a detailed evaluation of all involved subsystems and provides

a broad overview of their particular performance, based on novel generated, semi-

automatically annotated, real datasets.

Thomas Gulde - PhD Thesis -



“Those people who think they know

everything are a great annoyance to those of

us who do.”

Isaac Asimov (1920-1992)



Publications

First author publications of this thesis

Parts or ideas of this thesis have been previously published in the following articles. This

papers will be referred in this thesis by their roman numerals (eg. [I, II]).

I Gulde, T., Ludl, D. and Curio, C., 2018, August. RoPose: CNN-based 2D pose

estimation of industrial robots. In 2018 IEEE 14th International Conference on

Automation Science and Engineering (pp. 463-470). IEEE. © 2018 IEEE. [1]

II Gulde, T., Ludl, D., Andrejtschik, J., Thalji, S. and Curio, C., 2019, May.

RoPose-Real: real world dataset acquisition for data-driven industrial robot arm

pose estimation. In 2019 International Conference on Robotics and Automation

(ICRA) (pp. 4389-4395). IEEE. © 2019 IEEE. [2]

Contributions of the Author to the publications

The author of this thesis contributed to the respective publications as follows

I Idea, concept, majority of implementation, data generation and manuscript.

II Idea, concept, majority of implementation, data generation and manuscript.

Nr. Accepted
publication
yes/no

List of au-
thors

Position of
candidate
in list of
authors

Scientific
ideas by the
candidate
[%]

Data gener-
ation by the
candidate
[%]

Analysis and
Interpreta-
tion by the
candidate
[%]

Paper writ-
ing done by
the candi-
date [%]

1 [1] yes T. Gulde, D.
Ludl, C. Cu-
rio

1 90 90 90 100

2 [2] yes T. Gulde, D.
Ludl, J. An-
drejtschik,
S. Thalji, C.
Curio

1 90 75 90 100

Overview of the authors’ contribution in published main papers with co-authors.

Thomas Gulde - PhD Thesis -



Further publications related to this thesis

In addition to the work mentioned in this thesis, some more projects and collaborations

resulted in the following publications. They may get referenced like standard papers in

the main text.

A Gulde, T., Kärcher, S. and Curio, C., 2016, October. Vision-based slam naviga-

tion for vibro-tactile human-centered indoor guidance. In European Conference on

Computer Vision (pp. 343-359). Springer [3]

B Ludl, D., Gulde, T. and Curio, C., 2020. Enhancing Data-Driven Algorithms

for Human Pose Estimation and Action Recognition Through Simulation. IEEE

Transactions on Intelligent Transportation Systems, 21(9), pp.3990-3999. [4]

C Ludl, D., Gulde, T., Thalji, S. and Curio, C., 2018, November. Using simulation

to improve human pose estimation for corner cases. In 2018 21st International

Conference on Intelligent Transportation Systems (pp. 3575-3582). IEEE. [5]

D Ludl, D., Gulde, T.. and Curio, C., 2019, October. Simple yet efficient real-time

pose-based action recognition. In 2019 IEEE Intelligent Transportation Systems

Conference (ITSC) (pp. 581-588). IEEE. [6]

E Baulig, G., Gulde, T. and Curio, C., 2018. Adapting egocentric visual hand pose

estimation towards a robot-controlled exoskeleton. In Proceedings of the European

Conference on Computer Vision (ECCV) Workshops. [7]

F Essich, M., Ludl, D., Gulde, T. and Curio, C., 2019, September. Learning to

translate between real world and simulated 3D sensors while transferring task

models. In 2019 International Conference on 3D Vision (3DV) (pp. 681-689).

IEEE. [8]

Contributions of the Author to the publications

The author of this thesis contributed to the respective publications as follows

A Concept, implementation and manuscript.

B Assistance in data generation.

C Assistance in data generation.

D Assistance in data generation.

E Idea and main concept.

F Parts of the perception concept.



Open Source Contributions

Projects directly connected to this thesis

The following open source projects mainly emerged from the work presented in this

thesis.

i ropose - https://github.com/guthom/ropose

This Python module contains the source code to train, use and test the CNN-

based RoPose model to estimate the 2D joint position of an industrial robot-arm

on common RGB camera images.

Author: T. Gulde

ii ropose_datagrabber - https://github.com/guthom/ropose_datagrabber

This C++ ROS-Package contains the datagrabber to independently generate

datasets to train the RoPose [I, II] system with custom datasets. It was developed

to generate only robot-arm specific datasets but evolved in a multi purpose dataset

generator. It can now be used to generate ROS-independent datasets based on a

variant of visual perception systems (e.g. RGB-Images, PointClouds, depth-maps)

with labels based on the transformation information available in ROS’s transfor-

mation system.

Authors: T. Gulde, J. Andrejtschik

iii ropose_dataset_tools - https://github.com/guthom/ropose_dataset_tools

This Python package contains the dataset-tools used to read and organize the

datasets created by the ropose_datagrabber.

Author: T. Gulde

iv ropose_greenscreener - https://github.com/guthom/ropose_greenscreener

This Python package can be used to manipulate the simulated RoPose-datasets

based on a chroma key solution and the virtual greenscreen used in the simulated

datasets.

Author: T. Gulde

v kinematic_tracker - https://github.com/guthom/kinematic_tracker

This Python package contains the classes and tools used to organize, track and

visualize pose models of industrial robot-arms based on their respective kinematic

chains.

Author: T. Gulde

Thomas Gulde - PhD Thesis -

https://github.com/guthom/ropose
https://github.com/guthom/ropose_datagrabber
https://github.com/guthom/ropose_dataset_tools
https://github.com/guthom/ropose_greenscreener
https://github.com/guthom/kinematic_tracker


vi tag_referencer - https://github.com/guthom/tag_referencer

This C++ ROS-package is used to automatically detect standard QR-Codes or

robotic April-Tags [9, 10] within a 2D camera image. The resulting tag informa-

tion can also be fused with the 3D point cloud information (if available) to stream

the estimated 3D pose of the recognized tags directly to the ROS transformation

system. The resulting transformations can then be used for a variety of applica-

tions just as extrinsic camera calibration, pose referencing or pose based dataset

generation.

Author: T. Gulde

vii kollrobot_controller - https://github.com/guthom/kollrobot_controller

This C++ ROS-package wraps a MoveIt!- controller [11] for the special purposes

of the Kollro 4.0 project (see Chapter 1). The package also has been used to

trigger the path planning process and move to random poses of the employed

robot-arm to collect pose datasets for RoPose and also offers a node to perform

extrinsic calibrations based on AprilTags [9, 10].

Author: T. Gulde

Contributions of the Author

The author of this thesis contributed to the respective open source projects as fol-

lows:

i Sole author of the source code.

ii Main author of the source code, confer to git-commits for specific author infor-

mation.

iii Sole author of the source code.

iv Sole author of the source code.

v Sole author of the source code.

vi Sole author of the source code.

vii Main author of the source code, confer to git-commits for specific author infor-

mation.

https://github.com/guthom/tag_referencer
https://github.com/guthom/kollrobot_controller


Further projects related to this thesis

In addition to the work directly related to this thesis, the following open source projects,

tools or packages emerged from side projects and other collaborations.

a labstreaminglayer_ros - https://github.com/guthom/labstreaminglayer_ros

A Python based ROS-package to directly exchange streams and messages between

ROS and Lab Streaming Layer (LSL) [12] which is widely used in neuroscience

application.

Authors: T. Gulde, M. Nann, M. Essich

b guthoms_helpers - https://github.com/guthom/guthoms_helpers

A Python-package that contains common classes used in various projects. Created

to enforce consistency in file handling, data processing and especially transforma-

tion handling within multiple projects.

Authors: T. Gulde, M. Essich

c custom_parameters - https://github.com/guthom/custom_parameters

A ROS-package that wraps the ROS parameter system in a convenient template

based C++ library. However, this custom packaged could became obsolete with

the rise of dynamic reconfigure [13].

Author: T. Gulde

d magic_box - https://github.com/guthom/magic_box

This Python based ROS-package was used as a driver node for a smart container

prototype to enable local references for dynamic pick and place task with industrial

robots. The box has been equipped with an internal ink-display to show AprilTags

[9, 10] which can be changed via the implemented ROS-services.

Authors: T. Gulde, V. V. Nair, J. Schuhmacher

Contributions of the Author

The author of this thesis contributed to the respective open source projects as fol-

lows:

a Main author of the source code, confer to git-commits for specific author infor-

mation.

b Main author of the source code, confer to git-commits for specific author infor-

mation.

c Sole author of the source code.

d Main author of the source code, confer to git-commits for specific author infor-

mation.

https://github.com/guthom/labstreaminglayer_ros
https://github.com/guthom/guthoms_helpers
https://github.com/guthom/custom_parameters
https://github.com/guthom/magic_box


Contents
Abstract

Publications

Open Source Contributions

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Collaborative Robotics and its Challenges . . . . . . . . . . . . . . . . . 2

1.3 AI in robotics, computer vision and perception . . . . . . . . . . . . . . 3

1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Basics 7

2.1 Transformations in Cartesian Coordinate Systems . . . . . . . . . . . . . 7

2.1.1 Transformations in R
2 and R

3 . . . . . . . . . . . . . . . . . . . 7

2.1.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Rotation and Orientation Representations . . . . . . . . . . . . . 9

2.1.4 Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Spherical Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Special Orthogonal Group in R
2 - SO(2) . . . . . . . . . . . . . 21

2.3.3 Special Orthogonal Group in R
3 - SO(3) . . . . . . . . . . . . . 22

2.3.4 Special Euclidean Group in R
2 - SE(2) . . . . . . . . . . . . . . 24

2.3.5 Special Euclidean Group in R
3 - SE(3) . . . . . . . . . . . . . . 26

2.4 2D Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Extrinsic Camera Parameters . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Pinhole Camera Model and Calibration Parameters . . . . . . . . 29

2.4.3 Perspective-N-Points (PnP) . . . . . . . . . . . . . . . . . . . . 32

2.5 Optical Flow and Motion Estimation . . . . . . . . . . . . . . . . . . . . 34

2.6 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Artificial Neurons and Networks . . . . . . . . . . . . . . . . . . 36

2.6.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 39

2.6.3 Training, optimization and Loss Functions . . . . . . . . . . . . . 46

2.7 Accuracy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.1 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.2 Bounding Box Accuracy . . . . . . . . . . . . . . . . . . . . . . 51

2.7.3 Distance and Probability of Correct Keypoints (PCK) . . . . . . 53



3 Dynamic robot-arm supervison 55

3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 RoPose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Keypoint detection . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.5 Bounding Box Estimation . . . . . . . . . . . . . . . . . . . . . 76

3.4 Automatic Extrinsic Camera Calibration . . . . . . . . . . . . . . . . . . 78

4 Enhanced Collaborative Workspace Observation 81

4.1 Simultaneous Human and Robot-arm detection . . . . . . . . . . . . . . 81

4.2 Kinematic Chain Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Pose Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Temporal Target ROI Prediction . . . . . . . . . . . . . . . . . . 90

4.3 Self-Supervised Finetuning of the Pre-Detector . . . . . . . . . . . . . . 93

5 Evaluation 96

5.1 Keypoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 PCK Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Bounding Box Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 RoPose Base System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Output Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.1 Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.2 Influence of the Tracking History . . . . . . . . . . . . . . . . . 111

5.6.3 Evaluation of the Tracking System . . . . . . . . . . . . . . . . . 112

5.7 Self-supervised finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Final Application 120

7 Conclusion and Future Work 122

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Acknowledgements

List of Figures



List of Tables

Abbreviations and Symbols

References



1 Introduction

“Yes, excessive automation at Tesla was a mistake. To be precise,

my mistake. Humans are underrated.”

Elon Musk, 2018 - [14]

1.1 Motivation

The rapid evolution of production and manufacturing applications in the last decades

poses new challenges for almost every involved technology sector [15]. Manufacturing

and all related subtasks transform in more and more agile processes that even exceed the

traditional understanding of lean- [16, 17] and just-in-time manufacturing [18]. When

novel customer requirements like customization join modern management and engineer-

ing needs (e.g. advanced performance monitoring, analytics, and rapid prototyping) even

more digital and physical systems take over important roles within the creation process.

[19]

As human individuals are an essential part of these processes and tasks, their collabora-

tion and interaction with the rising number of involved systems have also moved into the

design-focus of modern manufacturing [20]. However, humans add an additional, highly

dynamic and not deterministic component to the ensemble and thus require extra safety

and security efforts [21]. Especially when it comes to full collaborative environments,

where humans and e.g. industrial robots have to act dynamically hand in hand to solve

complex tasks, this introduced dynamic has to be transferred into almost all subsys-

tems. Therefore, it became more and more important to reliably perceive, supervise,

and monitor these environments, especially when the final areas of collaborative zones

can not be preassigned. In order to advance applications, smart sensory systems just as

vision sensors are needed. These sensors need to be capable to autonomously recognize

and localize humans and the involved robotic system within the observed space, ideally

without the need for additional periphery devices.

Because the authors research group faced such problems in various projects involving

collaborative tugger trains with industrial robot manipulators 1 (see e.g. [23] for more

details) and also hand exoskeletons 2, The research presented in this thesis focuses on

the Computer Vision (CV) based observation of dynamic articulated targets in robotic

1Project: KollRo 4.0 [22]
2Project: KONSENS-NHE [24]

Thomas Gulde - PhD Thesis - 1



1 Introduction

environments. Some fundamental parts of this thesis are based on disruptive machine

learning technologies like deep learning and especially Convolutional Neural Networks

(CNNs). As these technologies had a huge impact on the field of CV [25] and robotics

(cf. Section 1.3), it is obvious that such technologies enable new prospects and have

great potential to also improve collaborative applications.

1.2 Collaborative Robotics and its Challenges

Collaboration is a widely used word to describe overlapping or joint activities between

companies, organizations, research groups, technical systems, and human individuals.

However, in this work, the term always implies the interaction of two or more sys-

tems (e.g. humans, robots) within a targeted value creation process aiming to suc-

cessfully complete a given task. This work will primarily concentrate on collabora-

tive robotics and manufacturing systems where humans and industrial robot arms di-

rectly share a physical and predominantly not deterministic workspace (Human-Robot

Collaboration (HRC)). Figure 1.1 shows a simplified example of such an environ-

ment.

Figure 1.1: Shared workspace between a mobile industrial robot-arm and humans in HRC scenar-
ios. W : idealized Three-Dimensional (3D) workspace of a robot, FR: Robot coordinate system
originates at the base of the robot usually also defines the origin of the robot’s workspace.

The workspace W of an industrial robot describes the space a manipulator can reach and

is defined by the arm’s physical constraints and the given kinematics. The workspace

Thomas Gulde - PhD Thesis - 2



1 Introduction

is therefore typically not as ideal as shown above. The so-called Configuration Space

(C-Space) describes all configurations (~poses) a robot can engage and takes obstacles

and other non reachable areas into account [26]. When the main actuator is also mounted

to a moving platform, the workspace and thus also the C-space of the manipulator can be

extended to almost the complete manufacturing site. Such scenarios require additional

policies and procedures to ensure secure and safe workspaces compared to conventional

automated robot systems which are usually separated from human workers by e.g. safety

fences [27, 28].

Besides the serious safety issues in HRC the influence of the robot’s behavior on the

human collaboration partners also has to be considered. The vulnerable human partner

has to trust the system, a feeling that is linked to various factors. Hancock et al.’s

study on trust in Human-Robot Interaction (HRI) [29] summarized these factors in three

main groups: human-related, robot-related and environmental, and showed that the

characteristics and performance of a robot system have the most significant impact on

how humans trust such a system (cf. [29]). It is important to allow humans to naturally

anticipate the current state and intention of a robot system in order to avoid unexpected

behavior triggered by unexpected, dangerous, or novel situations. Dragan et al. described

a way to incorporate human factors while planning the motion of a robot which could be

one way to encode the robot’s intention and allow for a more natural partnership that

improves the trust and factors [30].

In the end, the final use case of the collaborative application does not really matter.

If there is a need to improve the safety, the feeling of trust, or provide a more natural

interplay between machines and involved humans, it is crucial to know the state of all

involved partners ideally at any operating time. Only if such information can be extracted,

concepts like a dynamic and adaptive motion planning [31], or more strict collaborative

cell designs e.g. based on safe zones [32] become possible.

1.3 AI in robotics, computer vision and perception

Artificial Intelligence (AI) and machine-learning applications, and in consequence also

artificial neural, deep- and convolutional neural networks, have boosted various applica-

tions and methods in almost every known research field in the last two decades. This

is especially the case when it comes to robotics [33], computer vision [25], and pattern

recognition tasks based on almost any digital data source [34, 35, 36, 37]. To perceive

Thomas Gulde - PhD Thesis - 3



1 Introduction

the current state of near, middle, and also far surroundings, has, and will probably al-

ways be, one of the main research fields within the robotics area (cf. Section 1.2). Any

time a robot system has to plan, navigate, interact, or operate in a dynamic area, the

best possible knowledge about the targeted environment is required to allow for the safe

and secure service of the robot. Therefore in addition to the main focus of this thesis,

this Section will give an overview of the different tasks and concrete publications where

AI has already pushed robotics applications and certainly will continue to do so in the

future.

With the rise and success of many AI technologies, many robotic tasks can finally be tack-

led with promising and real-world applicable results. Advanced machine learning can be

seen as one of the enabling technologies to face various sub-challenges:

• Robot Dynamics and Control

Controlling a robot based on machine learning and a Neural Network (NN) has

been a focus in the robotics research area for many years and a lot of interesting

approaches to control the bare kinematics have been published decades ago [38, 39,

40, 41]. With modern Deep Neural Network (DNN) techniques, such applications

can be heavily expanded as shown by Levine et al. [42], by proposing a data-greedy

approach to directly learn the abstract relations between a monocular camera

system and the industrial robot-arms configuration state, the so called hand-eye

coordination. Although very precise robot movement and interaction can now be

tackled as demonstrated in many robot assembly applications [43, 44, 45, 46]

where machine learning techniques also play a leading role by solving subtasks just

as movement, target detection, feedback and also the higher-level navigation tasks

[47, 48, 49, 50].

• Recognition of Objects and Humans

The capability to infer positional or other high-level information from e.g. objects

and humans (cf. Section 3.3.3) is also an popular and versatile problem in robotics,

and is one of the prime examples where machine learning and DNN based methods

outperform every system known before [51, 52, 53]3. Many use cases of CNNs

rely on the implementation of 2D regression tasks. So it is not a surprise that

many applications from all conceivable domains, e.g. medicine[56], agriculture[57],

autonomous driving[58], and many more, used for dense semantic segmentation

have also been revolutionized by machine learning [59, 60]. The possibility to

extract deep features [61, 62, 63] also had a positive impact on feature-based

recognition methods [64, 65, 66].

3At the time of the submission of this thesis, all algorithms that lead common object recognition bench-
marks [54, 55] employ DNN based methods.

Thomas Gulde - PhD Thesis - 4



1 Introduction

• Sensor Interpretation and Odometry

A vision sensor only produces Two-Dimensional (2D) images, its application is not

restricted to that domain. Photogrammetry based methods like structure-from-

motion [67] estimates the missing third-dimension of the gathered data and also

machine learning-based methods started to revolutionize traditional methods in

this field [68, 69]. A sensor’s estimated odometry, the movement of the sensor

itself, is an important piece of information for such applications. Systems like the

FlowNet family [70, 71] extract a dense optical flow map of the raw sensor data,

which can be used to finally estimate its odometry and improve its accuracy. A

different approach to enrich the available sensor data, which would be more or less

impossible without employing a CNN, is a direct estimation of a dense depth map

as proposed in various publications [72, 73, 74, 75, 76, 77].

• Calibration and Sensor Fusion

When it comes to a basic sensor calibration process itself, AI also offers interesting

new possibilities. Calibration is usually a necessary task for every employed sensory

setup in order to align the variant information sources in a higher-level system. In

order to perform such procedures especially where standard approaches fail, e.g.

because of incompatible or missing calibration targets, solutions as RegNet [78] or

CalibNet [79] employ artificial NNs to directly match 3D LiDAR with 2D image

data to estimate the relative transformations between each senor. This geometrical

relation is crucial in order to fuse various sensor data from different sources.

The mentioned machine learning-based approaches show that modern technologies of-

fer many new prospects to enhance known applications and methods, overcome some

of their shortcomings, fuse their information to extend their possibilities, or even make

some older approaches obsolete. Nevertheless, this section 1.3 mainly targets to high-

light the great improvements machine learning algorithms unlocks and their impact on

the field of robotics. With the current rise of all kind of AI-applications, this should

be seen as a chance to tackle many unresolved problems, but should not bee seen as

a universal remedy. In addition to the machine learning techniques available today,

versatile interface technologies that may enable high frequent real-time communica-

tion scenarios for a robotic system also make it unnecessary to physically include all

thinkable sensory systems on the robot device itself. Many applications, like the here

presented approach named RoPose, concentrate on extrinsic sensory systems to enrich

and fuse the available data with continuous information streams, improving overall per-

ception. The contributions of this thesis, mainly the additional continuous information

flow for collaborative robot applications, can thus be used to add important data to

the work-flow of many here mentioned solutions and may also help to improve current

approaches.

Thomas Gulde - PhD Thesis - 5



1 Introduction

1.4 Contributions of this Thesis

There still are many unresolved questions and challenges regarding the deployment of

collaborative robotic environments in manufacturing solutions. This thesis aims to con-

tribute to the big picture by presenting possible solutions and their implementation to

the following topics:

• Data-driven industrial robot pose estimation (RoPose).

To allow for pose estimation of industrial robot arms within raw 2D RGB-images,

the concept of the RoPose system [I, II] will be presented. The CNN-based tool

helps to extract relevant pose information of visually observed industrial robot

arms.

• Dataset generation based on simulations.

For data-driven machine learning applications like RoPose, labeled datasets to

train and evaluate the system are essential. For development and testing of the

main-application, it is also suitable to start with fully synthetic datasets. This

thesis shows how to generate such labeled datasets based on Robot Operating

System (ROS) [80] and its integrated robotics simulation suite GAZEBO [81].

• Targeted real-world dataset acquisition.

Despite the existence of deep- and machine learning approaches fully based on

synthetic datasets, there is still a need for real-world datasets, e.g. for evaluation.

This thesis shows how to transfer the synthetic dataset generator to real robotic

systems to gather important real-world data based on the ROS abstraction concept.

• Extrinsic camera calibration based on estimated industrial robot poses.

An estimated 2D robot pose can also be used as a rich source to extract extrinsic

position information of the supervising sensor. The here presented research work

shows how to fuse the 2D poses with the 3D positioning information known by

the robot controller to derive the extrinsic pose of the sensory system relative to

a observed robot.

• Simultaneous estimation of robot and human poses.

In order to expand the RoPose-system’s scope to collaborative applications this

thesis shows how to integrate a camera-based human pose estimation system and

so allows for a simultaneous pose-estimation of multiple robots and humans.

Thomas Gulde - PhD Thesis - 6



2 Background and Basics

“Success is neither magical nor mysterious. Success is the natural

consequence of consistently applying the basic fundamentals.”

E. James Rohn

This background chapter is targeted to convey some math and application basics used

without further explanation in the remaining thesis. It should be seen as an overview

of concepts, approaches, techniques, tools, and physical relations needed to implement

the presented applications itself accompanied by some kind of literature review on the

respective research field.

2.1 Transformations in Cartesian Coordinate Systems

Transformations of finite, homogeneous coordinates performed in Cartesian coordinate

systems are very common mathematical tools used in robotics and CV to describe physi-

cal relations e.g between rigid objects. As most of the challenges described in this thesis

are located in the domains of two- and three-dimensional (R2 and R
3 resp.) reference

systems, this introduction will only discuss these spaces. A rigid body transformation

combines translation and rotation information to map different vector spaces and so

allows for describing relations of coordinates and poses in different systems. These

transformations are usually composed within the so called 2D and 3D Special Euclidean

Groups (SE2,SE3) and the related Special Orthogonal Groups (S02,S03) further dis-

cussed in Section 2.3. The following sections will summarize these concepts and give an

overview of the different common representations used in robotics. For the sake of sim-

plicity, the presented examples are mainly visualized in R
2.

2.1.1 Transformations in R
2 and R

3

Transformations can always be described by homogeneous square transformation matri-

ces with the following structure:

TTT =

(

RRRn×n tn

0 1

)

, TTT ∈ SE(n) (2.1)

Thomas Gulde - PhD Thesis - 7



2 Background and Basics

While RRR is described by an n× n matrix and contains all information necessary for the

rotation, the n-sized vector t specifies the translation. Eq. 2.2 and 2.3 show the specific

transformation matrices for the considered R
2 and R

3.

TTT =







r00 r01 x

r10 r11 y

0 0 1






, TTT ∈ SE(2) (2.2) TTT =













r00 r01 r02 x

r10 r11 r12 y

r20 r21 r22 z

0 0 0 1













, TTT ∈ SE(3) (2.3)

To map a specific n-dimensional coordinate vector p to another coordinate system with

known relations, it is possible to multiply the n × n transformation matrix with the

homogenized point of interest from the left (Eq. 2.4), or by employing the transformation

information separately like shown in Eq. 2.5.
(

p′

1

)

= TTT

(

p

1

)

(2.4) p′ = RRRp+ t (2.5)

The inversion of a square transformation matrix TTT−1 describes also the inverse transfor-

mation operation. A defined transformation can so be used to transform vectors in both

directions.

(

p

1

)

= TTT−1

(

p′

1

)

(2.6)

2.1.2 Translation

An n-dimensional translation vector t contains the positional information of a coordinate

or point for each of the available coordinate base axes.

Figure 2.1: Visualization of a translation transformation in R
2.

Thomas Gulde - PhD Thesis - 8



2 Background and Basics

p =

(

x

y

)

, p ∈ R
2 (2.7) p =







x

y

z






, p ∈ R

3 (2.8)

2.1.3 Rotation and Orientation Representations

Rotation operations (cf. Figure 2.2) are more complex. Especially when it comes to

higher-dimensional coordinate spaces like R
3 several commonly used representations and

their connected notations, concepts and philosophies have to be considered. The most

common ones are explained in the following sections.

Figure 2.2: Visualization of a rotation transformation, based on a single angle α , in R
2.

2.1.3.1 Rotation Matrices

A rotation matrix contains the needed information about the rotation in its rawest form.

As described in 2.1.1, this matrix is also part of the transformation matrix itself and

every here presented representation can be converted back into this raw matrix form.

Related to the Degrees of Freedom (DoF) of the respective vector spaces, the particular

rotation matrices are defined as follows:

RRR =

(

r00 r01

r10 r11

)

, RRR ∈ SO(2) (2.9) RRR =







r00 r01 r02

r10 r11 r12

r20 r21 r22






, RRR ∈ SO(3) (2.10)

Thomas Gulde - PhD Thesis - 9



2 Background and Basics

2.1.3.2 Rotations in R
2

In 2D coordinate systems, an orientation information has just one DoF and thus is a

single angle parameter α . The associated rotation matrix can be calculated as fol-

lows:

RRR(α) =

(

cosα −sinα

sinα cosα

)

,RRR(α) ∈ SO(2) (2.11)

2.1.3.3 Chained rotations

To define an orientation in R
3 it is possible to chain multiple individual rotations around

the single axis of a coordinate system. For each axis of an orthogonal coordinate system

a specific rotation matrix can be defined (cf. Equations 2.12-2.14). This formulation

offers the possibility to store and share all rotation related information in R
3 with just

three angles [82].

Figure 2.3: Visualization of the possible rotations around each base vector of a R3 coordinate sys-
tem and the corresponding Euler angles α , β , and γ , respectively yaw, pitch, and roll convention.

Thomas Gulde - PhD Thesis - 10



2 Background and Basics

RRRx(α) =







1 0 0

0 cosα −sinα

0 sinα cosα






, RRRx(α) ∈ SO(3) (2.12)

RRRy(β ) =







cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ






, RRRy(β ) ∈ SO(3) (2.13)

RRRz(γ) =







cosγ −sinγ 0

−sinγ cosγ 0

0 0 1






, RRRz(γ) ∈ SO(3) (2.14)

One of the most common conventions to perform chained rotations are the Euler angles,

first introduced by Leonard Euler in 1776 [83]. Euler angles consist of three unique

rotations around the X-, Y-, and Z-axis (α , β , and γ). This rotation operation is

designated as intrinsic because every single rotation rotates the coordinate axis itself.

This notation allows twelve unique sequences to conduct the single rotations (cf. [84,

82]) and to compose the final rotation matrix which highly depends on the chosen

order. Based on the common XYZ -order, the rotation matrix can be composed as

follows:

RRRxyz = RRRx(α)RRRy(β )RRRz(γ), with RRRxyz ∈ SO(3) (2.15)

RRRxyz =







cosβ cosγ −cosβ sinγ sinβ

cosα sinγ + sinα sinβ cosγ cosα sinγ − sinα sinβ sinγ −sinα cosβ

cosα sinγ − cosα sinβ cosγ sinα cosγ + cosα sinβ sinγ cosα cosβ







(2.16)

An almost identical representation is the well known roll, pitch, and yaw (RPY ) no-

tation. The RPY angles also decode the rotation in three sub rotations around one

absolute angle. In contrast to Euler angles, the RPY convention is designated as ex-

trinsic and each rotation is defined with respect to a static reference frame. However,

the corresponding matrix operations and the final resulting rotation matrices are cal-

culated the same way and following the Euler angle convention (cf. Eq. 2.15 and

2.16).

Minimal representations with a list of parameters of just three single values can lead

to singularities within the covered domain. A so called gimbal lock [85] occurs when

Thomas Gulde - PhD Thesis - 11



2 Background and Basics

two of the three coordinate axes remain in a parallel relation after applying the first two

rotations (cf. Eq. 2.15). This leads to the loss of one DoF and will result in wrong

rotation matrices. The gimbal lock occurs frequently in many applications and should

always be considered when working with pure Euler angles.

2.1.3.4 Axis-Angles

The axis-angle representation decodes the R
3 rotation information based on a three

dimensional axis of rotation unit vector n = [nx,ny,nz]
T (||n|| = 1) and a dedicated

angle θ as shown in Figure 2.4

Figure 2.4: Visualization of the axis-angles notation in R
3. The rotation is described with the

three-dimensional unit vector n (axis of rotation) and the corresponding angle θ .

To apply an axis-angle rotation to a known vector of interest x, the Euler–Rodrigues

formula [86] is utilized as follows:

x′ = x+(sinθ)n×x+(1− cosθ)n× (n×x) (2.17)

Thomas Gulde - PhD Thesis - 12



2 Background and Basics

2.1.3.5 Quaternions

Quaternions are usually the most common, but also the most abstract representation

in computer graphics and robotics because they offer a compact, efficient, and stable

way to deal with rotations. Quaternions are generally composed with the help of four

parameters. One element (a) representing the real part or scalar part of the quater-

nion, and three complex components representing the imaginary part or vector part

(b,c,d):

q = a+bi+ c j+dk (2.18)

Each imaginary component encodes together with the shared real part a rotation along

the axes of the Euclidean R
3 space.

To properly represent rotations, only normalized quaternions, the so called unit quater-

nions, should be used.

q′ =
q

||q||
(2.19)

||q||=
√

a2 +b2 + c2 +d2 (2.20)

The easiest, but not only way to encode known rotation information in quaternions is to

use the physical rotation representation of the axis angles (cf. Section 2.1.3.4) and use

the following relations (cf. [82] Eq. 175):

a = qa = cos
θ

2
(2.21)

b = qb = n0 sin
θ

2
(2.22)

c = qc = n1 sin
θ

2
(2.23)

d = qd = n2 sin
θ

2
(2.24)

It is of note that quaternions are mainly a mathematical construct and thus do not neces-

sarily need to have an explicit physical meaning, but can be applied to rotations. A formal

introduction to quaternions and their particular usage for transformations respectively

rotations was published by Kuipers et al. [84].

Thomas Gulde - PhD Thesis - 13



2 Background and Basics

2.1.4 Affine Transformations

Besides the already presented basic transformations, i.e. translations and rotations (cf.

Sections 2.1.2 and 2.1.3), advanced transformations to manipulate whole images, objects

or single coordinates exists. Among other tasks, the so called affine transformations are

commonly used to augment 2D data, such as images, e.g. by transforming every single

pixel and also the corresponding ground truth data for image-based machine learning

applications.

As these transformations are usually used as extrinsic operations and will be performed

based on the origin of the global reference frame, the position of the transforma-

tion target within that frame should always be considered. Figure 2.5 shows the in-

fluence of the particular reference system to rotation, scale, and shear transforma-

tions.

(a) Affine transformations within target frame.

(b) Affine transformations within global reference frame.

Figure 2.5: Effect of a global reference frame to affine transformations. From left: Origin state,
rotation, scale, shear.

Due to several image representations, it might be necessary to translate the image

center to the origin of a defined global coordinate frame (c.f. 2.5a) before perform-

ing the manipulation and restore the original translation afterward. Please note that

this problem is not restricted to affine image manipulation and can also occur when

working with rigid body transformations in R
3. These affine transformations can for-

mally be applied with homogeneous transformation matrices as described in Section

2.1.1.

Thomas Gulde - PhD Thesis - 14



2 Background and Basics

2.1.4.1 Scale

A scaling operation is used to enlarge or shrink a given target by a given factor in the par-

ticular axis. Figure 2.6 visualizes the scaling and Equations 2.26.

Figure 2.6: Visualization of a scale transformation in R
2.

To finally perform a scaling, the scaling factors (sxyz) have to be calculated as shown

in the following example for the x-axis and then can be used within the transformation

matrix as shown in Eq. 2.26 resp. 2.27:

sx =
x′

x
(2.25)

TTT s =

(

sx 0

0 sy

)

, with sx,y ≥ 0 (2.26)

TTT s =







sx 0 0

0 sy 0

0 0 sz






, with sx,y,z ≥ 0 (2.27)

Thomas Gulde - PhD Thesis - 15



2 Background and Basics

2.1.4.2 Shear

The shearing operation translates each target in a fixed direction by a distance propor-

tional to their perpendicular distance (sh). Figure 2.7 visualizes the scaling and the Equa-

tions 2.28 - 2.29 specify the matrices to apply the shearing.

Figure 2.7: Visualization of a shear transformation in R
2. With shx,y > 0

TTT sh =

(

1 shy

shx 1

)

(2.28)

TTT sh =







1 shxy shxz

shyx 1 shyz

shzx shzy 1






(2.29)

Each shearing parameter (sh) in Eq. 2.28 describes the shearing relative to the particular

axis or the relative plane in R
2 and Eq. 2.29 in R

3.

Thomas Gulde - PhD Thesis - 16



2 Background and Basics

2.1.4.3 Combined Affine Transformations

Sometimes it is necessary to combine multiple sub transformations to one affine transfor-

mation (TTT c) and apply the resulting manipulation with just one operation. To combine

all single transformations the sequential dot-product of the single transformations is

utilized.

TTT c = TTT rot ·TTT shear ·TTT scale ·TTT trans (2.30)

2.2 Spherical Coordinate Systems

Within the versatile field of robotics, it might be useful to organize basic positional

information in other parameterized coordinate systems than the well known basic n-

dimensional Cartesian systems. One example of such a system is a spherical coordinate

system as shown in Figure 2.8.

Figure 2.8: Visualization of spherical coordinates in R
3. r: radius, ϕ: polar angle (inclination), θ :

azimuthal angle (azimuth).

Thomas Gulde - PhD Thesis - 17



2 Background and Basics

Spherical systems can be used to describe a three dimensional vector p based on a radius

r, a polar angle (inclination) ϕ and the azimuthal angle (azimuth) θ . The following

Equations can be used to translate coordinates from a standard Cartesian based system

to a spherical, and vice versa.

r =
√

x2 + y2 + z2 (2.31)

θ = arctan
y

x
(2.32)

ϕ = arccos
z

r
(2.33)

x = r sinθ cosϕ (2.34)

y = r sinθ sinϕ (2.35)

z = r cosϕ (2.36)

These equations may differ if the relative axes for the inclination and azimuthal angles

changes. Within this work, the polar angle ϕ describes the angle between the Z-axis while

θ refers to the angle between the X-axis and the vector p.

2.3 Lie Groups

In the field of Computer Vision (CV) and especially robotics, the transformations intro-

duced in Section 2.1.1 are often described based on the concept of Lie Groups. Each

Lie group is a topological group containing specific elements and can also be seen as

a differentiable manifold. This representation offers a more abstract view on transfor-

mations and becomes very practical when there is a need to look at the derivatives of

transformation and also their chronological sequence.

The relevant groups to describe transformations in R
2 and R

3, and therefore the only

groups this document focuses on, are:

• Special Orthogonal Group in R
2 - SO(2)

The SO(2) group contains all rotation matrices R2×2 in R
2 (cf. Section 2.1.3).

• Special Orthogonal Group in R
3 - SO(3)

The SO(3) group contains all rotation matrices R3×3 in R
3 (cf. Section 2.1.3).

• Special Euclidean Group in R
2 - SE(2)

The SE(2) group contains all homogeneous transformation matrices T3×3 in R
2

(cf. Section 2.1.1).

• Special Euclidean Group in R
3 - SE(3)

The SE(3) group contains all homogeneous transformation matrices T4×4 in R
3

(cf. Section 2.1.1).

Thomas Gulde - PhD Thesis - 18



2 Background and Basics

In addition to basic mathematical introductions to Lie groups and their usage preciously

reported in [87, 88], both Ethan Eade [89] and Jose-Luis Blanco [90] provide remarkable

technical reports focusing on concrete implementations of groups. The here presented

groups are another way to deal with transformations and can be seen as a substitution to

more traditional methods that comes with useful mathematical properties for many appli-

cations and also simplifies the implementation. Especially when looking at the parameter

space for each group, it becomes apparent, that the final physical connections and rela-

tions, basically all rigid body transformations, are identical.

2.3.1 Basic Definitions

Before discussing the particular groups in detail some basics, commonalities, and prop-

erties need to be clarified. Each Lie group (G) has an associated Lie algebra (g) that

is defined to be the tangent space at the Lie group’s unit element (I). A Lie algebra

is defined by linear combinations of the so called generators (see examples in Sections

2.3.2-2.3.5) and the particular parameters (P), corresponding to the dimension of the

group. Within the here discussed groups, the Lie algebra are always a set of skew sym-

metric matrices (ωωω×). Because the SO(2) group (cf. Section 2.3.2) probably is the

most tangible group, the following Figure 2.9 visualizes the mentioned elements based

on the unit circle.

Figure 2.9: Visualization of the SO(2) group. Besides the group G itself, which is defined by the
unit circle, the associated Lie algebra g is the tangent at the unit element I. Because the parameter
space of SO(2) is one dimensional, the parameters (P) consists of just one element describing a
single rotation angle.

Thomas Gulde - PhD Thesis - 19



2 Background and Basics

Several operators and actions are available when working with Lie groups:

• The Hat-operator .̂

The Hat-operator is a vector-space isomorphism from an n-dimensional real vector

space to the Lie Algebra. In our case it maps specific parameters (P) of a group

element to skew symmetric matrices ωωω×.

• The Vee-operator ∨

The Vee-operator is the inverse of the Hat-Operator and maps a Lie algebra to

specific parameter sets of a Lie group’s parameter space.

In every group explained in this document, the skew symmetric matrix form of

each Lie algebra is strictly defined. The Vee operation maps given parameters

to the corresponding elements of the matrix. For the sake of completeness, one

example is given in the explanation of the SO(3) group in Section 2.3.3.3.

Chirikjian et al. gives in Eq. 10.31 [87] the following general formula for the Vee-

operator to map the given parameters (x1 . . . xn) within an n-dimensional group.

(

n

∑
i=1

xiEi

)∨
.
= (x1 x2 x3 . . . xn)

T (2.37)

Note that the Ei components corresponds to the generators (cf. definitions of the

special groups in Section 2.3.2 - 2.3.5) of the respective group.

• The exponential map

The exponential map is used to map an element of the Lie algebra to group

elements.

exp : g 7→ G (2.38)

It is formally defined with the matrix exponential of a skew symmetric matrix (ωωω×)

defining a Lie algebra which can be calculated employing the following power series

(cf. [91]):

eωωω× =
∞

∑
k=0

1

k!
ωωωk

× (2.39)

• The logarithmic map

The logarithmic map defines the inverse of the exponential map and maps group

elements to the Lie algebra (g).

log : G 7→ g (2.40)

Thomas Gulde - PhD Thesis - 20



2 Background and Basics

2.3.2 Special Orthogonal Group in R
2 - SO(2)

The SO(2) group contains all 2D rotation matrices (RRR) as described in Section 2.1.3.2.

2.3.2.1 Generators and Parameters of SO(2)

All rotations in R
2 can be described by a single angle (α,with0 ≤ α < 2π). Thus the re-

sulting group parameter list (PSO2) is also one dimensional.

PSO2 = α (2.41)

The one dimensional Lie algebra is given by a linear combination of α and the sin-

gle generator GGG0. Formally, the sole generator for the Lie algebra so(2) encodes the

differential rotation information and can be obtained by differentiating the standard ro-

tation matrix (cf. Eq. 2.11) and evaluating it at α = 0 which is also called the identity

element:

GGG0 =
∂RRR(α)

∂α

∣

∣

∣

∣

α=0

=

(

0 −1

1 0

)

(2.42)

2.3.2.2 Hat-Operator of SO(2)

As the hat operation only maps the parameters to the generators, this can be performed

with a multiplication:

ˆPSO2 = αGGG0 =

(

0 −α

α 0

)

= ωωω×, ωωω× ∈ so(2) (2.43)

2.3.2.3 Exponential map of SO(2)

The final power series of the matrix exponential of ωωω× can be reduced to the following

equation (cf. [89] Eq. 106) and results in a rotation matrix RRR:

exp(ωωω×) =

(

cosα −sinα

sinα cosα

)

= RRR, RRR ∈ SO(2) (2.44)

Thomas Gulde - PhD Thesis - 21



2 Background and Basics

2.3.2.4 Logarithmic map of SO(2)

The logarithmic map to transform a 2D rotation matrix RRR to a Lie algebra can be cal-

culated by first extracting the explicit angle α (cf. Eq. 2.41) and applying an additional

Hat operation (cf. [89] Eq. 108):

α = arctan(RRR10,RRR00) (2.45)

ln(RRR) = α̂, α̂ ∈ so(2) (2.46)

2.3.3 Special Orthogonal Group in R
3 - SO(3)

The SO(3) group contains all possible rotation matrices (RRR) in R
3 as detailed in Section

2.1.3.

2.3.3.1 Generators and Parameters of SO(3)

As all of these rotations can be described by a chained rotation along each axis the result-

ing parameter space PSO3 for the SO(3) group has three dimensions, containing one rota-

tion angle for each of the available coordinate axis (x-axis=α,y-axis= β ,z-axis= γ , with

0≤α,β ,γ < 2π). Geometrically this parametrization is related to the already mentioned

Axis Angles (cf. Section 2.1.3.4) but with θ =
√

α2 +β 2 + γ2.

PSO3 = (α,β ,γ)T (2.47)

To generate the Lie algebra so(3) for the SO(3) group the following generator ma-

trices are used. Geometrically these matrices correspond to the differentiated R
3 ro-

tation matrices (cf. Eq. 2.12 - 2.14) all evaluated at the identity (α = β = γ =

0).

GGG0 =
∂RRRx(α)

∂α

∣

∣

∣

∣

α=0

=







0 0 0

0 0 −1

0 1 0






(2.48)

GGG1 =
∂RRRy(β )

∂β

∣

∣

∣

∣

β=0

=







0 0 1

0 0 0

−1 0 0






(2.49)

GGG2 =
∂RRRz(γ)

∂γ

∣

∣

∣

∣

γ=0

=







0 −1 0

1 0 0

0 0 0






(2.50)

Thomas Gulde - PhD Thesis - 22



2 Background and Basics

2.3.3.2 Hat-Operator of SO(3)

The hat operator maps a vector of parameters (α,β ,γ) to a skew matrix. It is defined by

the linear combination of each parameter and the generators:

P̂SO3 = αGGG0 +βGGG1 + γGGG2 =







0 −γ β

γ 0 −α

−β α 0






= ωωω×, with ωωω× ∈ so(3) (2.51)

2.3.3.3 Vee-Operator of SO(3)

As mentioned before, the Vee operation is equivalent to a direct mapping of some entries

of a skew symmetric matrix to the parameters and can be easily performed on the special

groups detailed in this work. The parameters can be mapped directly from a Lie algebra

ωωω× by extracting the single matrix elements:

PSO3 = (ωωω×21,ωωω×02,ωωω×10)
T = (α,β ,γ)T (2.52)

2.3.3.4 Exponential map of SO(3)

The final power series of the matrix exponential of ωωω× is given by the Rodrigues formula

(cf. Section 2.1.3.4 and [92] Eq. (1.2.6)) which results directly in an element of the

group and thus a rotation matrix R.

exp(ωωω×) = III3 +

(

sinθ

θ

)

ωωω×+

(

1− cosθ

θ 2

)

ωωω2
× = RRR, with RRR ∈ SO(3) (2.53)

with I3 = symmetric identity matrix with size 3×3,

and θ =
√

α2 +β 2 + γ2 = ||PSO3||

2.3.3.5 Logarithmic map of SO(3)

The logarithmic map for SO(3) is defined by the inverse of the exponential map (cf. [89]

Eq. 17-18):

Note that tr(RRR) is the trace operator of square matrices and is defined by the sum of all

main diagonal elements (cf. [93]).

Thomas Gulde - PhD Thesis - 23



2 Background and Basics

θ = arccos

(

tr(RRR)−1

2

)

(2.54)

ln(RRR) =
θ

2sinθ
(RRR−RRRT ) (2.55)

2.3.4 Special Euclidean Group in R
2 - SE(2)

The SE(2) group unites all possible transformations in R
2. This includes all rota-

tion matrices available in SO(2) and extends this set with all possible 2D transla-

tions.

2.3.4.1 Generators and Parameters of SE(2)

The list of parameters consists of the two individual translations parameters (tx, ty), and

a parameter α as the rotation angle.

PSE2 = (tx, ty,α)T (2.56)

The needed generators also combine the differential translation (GGG0 and GGG1) and rotation

operations, which is identical to the sole generator of the SO(2) group (see Eq. 2.42).

These generators relate to the partial derivatives of the transformation matrix T detailed

in Eq. 2.2, again evaluated at the identity.

GGG0 =
∂TTT

∂x

∣

∣

∣

∣

x=0

=







0 0 1

0 0 0

0 0 0






(2.57)

GGG1 =
∂TTT

∂y

∣

∣

∣

∣

y=0

=







0 0 0

0 0 1

0 0 0






(2.58)

GGG2 =
∂TTT

∂α

∣

∣

∣

∣

α=0

=







0 −1 0

1 0 0

0 0 0






(2.59)

Thomas Gulde - PhD Thesis - 24



2 Background and Basics

2.3.4.2 Hat-Operator of SE(2)

The parameters can be mapped to the Lie algebra with the help of the generators GGG0 -

GGG2.

P̂SE2 = txGGG0 + tyGGG1 +αGGG2 (2.60)






0 −α tx

α 0 ty

0 0 0






=

(

ωωω×R t

0 0

)

= ωωω×, with ωωω× ∈ se(2) (2.61)

2.3.4.3 Exponential map of SE(2)

To calculate the exponential map in SE(2) this operation is split into two parts. First the

logarithmic map of the rotation part ωωω×R is calculated as known from the SO(2) group

(cf. Section 2.3.2.3), and then the final combined exponential map can be calculated ac-

cording to the following equations (cf. [89] Eq. 120-136):

θ = arctan(RRR10,RRR00) (2.62)

VVV =
1

θ

(

sinθ −1+ cosθ

1− cosθ sinθ

)

(2.63)

exp(ωωω×) =

(

exp(ωωω×R))) VVV t

0 1

)

=

(

RRR t

0 1

)

= TTT , with TTT ∈ SE(2) (2.64)

where θ can be extracted from exp(ωωω×R) according to Eq. 2.62 (cf. Eq. 2.45).

2.3.4.4 Logarithmic map of SE(2)

For the logarithmic mapping it is easier to operate on the parameter space of SE(2).

While VVV−1 injects the rotation information into the translation part (cf.[89] Eq. 135), the

rotation parameter θ can again be extracted from RRR according to Eq. 2.45.

VVV−1 =
θ

sin2 θ +(1− cosθ)2

(

sinθ 1− cosθ

−1+ cosθ sinθ

)

(2.65)

p
′

SE(2) =

(

VVV−1t

θ

)

(2.66)

ln

(

RRR t

0 1

)

= p̂
′

SE(2) = ωωω×, with ωωω× ∈ se(2) (2.67)

Thomas Gulde - PhD Thesis - 25



2 Background and Basics

2.3.5 Special Euclidean Group in R
3 - SE(3)

The SE(3) group contains all possible transformations in R
3. This includes all rotation

matrices available in SO(3) and extends the set with all possible translations within a

3D system.

2.3.5.1 Generators and Parameters of SE(3)

The resulting parameter space PSE3 for the SE(3) group has six dimensions, containing

a translation parameter and one rotation angle for each of the available coordinate

axes.

PSE3 = (tx, ty, tz,α,β ,γ)T (2.68)

All transformations in R
3, i.e. all members of SE(3) can be described with a symmetric

4×4 matrix (cf. Section 2.1.1), and therefore the employed generators and the resulting

Lie algebra have the same dimensions. Again, the respective generators of the Lie algebra

se(3) directly corresponds to the partial derivatives of the R
3 transformation matrix (Eq.

2.3) evaluated at the identity.

GGG0 =
∂TTT

∂x

∣

∣

∣

∣

x=0

=













0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0













(2.69)

GGG1 =
∂TTT

∂y

∣

∣

∣

∣

y=0

=













0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0













(2.70)

GGG2 =
∂TTT

∂ z

∣

∣

∣

∣

z=0

=













0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0













(2.71)

GGG3 =
∂TTT

∂α

∣

∣

∣

∣

α=0

=













0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0













(2.72)

GGG4 =
∂TTT

∂β

∣

∣

∣

∣

β=0

=













0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0













(2.73)

GGG5 =
∂TTT

∂γ

∣

∣

∣

∣

γ=0

=













0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0













(2.74)

Thomas Gulde - PhD Thesis - 26



2 Background and Basics

2.3.5.2 Hat-Operator of SE(3)

The linear combination of the parameters and the generators define the hat operation

and lead to the skew symmetric matrix:

P̂SE3 = txGGG0 + tyGGG1 + tzGGG2 +αGGG3 +βGGG4 + γGGG5 = ωωω× (2.75)

ωωω× =













0 −γ β tx

γ 0 −α ty

−β α 0 tz

0 0 0 0













=

(

ωωω×R t

0 0

)

, with ωωω× ∈ se(3) (2.76)

2.3.5.3 Exponential map of SE(3)

Like in SE(2) the exponential mapping of the rotation part of the skew symmetric

matrix can be isolated as shown in Eq. 2.64 based on the matrix VVV (cf. [90] Eq.

9.22):

VVV = III3 +
1− cosθ

θ 2
ω×R +

θ − sinθ

θ 3
ω2
×R (2.77)

with θ =
√

α2 +β 2 + γ2

exp(ωωω×) =

(

exp(ωωω×R))) VVV t

0 1

)

=

(

RRR t

0 1

)

= TTT , with TTT ∈ SE(3) (2.78)

2.3.5.4 Logarithmic map of SE(3)

Similar to SE(2), the inverse SO(3) rotation part of a group element can be calculated

separately as shown in Section 2.3.3.5, and VVV can also be inverted (cf. [90] Eq. 9.26)

to perform the logarithmic mapping:

ln

(

RRR t

0 1

)

=

(

ln(RRR))) VVV−1t

0 0

)

= ωωω×, with ωωω× ∈ se(3) (2.80)

Thomas Gulde - PhD Thesis - 27



2 Background and Basics

VVV−1 = III3 −
1

2
ω×R +

1

θ 2

(

1−
θ cos θ

2

2sin θ
2

)

ω2
×R (2.79)

with θ =
√

α2 +β 2 + γ2

2.4 2D Camera Calibration

Visual perception systems offer versatile applications for robotics and automation sys-

tems. To ensure a constant and consistent sensor data representation it is often necessary

to know the diverse physical characteristics of the employed sensor system.

In common digital 2D-camera systems the employed camera optics and sensor-system

define these characteristics, the so called intrinsic camera parameters, and can usu-

ally be modeled within a parameterized camera model like presented in bellow Section

2.4.2. Besides these intrinsic parameters, it is also important to know the spatial re-

lation of the camera system itself to the perceived world, target, or another relative

system. These relations are the extrinsic camera parameters and are introduced in Sec-

tion 2.4.1.

Thomas Gulde - PhD Thesis - 28



2 Background and Basics

2.4.1 Extrinsic Camera Parameters

Extrinsic parameters describe the spatial position of a camera within any known reference

system. In a common 3D coordinate space such a connection can be simply described

by its position and rotation (cf. Section 2.1). Therefore, the extrinsic pose of the

camera is represented by a homogeneous transformation matrix (TTT ) as shown in Figure

2.10.

Figure 2.10: Extrinsic camera parameters. Fw: world coordinate frame, Fc1/2
: camera coordinate

frame of a specific camera, T w
c1/2

: Transformation between a world frame and the specific camera

frame, T c1
c2

: Transformation to transform information from Fc1 to Fc2 .

2.4.2 Pinhole Camera Model and Calibration Parameters

The pinhole camera model can be seen as the standard camera model used in many and

versatile applications in the field of computer graphics, robotics, and CV. The parameters

introduced with this model are visualized in Figure 2.11 (cf. [94]).

Thomas Gulde - PhD Thesis - 29



2 Background and Basics

Figure 2.11: Visualization of the basic pinhole camera model and its parameters. Fc: camera
coordinate system (frame), pxyz: point in R

3, p′xy: point p projected into the image plane, x/y:
image plane (or principal plane) coordinate system, u/v: specific pixel coordinates within the
image plane, cxy: principal point, f : focal length.

The camera frame Fc, originating from the center of the physical aperture of the camera

system, describes the camera’s intrinsic 3D reference system. Each observed point pxyz

can be projected onto a virtual image plane with the help of the focal length f and the

calculated principal point, describing the origin of the image’s main coordinate system.

This point physically relates to the center of the image sensor (usually found by a

calibration process) and the optical axis can be defined as a virtual axis starting from the

sensors 3D space origin pointing to the intersection of the image plane at the principal

point’s 2D location (cf. Figure 2.11).

As most applications use pixel-based coordinates to organize image data in columns (u)

and rows (v) the u/v coordinate system is originated on the top left corner of the image

plane. The plane itself is basically identical with the x/y frame but organizes each pixel

with positive pixel coordinates in the particular u and v direction.

Thomas Gulde - PhD Thesis - 30



2 Background and Basics

2.4.2.1 Image Plane Projection

Assuming that all extrinsic parameters, as well as the effective sensor size sx and sy are

known, it is possible to map each 3D point (pxyz) within the camera reference frame

to the associated 2D (p′xy) image-plane and respective u/v-pixel coordinates through

geometric relationships illustrated as follows:

Figure 2.12: Visualization of the image plane projection. Fc: camera coordinate system (frame),
pxyz: point in R

3, p′xy: point pxyz projected onto the image plane, c: principal point, f : focal length,
sxy: effective sensor size.

p′ =

(

px f
pzsx
py f

pzsy

)

(2.81)

u = p′x + cx (2.82)

v = p′y + cy (2.83)

The focal length ( f ) characterizes the physical distance between the image plane and

sensor, and the principle point (p) describes the physical center of the sensor and is

defined as the position where the optical axis hits the sensor. It is also recommended

to apply an additional distortion model to the point projection in order to consider

the accurate optical characteristics of the camera lens. Together with the focal length

and the principle point such distortion parameters forms the so called intrinsic camera

parameters and complete the pinhole camera model. As the final distortion of a camera

system is heavily related to its final manufacturing, and so heavily affected by mechanical

tolerances, these distortion parameters are usually estimated by a calibration process [95,

96, 97, 98].

Thomas Gulde - PhD Thesis - 31



2 Background and Basics

It is also common practice to organize all parameters necessary for the image plane pro-

jection in a single 3×4 matrix PPPpro j. This allows to perform the image plane projection

with a single matrix multiplication based on homogenized coordinates as shown in Eq.

2.85.

PPPpro j =







f sx 0 cx 0

0 f sy cy 0

0 0 1 0






(2.84)

p′u,v =







u

v

1






= PPPpro j













px

py

pz

1













(2.85)

Note that many applications are based on different orientations of the camera base frame

in relation to the image plane. This difference has to be considered when employing the

here presented equations. The additional distortion correction is also applied after the

described image plane projection and usually involves an additional affine transformation

(cf. 2.1.4) to adjust the final pixel positions.

2.4.3 Perspective-N-Points (PnP)

The Perspective-N-Points (PnP) problem is a renown task in CV that gained much

research attention in the last decades and affects many domains like extrinsic camera

calibration or object detection [99]. The problem occurs during estimation of the 3D

position of an object (cf. TTT O
C in Figure 2.13) within the camera’s coordinate-space (FC)

based on N known object keypoints (pn) within the 3D intrinsic object coordinate system

(FO) and their corresponding 2D projection (p′n) on the image plane as illustrated in the

following Figure 2.13.

Thomas Gulde - PhD Thesis - 32



2 Background and Basics

Figure 2.13: Illustration of the PnP problem. The projection of the 3D object points (p1−4) lead
to a 2D point pattern (p′1−4) on the image plane. Solving a given PnP constellation will estimate
the transformation (TTT O

C ) between the observing camera coordinate frame (FC) and the respective
object frame (FO).

Now, it is literally a question of the perspective. The loss of the third dimension while

projecting the estimated object points on the image plane introduces an ambiguity as

multiple transformations between FC and FO could lead to a given projection pattern. A

solution to the PnP problem is provided by the transformation TTT O
C that fits the given point

correspondences which theoretically can be found when at least three unambiguous point

correspondences are known. As in many estimation tasks, the given correspondences

should always be as accurate as possible. Heavy outliers but also minor inaccuracies

in the data will always have a negative impact on the estimation result and should be

considered in a final system design [100].

Many approaches have been published that try to tackle the problem iteratively. Quan

et al. [101] solved the problem by redundantly fitting linear equation systems for each

point correspondence which need at least four correspondences to solve the given three

unknowns. More data-focused algorithms [102] employ an additional Gaussian noise

model to take care of a probably high noise of the given corresponding point-pairs. As

such, iterative solutions can be seen as computationally greedy algorithms, also non-

iterative approaches that try to provide a closed-form solution for the problem are also

available in the literature. Lepetit et al. published a well-employed method, called EPnP

[103] that needs at least four correspondences and formally describe the problem as a

Thomas Gulde - PhD Thesis - 33



2 Background and Basics

weighted sum of four imaginary control points. These control points are adjusted based

on quadratic optimization and the given point correspondences. The EPnP algorithm

also serves as the backbone for the autonomous extrinsic calibration procedure based on

RoPose as detailed in Section 3.4.

It is obvious that non-iterative methods are perfectly applicable when facing large sets

of correspondences and that they could save a lot of computation time. As shown by

Ferraz et al. [104] an additional rejection of possible outliers can be used to improve

the performance of the algorithm. Outlier rejection especially becomes helpful when the

observed keypoint positions (in both domains, 2D and 3D) are also suffering from higher

detection errors and could be performed based on well-known methods like Random

Sample Consensus (RANSAC) [105].

The classical PnP-problem has long been in the focus of several research groups. More

modern solutions are available which were usually developed for very specific appli-

cations and domains and should not be seen as generally solutions but may worth

consideration if a problem at hand is comparable to a given solution [106, 107, 108,

109].

2.5 Optical Flow and Motion Estimation

In general, the term optical flow describes the time related movement representation of

a known element based on a well defined supervising perspective. In CV it is usually

employed to describe the effect of a distinct movement on a given image. Based on

the formal optical flow definition in Eq. 2.86 (cf. [110]), the optical flow was originally

defined directly on the pixel-level based on their dedicated positions (x,y), the given

intensities (I), and a defined time base (t).

It+1(x,y, t) = It(x,y, t)+
∂ It

∂x
dx+

∂ It

∂y
dy+

∂ It

∂ t
dt (2.86)

It+1 = It +∆x+∆y+∆t (2.87)

The given partial derivations describe the time-related intensity shift. This intensity-

based view allows for a temporal direction aware tracking of pixel movements. The

Thomas Gulde - PhD Thesis - 34



2 Background and Basics

approach is based on principles of fluid dynamics and can be transferred to model ab-

stract movements, e.g. of estimated objects, joints, or every imaginable kind of instance

or agent, in general. The original authors Horn and Schunck distinguish between the

optical flow itself, which describes the intensity flow of the holistic image and the mo-

tion field, introducing additional constraints and thus focusing on the projections of

3D motion trajectories [111]. When describing such 2D motions of an object, the

formal definition can be transferred to describe the t +1 position of a geometric primi-

tive.

Pt+1(x,y) = P(xt +∆x,yt +∆y) (2.88)

Eq. 2.88 can be used to describe the motion of such an primitive object from one obser-

vation to another in the form of a normalized direction vector (m), the transformation dis-

tance (d), and also the speed (s) related to the given timebase.

d = |Pt+1 −Pt |=
√

∆x2 +∆y2 (2.89)

m =
1

d

(

∆x

∆y

)

(2.90)

s =
d

∆t
(2.91)

Usually, despite the original author’s point of view (cf. [111]), the term optical flow

is often used synonymously with a geometric based motion description formally called

motion flow.

Thomas Gulde - PhD Thesis - 35



2 Background and Basics

2.6 Neural Networks

“A deep-learning system doesn’t have any explanatory power.”

Geoffrey Hinton, 2017 - [112]

Neural networks, especially convolutional neural networks build the backbone of mod-

ern State of the Art (SOTA) computer vision applications, just as the here presented

systems and approaches. The following sections provide an overview of some parts, el-

ements and building blocks that are needed to build such networks and realize various

applications.

2.6.1 Artificial Neurons and Networks

An artificial neuron is in effect a single response-unit with tweakable or trainable scalar

weight factors (wn). It is responsible for a certain output (y) according to a single or po-

tentially multiple inputs (xn), and an optional trainable bias therm (cbias) [113]. A com-

mon model of such an artificial neuron is shown in Figure 2.14.

Figure 2.14: Single neuron and its parameters. Each neuron can have several inputs (xn) which are
individually weighted by a trained weight (wn). The weighted sum of all inputs form the parameter
for the activation function ( fa) which is used to calculate a neurons final output. An optional but
also trained and optimized bias term (cbias) can be used to finally affect the output (y) which will
increase or reduce the global influence of a single neuron’s output (cf. [113]).

Each unit internally accumulates the weighted inputs and passes the result into a cho-

sen activation function ( fa), which will finally lead to the neuron’s response. Just as

Thomas Gulde - PhD Thesis - 36



2 Background and Basics

the adjusted weights, the activation function has a significant impact on y. Figure

2.15 provides a simplified overview of possible and commonly employed activation func-

tions.

(a) Linear - Lin()
f (x) = x

(b) Sigmoid - Sig()
f (x) = 1

1+e−x

(c) Hyperbolic tangent - TanH()
f (x) = ex−e−x

ex+e−x

(d) Rectified linear units - ReLU()

f (x) =

{

0 x ≤ 0

x x > 0

Figure 2.15: Overview of common activation functions, usually with an normalized output value
range between −1.0 to 1.0. (a) Linear activation functions add no additional influence to the
weighted inputs. Usually employed for the last stage of a regression network and also for input
neurons. (b) Sigmoid activation functions wrap the output in a continuous asymptotic scale be-
tween 0.0 and 1.0. (c) Hyperbolic tangent activations are very similar to sigmoid functions but
scales between −1.0 and 1.0. (d) A Rectified Linear Units (ReLU) are probably the most popular
activation function for hidden layers. ReLU suppress negative outputs and employ a standard lin-
ear response for x > 0. Equations are based on the publication from Nwankpa et al. [114].

0

Besides the introduced activation functions in Fig. 2.15, modern applications offer

many more advanced methods like LeakyReLU [115] which adds an additional inde-

Thomas Gulde - PhD Thesis - 37



2 Background and Basics

pendent linear response for x < 0 to the standard ReLU, or SoftMax based func-

tions usually employed to solve classification tasks. A more broad and also formal

overview of the different activation functions and their final effects, drawbacks and

variants was previously published by Ramachandran et al. [116] and Virtanen et al.

[117].

To finally form a NN, the artificial neurons need to be combined in connected constructs

of various size. Each NN can be described as a structured and usually multi-layered com-

bination of multiple single artificial neurons as shown in Figure 2.16, each layer between

the in- and output structure is called a hidden layer.

Figure 2.16: Multiple connected neurons forming a NN. This example is called a dense, fully
connected NN where all neurons from the particular direct neighboring layers are connected.

All neurons of a resulting NN and their respective weights can then be optimized to

minimize a given loss, which can be extracted from the network’s output and a given

Ground Truth (GT) (cf. Section 2.6.3).

When talking about deep learning, the so called Substantial Credit Assignment Path

(CAP) can be used to describe the depth of a neural network as a scalar value and it is

defined by counting all the given hidden layers of a network plus the final output layer (cf.

[118]). The common opinion is that the term deep learning simply describes an applica-

tion of a NN with more than one hidden layer (CAP > 2).

Thomas Gulde - PhD Thesis - 38



2 Background and Basics

This thesis does not provide an extensive formal introduction to the basic math exploited

in NNs as it has been sufficiently reviewed previously. For example, Goodfellow et al.

covered all necessary principles in the first part of their open-source book on deep learning

[119].

2.6.2 Convolutional Neural Networks

A CNN can be seen as an uncompromising transfer of a neural network learning struc-

ture to spatial convolutions. As convolutions have emerged from many very physically

embossed applications like analog and digital signal processing (cf. [120]), this operation

has become one of the most employed tools in the field of CV and forms the basis for

many popular basic operations like blurring, smoothing or sharpening (cf. [121]), and

also advanced operators such as the commonly used Canny edge detector [122]. Con-

volutions in CV are using 2D filter kernels with a defined size n× n and an associated

weight mask as visualized in Figure 2.17.

Figure 2.17: Visualization of a spatial convolution operation on 2D input data. The n× n weight
matrix, the so called filter kernel, contains the weights which are applied on each input element
within the kernels receptive field. The final filter response can then be calculated by sliding the
filter kernel across the whole input image and summate the weighted input elements for each
kernel appliance.

The convolution itself is performed by sliding the convolution matrix (k) through each

pixel of a 2D input and applying the m×n sized filter mask’s weights of a usually squared

filter to the particular input intensity (basically an element-wise multiplication) in the

considered neighborhood, usually called the receptive field. The final filter response

Thomas Gulde - PhD Thesis - 39



2 Background and Basics

(gxy) is the accumulation of the weighted (each weight is indicated by kxy) inputs (ixy)

transferred to the current position of the filters base element (red in Figure 2.17). The

filter-matrix itself is usually flipped. This, often also called neighborhood operation, is

formally defined by Eq. 2.92 (cf. [119]).

g(x,y) = i∗ k(x,y) = ∑
m

∑
n

ixykx−m,y−n (2.92)

In the difference to standard NNs, the learning process in CNNs will affect the weights

of multiple convolution matrices within the network structure and thus allows for the

learning of spatial correlations of the given input. In practice, such convolutions are

also affected by additional parameters to tweak the final filter response. Each of the

following options will affect the output size of the response and have to be considered

when defining such network structures.

• Kernel Size

The kernel size (sk ∈ N) simply describes the number of weights a kernel has on

each side (e.g. 3×3 as shown in the here presented examples).

• Stride

The stride (stride ≥ 1,stride ∈ N) describes the amount of movement between

each filter application. It can basically be used to skip input elements and introduce

a downsampling-like behaviour.

• Input and Output Padding

Padding is used to adjust the final response dimensions of filter operations. De-

pending on the kernel and input sizes the final response may end up in lower

dimensions. To avoid this scenario, padding elements are added before or after

the performed convolutions. An example of input padding is indicated by the

white border in Figure 2.17. Usually, the padding elements are set to zero (Zero-

Padding).

• Dilation

A dilation factor (dilation≥ 1,dilation∈N) defines the spacing between each filter

weight. A dilation of 1 is therefore the standard convolution kernel. As described

by Yu et al. in their original work [123], dilated convolutions can drastically increase

the receptive field and may help to aggregate information on various scale factors

by also keeping the filter’s dimensions in controllable sizes.

Thomas Gulde - PhD Thesis - 40



2 Background and Basics

As a formal introduction of all these options and their final impact lies way beyond the

scope of this thesis, it is referred to Dumoulin and Visin’s comprehensive introduction

[124]1, or the documentation of one of the various publicly available deep learning frame-

works like Tensorflow [125], Pytorch[126] or CNTK [127].

2.6.2.1 Additional Building Blocks

Besides the standard and most common convolutional layers, CNN architectures can

contain additional elements and building blocks that would fundamentally affect the

extracted features and the final output.

Pooling Layer

Just as standard convolutions, pooling layers are also spatial operators and are used to

reduce the input dimensions. Figure 2.18 visualizes the effect of the common max and

mean pooling operators used in CNN architectures.

(a) max pooling operation (b) mean pooling operation

Figure 2.18: Visualization of max- and mean-pooling operations. (a) The response of a max-
pooling operation is simply the maximum value within the receptive field. (b) Mean-pooling
operation calculates the mean of all elements within the kernel’s receptive field.

While a max-pooling layer’s response is simply the maximum value within the receptive

field, mean-pooling operations calculate the mean value. The pooling is applied across

the whole input and thus can also be adjusted by options like stride and padding while the

chosen kernel size mainly affects the response’s dimensions.

1In the associated repository you can also find their easily understandable animations https://github.

com/vdumoulin/conv_arithmetic/blob/master/README.md

Thomas Gulde - PhD Thesis - 41

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md


2 Background and Basics

Transposed Convolutional Layers

A transposed convolutional layer performs the transposed operation of a convolutional

layer. Thus they are often also called de-convolutional layers. Such layers are used to

perform a parameter based, feature extracting upsampling, by exploiting the trainable

parameters of a filter mask. An example of a de-convolution is visualized in Figure

2.19.

Figure 2.19: Visualization of a de-convolutional operation on 2D input data. The trainable weight
matrix is used to increase the dimensions of the final response according to the given parameters
like kernel size and stride.

Batch Normalization

A technique called batch normalization has been published by Ioffe et al. in 2015 [128]

and helped many applications to reach new standards. As normalization is a crucial part

of every machine learning application and traditionally applied to in- and output data,

normalization methods like batch normalization are directly injected as layers into the

network structure itself. It should be seen more as a sort of transformation than an

extra layer. They were designed to reduce the so called covariate shift between mini

batches. The covariate shift describes the differences of the distribution in the final neu-

rons response between optimization steps. Because new data is processed within each

training-step, and each training-step itself optimizes the weights of each neuron a heavy

distribution between each batch can lead to a heavy impact on the neurons weights

adjustments during optimization especially in high level network layers. Although this is

the majority opinion, Bjorck et al. [129] claims that it is more likely the smoothening

effect of this normalization that is responsible for its positive effects which is also a

reasonable explanation for the success of this method. However, this transformation

Thomas Gulde - PhD Thesis - 42



2 Background and Basics

technique can speed up and stabilize training routines as well as optimizations by nor-

malizing each output within the network based on the mean and standard deviation for

each mini-batch (cf. Section 2.6.3) used for training.

Fully Connected Layer

Fully connected layers were already described in Figure 2.16 and describe specific layers

in which each neuron is connected to each neuron of the previous layer. Within the

multidimensional layer structure of a CNN, this principle is simply transferred to this

layer structure. Fully connected layers can be used to perform a network’s final regression

e.g. to a class probability. As every input of a neuron (cf. Figure 2.14) will increase the

parameter size of the final network, such layers always have a massive impact on the

model size which is a major problem especially in embedded applications, that has to be

considered when designing new networks.

2.6.2.2 Network Designs

There are literally no restrictions when it comes to defining a NN or CNN structure, and

describing all available base architectures would be far beyond the scope of this thesis.

In order to provide a basic understanding of network design and common practices

the example network architectures summarized below in Figure 2.20 will be thoroughly

discussed.

A standard feed-forward network as outlined in Figure 2.20 (a) is the most straight

forward CNN structure. The input is simply propagated through all network layers and

the results can be obtained at the output element. Such networks, e.g. the the VGG-

networks from the famous Visual Geometry Group (VGG) [130], often find their usage

in feature extraction tasks and so build the backbone for many applications (e.g. [I,

II]).

Thomas Gulde - PhD Thesis - 43



2 Background and Basics

(a) Feed Forward Network (b) Recurrent Network

(c) Recursive Networks
(d) Residual Networks

(e) Stacked Hourglass Network (f) Generative Adversarial Network

Figure 2.20: Examples of common network architectures and structures. (a) A feed-forward net-
work forms the most basic, linear structure of a CNN. (b) Recurrent networks are able to preserve
information from previous network states and so enable access to some kind of history. (c) Recur-
sive networks consist of repetitive sub-network structures based on the same in- and output model
to increase the network’s overall capacity. (d) Residual networks allow to skip some layers of the
network by introducing adaptive shortcuts. (e) Stacked hourglass structures consist of multiple
convolution and de-convolution stacks to allow for a feature extraction on multiple levels. (f) A
Generative Adversarial Network (GAN) is a compound network structure of two competing net-
works where the generator part tries to generate artificial data elements as realistic as possible
while the discriminator judges the realness based on given real data examples.

Thomas Gulde - PhD Thesis - 44



2 Background and Basics

In contrast to a standard feed-forward network where each propagation is limited to its

intrinsic knowledge, recurrent networks are able to preserve information from previous

states (see Figure 2.20 (b)). This enables new possibilities for every task that is somehow

dependent on continuous information from previous states, for instance speech- [131,

132] or action recognition [4, 133]. The history of such networks can be traced back

to 1997 [134] when Hochreiter et al. proposed the famous and still heavily used Long

Short-Term Memory (LSTM) networks that evolved into slightly more simple variants

just as Gated Recurrent Units [135].

As the term recursive indicates, recursive networks are based on multiple repetitions of

whole network parts as shown in Figure 2.20 (c). The fact that the input and output

structure of the repetitive parts are consistent allows for a theoretically infinitely large or

deep network. However, it usually does not make any sense to lift a network’s dimension

above a reasonable scale as detailed by Stathakis et al. [136].

Residual networks are also very similar to standard feed-forward networks but introduce

the possibility to skip particular layers by defining adaptive shortcuts (see Figure 2.20

(d)). This reduces a network’s final complexity especially when it comes to very deep

structures. The possibility to eventually skip parts of the network mainly reduces the

training and inference time and also counters the problem of vanishing gradients (cf.

Section 2.6.3). Such a procedure also does not change the basic behavior of the defined

network because the neurons of the skipped network-parts are just ignored within the

feed-forward operation. The ResNet structures [137], which are commonly used for

image feature extraction, are one of the most popular representatives of this kind of

network.

Stacked hourglass networks have emerged in 2016 [138] and have their origin in human

pose estimation. The origin of the architecture’s name becomes clear when looking at the

sketch in Figure 2.20 (e). Such a network’s main building blocks are multiple combina-

tions of stacked convolutional and de-convolutional layers, which leads to the eponymous

shape. Such a structure allows for a multi-scale feature extraction depending on the con-

volutions and de-convolutional layers of each hourglass stage.

In 2014, Ian J. Goodfellow et al. proposed the GAN [139]. The idea behind GANs is

the competition of two NNs against each other. As outlined in Figure 2.20 (f), the

generator network produces artificial data (e.g. images like in most CNN applications)

out of a randomized input. The so called discriminator network has access to real data

examples and predicts a probability for the artificial generated data’s realness. This will

lead to the mentioned competition where the generator will be trained to generate data

Thomas Gulde - PhD Thesis - 45



2 Background and Basics

as real as possible to fool the discriminator. GANs are enjoying great popularity and it

is obvious that their self-learning behavior, mainly introduced by the generator, can be

used to realize interesting applications for a wide range of un-, semi- and self-supervised

learning structures especially because the generator’s and discriminator’s architecture is

also not limited to a specific application domain and can be adjusted to tackle various

tasks.

All of the here presented architectures can usually be exploited in a rather wide field of

application and can be combined and extended with multiple inputs, outputs, losses, and

other networks to fulfill their dedicated task. However the here presented work mainly

utilizes standard feed forward (cf. Chapter 3) and recursive networks [I] but also relies

on ideas from other architectures.

2.6.3 Training, optimization and Loss Functions

When it comes to the training of NNs, optimization methods are used to determine the

set of parameters and weights supposed to be the best for the designed network and the

given data basis. An optimization step tries to adjust the network’s weight parameter

constellation to minimize the resulting losses2 for each processed example respectively

an example-batch. Example- or mini-batches describe the amount of training data that

is passed through the network in one iteration. Usually, after each epoch3 the current

parameter set will be tested using a specific test dataset that should not contain data

of the training set.

Optimization is a mathematical research field itself that is way older than modern ma-

chine learning. Thus, it is again beyond the scope of this thesis to provide and ex-

tensive overview and this Section will focus on an introduction of optimization tech-

niques and methods that were used to develop the systems presented in this work.

It is referred to [140, 119] for a broad overview close to the machine learning do-

main.

Common optimization algorithms for NNs and CNNs can roughly be fielded with the

derivative order they operate on. The so called gradient descent optimizers are sup-

posedly the most naive approach, but still, one of the most used optimization methods

2A loss, function often also called cost function, is used to quantify the difference between the expected
and the actual output of a network.

3An epoch is finished when all available training data was used once, or when a specific amount of itera-
tions where processed if the set size is not specifically known e.g. for GANs.

Thomas Gulde - PhD Thesis - 46



2 Background and Basics

even for large-scale machine learning applications [141]. They are often consolidated as

Stochastic Gradient Descent (SGD) algorithms. SGD algorithms employ the gradient,

and thus the first-order derivatives, of the objective or loss function (L) to update each

trainable weight (wn) provided by a NN at each mini-batch iteration t influenced by a

vague set learning rate (rlearn) and the calculated loss-gradient (∇L(...)) extracted from

the batch response (yr
t ) and the corresponding GT (ygt

t ). The formal equation can be

given as follows:

wn
t+1 = wn

t − rlearn∇Lt(w
n
t ,y

r
t ,y

gt
t ) (2.93)

A process called back propagation is used to calculate the gradients by iterating back-

ward through the layers in the neural network, based on the extracted loss after feeding

a given input to the network. Because the calculations for back propagation process can

get increasingly complicated in deeper networks (the main reason for this is the necessity

of employing the chain rule because the results of higher-level neurons normally depend

on every parameter on lower network levels). The mathematical background related

to back propagation is covered in more depth in [142, 143]. In addition to first-order

algorithms, higher-order derivatives can also be used to update the network’s param-

eters. Ruder et al. provides a broad overview of gradient-based optimization methods

[144].

The loss function itself can be everything imaginable that will describe a difference

between the known GT (ygt) and the given response (yr) of a network. One of the most

commonly used losses is the Mean Squared Error (MSE), which could be applied to

almost all vector, matrix, or tensor-based linear output formats and is formally defined

by the following Eq. 2.94 where the index i denotes a single element of the output of

the network or the available GT:

MSE(ygt ,yr) =
1

n

n

∑
i=1

(ygt
i − yr

i )
2 (2.94)

The MSE is also often extended with an additional square root calculation. The resulting

Root Mean Squared Error (RMSE) also serves as a common loss function, suitable for

various applications.

RMSE(ygt ,yr) =
√

MSE(ygt ,yr) =

√

1

n

n

∑
i=1

(ygt
i − yr

i )
2 (2.95)

Thomas Gulde - PhD Thesis - 47



2 Background and Basics

For classification tasks, where a network’s output is usually given by a vector or tensor

containing probabilities for each dedicated class (c) of all known classes (C), the cross-

entropy (H) is usually employed for the loss calculation:

H(ygt ,yr) =−
C

∑
c=1

ygt
c ln(yr

c) (2.96)

Besides a standard single loss calculation, losses can also be a, usually weighted, combi-

nation of multiple different losses. Recent publications show, that style losses where an

additional loss term is calculated based on various level feature responses of the output

and the GT, calculated based on an additional employed image feature extraction net-

work (cf. Section 2.6.2.2), can be used to enable interesting new prospects, especially

for CNN applications [145].

Standard SGD algorithms can be extended with adaptive optimization techniques. These

methods were developed to allow for an autonomous adaption of learning rates and other

parameters like biases. One of the most prominent and widely used optimization tech-

nique is called Adam (∼Adaptive Moment Estimation)[146] and combines the advantages

of a per parameter learning rate (SGD usually handles just one learning rate for all param-

eters) of AdaGrad (∼Adaptive Gradient Algorithm)[147] and the more excessive adaptive

lr adjustment of RMSProp[148] (Root Mean Square Propagation). Adam adjusts each

single learning rate based on the mean and variance of the gradients, which usually helps

to reduce the loss faster than standard methods.

The concept behind adaptive optimization methods like Adam may sound groundbreaking

and ideal at first but such methods should not be seen as the sole solution. Wilson et

al. highlighted such algorithms primarily help with generative models which are usually

not facing direct optimization problems and SGD based methods with a carefully tuned

parameter setting should be preferred for other problems in order to find a more optimal

model [149]. The work this thesis describes put this advice into practice. The here

presented learning-based systems and models were developed and debugged based on

adaptive methods like Adam and were finally trained with SGD after ensuring a model’s

base functionality. In the eyes of this thesis’ author, it is impossible to provide a one

fits all solution or plan for optimization and training. At this point, it should be clear

that the success of training a however designed NN hardly depends on many factors,

including the employed data structure, the networks architecture and size, the supposed

output, the employed normalization, the optimization techniques, and may also require

a measure of intuition by the developing scientist.

Thomas Gulde - PhD Thesis - 48



2 Background and Basics

2.7 Accuracy Metrics

Whenever a system needs to be evaluated or compared to previous versions and other

methods, proper metrics have to be defined to allow objective performance quantifi-

cation. Especially when deep learning architectures are involved the accuracy differ-

ences between various methods can be very small and a well-defined metric helps to

choose the right approach for a given problem. The following section summarizes and

defines the metrics that are used within this thesis. The individual metrics are used

to determine the system’s accuracy for a specified sub-task. Whenever this task is a

classification, detection, or any other binary decision, the evaluation results can also

be expressed with the precision, recall, or accuracy metrics as described in Section

2.7.1.

2.7.1 Precision and Recall

Besides an absolute metric, Precision (P) and Recall (R) calculations are used to deter-

mine the overall performance of an estimation system by rating the system’s performance

between 0.0 and 1.0. In order to calculate these metrics, each estimation will have to

be categorized into the following categories:

• True Positive (TP)

An estimation is counted as TP when the estimation system successfully detects

an instance of the same class or joint as in the given GT and the similarity of the

final positional estimation is higher or equal than a provided threshold.

• False Positive (FP)

An estimation is counted as FP when the estimation system wrongly detects an

instance of a class or joint that is not in the given GT and the similarity of a final

positional estimation is higher than a provided threshold.

• True Negative (TN)

An estimation is counted as TN when the estimation system does not detect a

class or joint that is not in the given GT.

• False Negative (FN)

An estimation is counted as FN when the estimation system does not detect a

class or joint that certainly is defined in the given GT.

Thomas Gulde - PhD Thesis - 49



2 Background and Basics

Based on these classifications the Precision and Recall (also called True Positive Rate)

can be calculated as follows (cf. [150] Chap. 9):

Precision = P =
T P

T P+FP
(2.97)

Recall = R =
T P

T P+FN
(2.98)

The above Equations show, that a higher P, indicates less mistakenly detected instances

and a higher R indicates less mistakenly suppressed instances.

To transfer the in 2.7.2 and 2.7.3 introduced absolute metrics to the P and R ratings,

an additional threshold needs to be introduced. After calculating the absolute similarity

between a target and an estimation, a minimum value is defined to rate if a similarity

is good enough to count as a successful detection or not what finally allows for a

classification of each estimation according to TP, FP, TN and FN. This procedure

can be seen as common practice and can be applied to the here presented metrics by

defining a minimum Intersection Over Union (IoU) or a minimum keypoint distance for

a detection, e.g. 0.5, respectively 5pix.

The evaluation of these rates at various similarity thresholds allows for plotting a precision-

recall curve that can give a good overview of the estimator’s overall performance (Fig-

ure 2.21). The final accuracy is then defined by the Area Under Curve (AUC) of the

plot.

Figure 2.21: Example of a precision-recall curve. The Average Precision (AP) is defined by the
Area Under Curve (AUC) (blue) of the plot.

Thomas Gulde - PhD Thesis - 50



2 Background and Basics

In addition to these two indicators, the F1-Score can be used as a powerful single key-

value e.g. for finding best models, thresholds or classifiers, by combining the precision

and recall by their harmonic mean (cf. [151]):

F1Score = 2
PR

P+R
(2.99)

2.7.2 Bounding Box Accuracy

Bounding boxes are often used to describe a rough Region of Interest (ROI) around

targets on the image plane, and are usually rectangular boxes within a known 2D space.

An example of two bounding boxes (e.g. a target, or GT, and prediction) that have to

be compared can be seen in Figure 2.22.

Figure 2.22: Visualization of the IoU calculation. The overlapping area is described by x′ and y′

and the origin areas of the bounding boxes are described by xn and yn.

To compute a scalar similarity factor for the two areas the so called Intersection Over

Union is usually employed and can be calculated based on the combined area of both

bounding boxes (Aunion) and the area where both bounding boxes overlap (Aover) (cf.

[152]). The respective side-lengths used to calculate the areas can also be inferred from

Figure 2.22.

Thomas Gulde - PhD Thesis - 51



2 Background and Basics

IoU =
x′y′

xtyt + xpyp − x′y′
=

Aover

Aunion
(2.100)

The IoU therefore always expresses a similarity of two 2D bounding boxes with a scalar

value between 0 and 1 and thus represents a perfect metric for comparison.

Sometimes it is useful to judge the performance of a bounding box detector or a similar

system by looking at various thresholds that decide if a target was successfully detected

or not. In such a case the IoU can also be the basis and count each target with a IoU

higher than the current threshold as good. The result is a binary classification which can

be performed on a threshold range between 0.0 and 1.0. With this background eg. the

F1-score (cf. Section 2.7.1) can be used as a meaningful keyvalue that leads to graphs

as shown in the example in Figure 2.23.

Figure 2.23: Example plot of an IoU based F1-score evaluation. Such an evaluation performs a
binary classification based on various thresholds of the predicted IoUs. The graph offers a good
overview of how a system performs on various accuracy levels.

Because the here presented systems do not require 3D bounding boxes, the metric used

for such systems is not within the scope of this thesis. However, the presented 2D metric

can be easily transferred to R
3 by calculating an IoU based on each 3D volumes instead

of 2D areas.

Thomas Gulde - PhD Thesis - 52



2 Background and Basics

2.7.3 Distance and Probability of Correct Keypoints (PCK)

One of the main novelty and contribution of this thesis is the joint-wise keypoint detection

of industrial robot arms. To measure the performance of such a system the standard

Euclidean distances between each predicted joint position (j) and the corresponding GT

(t) from a dataset could be sufficient to state out the absolute performance of a system.

In addition, this distance will be the base for all other metrics presented below and, is

calculated as follows:

d(j, t) =

√

n

∑
i=1

( ji − ti)
2,with n=2 for j,t ∈ R

2,n=2 for j,t ∈ R
3 (2.101)

Within the field of human pose estimation (cf. Section 3.3.3.1), the Probability of Cor-

rect Keypoints (PCK) metric and their possible variations are commonly used in many

applications [153, 154, 138]. These metrics define a variable threshold (dt) for the calcu-

lated distance in which a joint will be classified as correctly detected or not. The origin

of PCK as published by Yang and Ramanan [155], defines dt relative to the maximal side

length of each example targets bounding box (bbx,bby):

dt = α max(bbx,bby) (2.102)

With the factor α (0.0≤α ≤ 1.0) the absolute threshold and can be adjusted to generate

meaningful plots (Figure 2.24 shows an example curve) to show how a system’s accuracy

changes with different thresholds, similar to the graphs detailed in Figure 2.23. According

to [155], α is usually set to 0.1. To keep track of which thresholds parameter α is used,

the chosen value is usually integrated into the metrics name proceeded by an @ symbol

(e.g. PCK@0.1).

Thomas Gulde - PhD Thesis - 53



2 Background and Basics

Figure 2.24: Example of a PCK plot. If the PCK based evaluation is performed for various ac-
curacy thresholds, such a graph offers a good overview of a system’s performance on various
accuracy levels.

In order to create a more human-based metric, the team around Andriluka defined the

PCKh metric in which the threshold distance is calculated relative to the length of the

target human head segment and not the whole target’s bounding box anymore[156].

Again, the final factor of the metric is integrated within the name (e.g. PCKh@0.5, cf.

red line in Figure 2.24). Beside a plot with various factors as shwon in Fig. 2.24, the

factor 0.5 is commonly used to indicate a system’s performance within a PCKh based

analysis.

Thomas Gulde - PhD Thesis - 54



3 Dynamic robot-arm supervison

3.1 Problem

As described in Section 1.2 it is important to know the current state of an industrial

robot arm relative to other relevant process elements like the states of humans and ob-

jects. Such additional information enables many possibilities, e.g. to dynamically adapt

the movements of the robot to the given surroundings. One highly promising approach

is to employ observing vision sensors to acquire the needed and highly dynamic pose

information within collaborative workspaces. Because common 2D-RGB camera sensors

are becoming more and more affordable, accurate, and easy to integrate into large sys-

tems, they represent a popular source of information to extract versatile information. To

also add notable value to a collaborative environment, employed smart sensory systems

need to be able to extract the robot’s pose information as exact and fast as possible.

Relative strategies have recently been pursued excessively to estimate human poses (see

e.g. Section 3.3.3.1) but their use to estimate the pose of other articulated targets like

industrial robot-arms did not get the attention they deserve. The boom of data-driven

algorithms has also led to huge and growing detailed labeled datasets for common use

cases [156, 54, 55]. However, coming to not that popular applications, a lack of appro-

priate datasets for special domains is apparent.

The following part of this thesis describes how to fill this data-gap for data-driven in-

dustrial robot-arm pose estimation applications with an automated dataset generator for

simulated and real robot-arms, and shows how to adapt known pose-estimation systems

to the given domain.

3.2 Related Work

Many researchers, groups, engineers, and companies work in the field of visual servo-

ing based on RGB-image data [157, 158, 159]. It is almost impossible to provide a

wide and general state of the art overview because the use cases for such systems are

as endless as the possible objects the particular solution want to observe. The focus

of this thesis stays therefore within the area of industrial robotics and articulated tar-

gets.

Joint collaborative workspaces for humans and industrial robots usually rely heavily on

statically defined areas [160, 161, 162] and calibrated camera systems where the extrinsic

Thomas Gulde - PhD Thesis - 55



3 Dynamic robot-arm supervison

transformation between the supervising sensor system and the robot is known. In contrast

to such approaches, one of the main goals of the here presented work is to estimate the

actuator’s kinematic pose directly from the raw image data of a observing camera system.

This avoids a separate extrinsic calibration of the sensor and allows for more dynamic

camera placement.

To allow for more general and target-independent solutions, a lot of work concentrates

on marker-based methods. Beside known passive targets [160, 163], such as the popular

AprilTags [10, 9], which our research group also employed in our projects as local refer-

ences to allow for a more dynamic gripping process, active, e.g. infrared-based, systems

can also be used to extract the pose information on an image [164]. For uncommon

problems or rater uncommon observation targets of the pose estimation, Lundeen et al.

ended up attaching visual markers even on huge excavators [165]. However, because

it is one of the main goals of the here presented work to realize such an application

without additional visual targets, to avoid unnecessary physical adaptions, the presented

approach has to work without markers and concentrates on the bare appearance of the

robot target.

To improve their vision-based control system Bohg as well as Widmaier et al. used

pixel-wise classification [166] and random forest regression [167] based on synthetically

generated data. In contrast to the aimed 2D image input, both systems operate solely

on depth data which is not available in the targeted setup without putting additional

effort in the sensor data processing [168, 169].

Gratal et al. published a possible solution by fitting a known virtual 3D model of the

robot’s end-effector into the acquired sensor data to estimate and track the pose [170].

As the main purpose of the proposed system is to observe the whole workspace of a robot

(including all kinematic joints), estimating only the end-effector’s pose is not sufficient

without additional knowledge of the robot’s intrinsic controller state.

In contrast to the here discussed approach for 2D joint estimation in an image, Lei et

al. [171], Miseikis et al. [172, 173], Zhou et al. [174], as well as Heindl et al. [175,

176] focus on directly extracting the 3D joints out of the input image by also employing

various deep learning methods. Also similar to the here presented method, Lee et al.

[177] performed a two-dimensional heatmap regression to extract the pose keypoints of

the robot system. Finally, they also employed the simple baseline [178] approach that

was adopted in the here presented system.

Thomas Gulde - PhD Thesis - 56



3 Dynamic robot-arm supervison

3.3 RoPose

3.3.1 Idea

The main idea of the proposed RoPose system is the estimation of a 2D pose constellation

of an industrial robot system in order to provide rich state information of the target. As

shown in Figure 3.1 the abstract 2D position information of each robot joint needs to

be extracted from a raw 2D RGB input image.

Figure 3.1: The main idea of the RoPose system. The intermediate step (middle) extracts individual
dense probability heatmaps for each robot joint. The local peaks of these probabilities can then be
used to determine the pixel coordinates for each joint position on the image plane.

The here presented idea relies on a CNN structure to predict a dense probability map

(see the intermediate step in Figure 3.1) for each joint which is then used to extract

the 2D joint positions on the image plane according to the particular highest probability.

This procedure can be seen as common practice in various human pose estimation sys-

tems [153, 154, 178] and is transferred to robot targets. These resulting joints can then

be used to determine the current pose of the individual parts of the robot’s kinematic

chain. This information can than be fused with the possibly available pose informa-

tion of relative objects or even humans within the workspace of a robot (cf. Section

4.1).

Thomas Gulde - PhD Thesis - 57



3 Dynamic robot-arm supervison

3.3.2 Data Generation

“Data is a precious thing and will last longer than the systems

themselves.”

Tim Berners-Lee

Annotated data is crucial for data-driven algorithms. Especially for systems that base

their training on full supervision like RoPose (see Section 3.3.3), a significant amount

of data is needed1. However weak- or even self-supervised designs, where the train-

ing process or parts of it does not relate to fully annotated data, also need to be

objectively evaluated before such systems can be deployed to a real-world applica-

tion.

At the beginning of this project2 no publicly available dataset containing the information

needed for RoPose could be found. Therefore new labeled datasets had to be generated

to realize RoPose and also for the public community. Besides the reason that it would

not be the smartest move to hand-label data for a robotic system that knows exactly

all 3D joint poses at any time far more accurate than a human could ever label these

positions, other reasons regarding human and financial resources as well as the fact

that hand-labeling data is a boring, monotonous and an error-prone job that should be

avoided at all costs, it has been decided not to just generate labeled datasets but to

design a tool that helps all users to generate their own data. Such a tool would also

help to cover new unknown models and very special visual appearances of robot arms

caused e.g. by cables, hoses, valves, special gripping systems. The possibility to generate

domain specific data also allows possible users to fine-tune the RoPose system for their

special needs and applications.

To develop an as abstract as possible framework, the ROS-based architecture shown

in Figure 3.2 was defined for the data generation pipeline. By using ROS mainly as

an abstraction layer and relying on the offered interfaces like the internal transfor-

mation system [182], it was possible to use the same pipeline for simulated and real

datasets.

1There is no generally true answer to the question "How much data do I need to train my deep neural net-

work?". The amount of data heavily depends on the problem that the defined architecture should solve
(e.g. number of classes for classification tasks), the targeted domain, the employed data normalization
techniques, and many other things. Because this discussion is way out of the scope of this thesis it is
kindly referred to other publications treating that topic [179, 180, 181].

2And to the best of the authors knowledge, this is still true for the date of the submission of this thesis.

Thomas Gulde - PhD Thesis - 58



3 Dynamic robot-arm supervison

Figure 3.2: Overview of the ROS-based data generation pipeline. The left side shows both, the
simulated and real, possible robot targets. Both robot-systems using the exact same controller and
rely on real or simulated camera data. The joint transformations are published by the controller and
can be stored with the proposed data-grabber system to generate simulated and real-life datasets.

The datagrabber monitors the current sensor topic and available joint transformations

which are published by the simulated or by the real controller of the robot system.

With the available camera calibration information and its extrinsic pose which is also

published as a transformation, the particular joint poses can be transformed in 6 DoF

either to a global world or to a local camera space coordinates. Together with the

projected 2D pixel coordinates (cf. Section 2.4.2 and 2.4.2.1) the dataset is extended

frame by frame and continuously stored in the filesystem as described in Section 3.3.2.3

below.

While recording datasets, it is mandatory for the robot system, simulated or real, to

change the physical joint positions of the robot constantly. The dataset generator then

perpetually grabs the sensor and pose data. To realize this functionality, the control-

ling paradigms were not re-implemented but the available options from the controller

framework MoveIt! [11] were exploited to allow for a low level controlling of the robot.

The MoveIt! based controller can be used on both domains and, thanks again to the

ROS abstraction, it can be used for simulated and real robots without the need of any

adaption.

The provided data generation pipeline also offers multi-camera support to reduce the

consumed time to produce real datasets. This allows for the recording of multiple camera

viewports at the same time.

Though the developed data-generator excessively uses ROS-elements, the resulting data-

sets are completely ROS-independent (cf. Section 3.3.2.3) and can so be used from other

Thomas Gulde - PhD Thesis - 59



3 Dynamic robot-arm supervison

frameworks as well. Besides the ROS environment [80] where the systems presented in

this thesis were finally targeted, the Visual Servoing Platform (ViSP) [183] also offers a

possible platform. ROS was chosen mainly because of its large, growing userbase and

also the large number of manipulators that are natively supported by the ROS-industrial

platform [184, 185].

The RoPose Datagrabber [ii], the ROS-independent RoPose Dataset Tools [iii], as well

as the Kollrobot Controller [vii], which can be used to trigger random positions of the

robot-arm, were made publicly available.

3.3.2.1 Synthetic Dataset Generation

The synthetic dataset generation is based on the simulation suite GAZEBO [186], which

is directly integrated into ROS. As the research team had only one UR10 from Universal

Robots™ [187] available for real data acquisition, the very same robot was used within

the simulation domain. Luckily, the manufacturer offered a native ROS-package with

ready to use robot models [188] but the proposed system is designed to work with all

robot systems that have a ROS driver and GAZEBO interface available. Figure 3.3

shows an example scene from the simulation, whereby the proposed abstraction is based

on the available transformations as well as final examples of the generated images for

the dataset.

Figure 3.3: Overview of the simulated data generation. The basic simulation (left) is based on
GAZEBO [186] with a completely green background for chroma key compositing purposes. The
labels for the joint positions are abstracted by the ROS transformation system (TF-abstraction)
while the resulting images are made available as ROS-independent images. Examples for ex-
changed green backgrounds with real examples can be seen on the right.

Thomas Gulde - PhD Thesis - 60



3 Dynamic robot-arm supervison

At an earlier point, it was decided to put no more effort into the creation of suitable

backgrounds inside the simulation environment as GAZEBO is (or at least was back

in 2018) limited when it comes to rendering and scene creation. The then introduced

simulated green screen background (also shown in Figure 3.3) passes the workload of

the background generation to the final user of the simulated datasets. The open-sourced

python package RoPose Greenscreener [iv] is capable of extracting the background em-

ploying chroma key compositing methods, can exchange the background with available

images and also can be used to place other robots as additional clutter in other im-

ages.

One of the biggest advantages of simulating vision-based data is that the pose of the

simulated vision sensor relative to the target poses is always known. This information

is essential for a detailed dataset where the labels should contain 6-DoF poses and also

the corresponding 2D projection on the respective camera frame. This makes it easy to

dynamically change the viewport of the camera which is an important parameter to gen-

erate data with sufficient variations and to create an ideal viewport-independent model.

Because GAZEBO does not offer this functionality, the following procedure to calculate

a random camera position for each frame was integrated. Internally, all linear algebra

operations were based on the Eigen template library [189].

• Defining a new random 3D position vector (pcam) of the camera.

For each frame, a random 3D position vector pcam for the simulated camera is

generated. This position is calculated by defining a virtual spherical coordinate

system with it’s origin in the robot’s base and by choosing random values for

the radius r, the polar angle ϕ as well as the azimuthal angle θ . The random

coordinate can then easily be converted into the Cartesian based system used by

the simulation (cf. Section 2.2). The simulation mode of the RoPose-Datagrabber

offers parameters to limit r, θ and ϕ to reasonable values to avoid unrealistic

viewports3. Within the set limits, the random values are generated based on a

standard uniform distribution.

• Calculating the orientation to focus the view on a specific 3D point.

For the complete 6DoF pose of the sensor also a rotation is needed which ideally

keeps the robot inside the viewport of the camera. As the position of the camera

3In practice the values were limited as follows: 2.0m < r < 8.0m , 0.3 < θ < π and 0.0 < ϕ < 2π .

Thomas Gulde - PhD Thesis - 61



3 Dynamic robot-arm supervison

(pcam) and the base position of the robot (pbase) are known, the look-at-rotation

can be calculated as follows.

r
′

x = pbase −pcam (3.1)

rx =
1

∥r
′

x∥
r
′

x (3.2)

r
′

y = rx × trand, with 0 ≤ tx, ty, tz ≤ 1.0,ry ̸= rx (3.3)

ry =
1

∥r
′

y∥
r
′

y (3.4)

r
′

z = rx × ry, with rz ̸= rx,ry (3.5)

rz =
1

∥r
′

z∥
r
′

z (3.6)

rx describes the normalized distance vector between the camera’s position and

the robot’s base while ry is defined by the normalized cross product of rx with a

random normalized vector trand and can be seen as the random UP-vector which

basically defines a random rotation around the optical axis of the camera. Finally

rz will result in the vector that is orthogonal to the virtual plane described by rx

and ry.

Finally the new look-at-rotation matrix RRRlookAt can be constructed with the coef-

ficients of the normalized rotation base vectors rx, ry and rz

RRRlookAt =







rx0 ry0 rz0

rx1 ry1 rz1

rx2 ry2 rz2






∈ SO(3) (3.7)

To avoid that the robot’s base always being located directly in the middle of the

defined viewport, the system offers the possibility to randomly shift the look at

point. This is simply realized by adding a random offset δ to each vector coefficient

of pbase
4.

Notably, this procedure assumes that the robot’s base is located at the world system’s

origin. To realize this procedure in different coordinate systems, additional coordinate

transformations have to be performed (cf. Section 2.1).

The authors first topic related publication [I] is targeted completely in a simulated domain

and may be worth a read if further information is needed.

4In practice the random offsets were limited for each coefficient to −2.0m < δ < 2.0m.

Thomas Gulde - PhD Thesis - 62



3 Dynamic robot-arm supervison

3.3.2.2 Real Dataset Generation

When working with real datasets it is clear that the only missing element in the data

production pipeline visualized in Figure 3.2 is the data related to the sensor hardware

- mainly the extrinsic pose5 relative to the robot’s intrinsic coordinate system. One of

the big benefits of RoPose is the use of the extracted pose information to perform an

extrinsic calibration of the camera (cf. Section 3.4). However, as there is no way to

exploit this advantage before enough data to train the estimator itself is available, this

chicken and egg problem has to be solved and alternative calibration procedures have

to be considered and integrated.

In robotics, or especially for industrial robot arms, the problem of finding the correct ex-

trinsic relations between the camera and the robot system, is called hand-eye-calibration.

This term is used for both possible set-ups where the camera is mounted somewhere

on the robot itself (eye in hand) or when the sensor is not connected to the kinematic

chain of the actuator at all and serves as a supervising sensor just as in our main use

case. There are several known ways to estimate the pose of a single 2D-vision sen-

sor relative to specific coordinate frames that have been published in the last decades

and most of them are based on known calibration targets like chessboards [190, 191,

192].

As it is one of the main ideas behind RoPose to avoid the need for other hardware equip-

ment to use the provided functionalities a pure visual approach needs to be introduced.

At this point the beforehand doomed manual labels finally become helpful. The idea is

simple: Provide a minimal set of hand-labeled images and perform the extrinsic calibra-

tion for a specific perspective based on the now available 2D and 3D correspondences.

As further explained in Section 3.4, the given task can now be solved by modeling a

PnP-Problem (cf. Section 2.4.3). This allows for an extraction of the camera transfor-

mations, on which the further dataset creation is based on, with the help of an additional

software tool that offers a minimal user-interface. An example of the manual labeling

process can be seen in Figure 3.46.

5It is assumed that the intrinsic camera parameters are known
6The official supplementary video created for ICRA2019 gives a good example of the calibration process

and can be found at IEEEExplore: https://ieeexplore.ieee.org/document/8793900/media

Thomas Gulde - PhD Thesis - 63

https://ieeexplore.ieee.org/document/8793900/media


3 Dynamic robot-arm supervison

Figure 3.4: Extrinsic calibration process by hand-labeling the robot poses. (a) Collected raw input
image. (b) Indicates the labeling process for every single robot joint. (c) Reprojected live pose
after a calibration was performed. Source: Figure 2 in [II] © 2019 IEEE.

The novel tool, that has been introduced in the second publication [II], offers the pos-

sibility to capture multiple images together with the corresponding 3D joint positions

and label the visible joint positions afterwards. After performing the labeling, the cali-

bration algorithm that internally uses the approach Lepetit et al. proposed [103] and is

available in OpenCV [193] is used to estimate the extrinsic pose of the camera system.

The pose information is automatically published as a ROS-transformation and can be

directly exploited by the dataset generator. Following this calibration process, a live view

of the camera shows the reprojected 3D joints of the robot (Figure 3.4 (c)) that can

be used to subjectively check if the estimated camera pose is good enough. To obtain

good calibration results, it is recommended to use as diverse robot poses as possible to

reduce the perspective ambiguities. Objective evaluations of the hand-labeled calibration

procedure have been published in [II].

Alternatively to the manual labeling, every possible method to obtain the correspon-

dences can be used as long as the transformation of the camera is published in the

supposed way. To avoid excessive manual labeling when recording multiple datasets

from many different camera perspectives, an AprilTag [9, 10] based calibration proce-

dure, where a single tag has to be placed on a known position on the robot arm (usually

directly at the robot’s flange), was also realized and integrated into [vii]. This approach

was chosen because AprilTags [194, 195, 196] and AR-Marker [197] were used in various

application as extrinsic references to perform many different calibration tasks. When a

tag can be detected within an image, the calibration system stores the 2D origin of the

tag (ptag) and the corresponding 3D position prob in the robot coordinate system. To care

Thomas Gulde - PhD Thesis - 64



3 Dynamic robot-arm supervison

for a better spatial distribution of the correspondences, an additional distance constraint

was integrated (see Eq. 3.8) by checking the 3D distance d between each new candidate

pnew and each of the N stored correspondences (C) in the robot frame. These again can

be calculated based on the Euclidean distance in R
3.

dist(pnew,C) = ∥prob −pnew∥2 , prob ∈C

dmin = min(dist(pnew,C))
(3.8)

with ∥. . .∥2 = Euclidean Norm

After collecting various correspondences from N frames7, the standard calibration proce-

dure that was already used as the last step for the manual labeling procedure is performed

to estimate the needed camera pose.

Mainly various versions of Intel® RealSense™ sensors [198] were used to generate real

datasets. Figure 3.5 shows data samples from the published collection. This sensor

offers many different frame types just as RGB, infrared, and depth, in a handy design and

provides a fully integrated ROS-wrapper[199] which makes it the perfect sensor candidate

for the here presented research. However, the system has also been tested with Microsoft

Kinect sensors [200] and simple standard webcams. Every sensor that can be extrinsically

calibrated in any way and is able to publish the needed information to the relevant ROS-

topics for a specific frame type, should be fine.

Figure 3.5: RGB examples of generated real datasets from various camera viewports.

The second RoPose related publication [II] covers the real data generation and the

adaption of the pose estimation to real datasets in detail.

7In practice, usually N = 50 correspondences with a minimum distance of d = 0.05m were collected.

Thomas Gulde - PhD Thesis - 65



3 Dynamic robot-arm supervison

3.3.2.3 Datasets

Due to the identical generation pipeline the simulated and real datasets have the same

structure and organization and can be used and integrated into new projects using

the same code base that have been published in [iii]. Each RoPose dataset con-

tains the following data if the used hardware is able to provide the specific frame

data.

• Sensor data

For sensor data the system supports normal RGB- and infrared images and also

depth measurements. The actual raw data are kept in the particular typical data

format and will be stored in a separate folder for each configured sensor frame.

• 2D and 3D joint labels in different coordinate frames

For every frame, independent of the particular type, the recorder will create a

strictly numbered JSON-file containing all the local labels (p3D ∈ SE(3) and

p2D ∈ SE(2)) in the sensors specific coordinate frames as well as additional in-

formation like a time-stamp and if the recorded robot pose was somehow redun-

dant. The redundancy parameter was implemented because it could take some

time to calculate a new valid path to a random position. Within this timespan,

the robot’s pose would not change. The labels in global world coordinates (in a

recording scenario this is the robot frame) will also be stored in a separate file.

• Additional Metadata

Metadata to define fundamental parameters of the dataset was also added. The

metadata.json file contains information of the robot type, if the particular dataset

is synthetic or not, and if the dataset was recorded with a green screen which

could theoretically also be used with real robots.

After some development iterations, the open-sourced data grabber mainly targeted for

robot arms has evolved into a fully configurable dataset generator where a final user can

choose the data-sources that needs to be recorded. For more information, a detailed

README is provided in the related repositories [ii, iii]. All datasets generated within

this project where made publicly available online8.

8https://www.thomas-gulde.de/ropose/downloads

Thomas Gulde - PhD Thesis - 66

https://www.thomas-gulde.de/ropose/downloads


3 Dynamic robot-arm supervison

3.3.3 Keypoint detection

3.3.3.1 Related Work

The RoPose estimation can be seen as an abstract keypoint or joint detector of an ar-

ticulated object or target and is thus related to any other keypoint estimator. Therefore,

the most prominent use case that has received the most attention in the last years from

many research teams around the globe is the pose estimation of humans [201, 202, 203,

204]. The range of use for such tools varies from a single instance focus to even large

scale crowds [205, 206].

In the age of deep learning and CNNs, traditional computer vision methods were pushed

in the background, especially when the task is somehow related to pattern analysis,

recognition, or classification. Amongst other indicators, many benchmarks [207, 208,

209] from different fields of research9 confirm that deep learning or CNN based ap-

proaches clearly outperform their traditional opponents, at least in reference to the final

accuracy. Despite that, Walsh et al. recently outlined that not all known classical meth-

ods have become obsolete [212]. Hybrid approaches where conservative and modern

deep learning methods are based on each other can also be seen as a solid base for

future applications.

The first RoPose models (cf. [I, II]) where based on the work of Wei et al. [153] and

Cao et al. [154], where a recurrent CNN design was used to extract the human joint

probabilities and the so-called affinity maps to reconstruct the poses from multiple hu-

man instances within an image. Stacked-hourglass architectures (cf. Section 2.6.2.2)

networks like [138, 213, 214] have also successfully competed on special pose estima-

tion challenges [54, 207] and extract the probabilities of body joints with a sequence of

convolutional- and deconvolutional layers to reduce and extend the trainable feature ker-

nels. Besides all these more or less complicated network structures, Xiao et al. presented

their simple-baseline structure [178]. The architecture adds a few trainable deconvo-

lutional layers after the base feature extraction to extract the probability heatmaps.

Because of this simplicity and the fact that the introduced method reached close to

SOTA performance, the current RoPose implementation is based on this architecture

(cf. Sections 3.3.3.2 and 4.1).

Most of the presented related works are fully supervised methods. However, in the decade

of GANs, some publications that based the keypoint detection on two internally compet-

ing networks should also be mentioned [215, 216, 217, 218].

9Like already mentioned for object detections (cf. Section 1.3), at the day of submission of this thesis,
the leaderboards of common challenges [210, 208, 211] where lead by deep learning, respectively CNN
based approaches.

Thomas Gulde - PhD Thesis - 67



3 Dynamic robot-arm supervison

3.3.3.2 RoPose and Heatmap Regression

After solving the problem of missing datasets with the presented dataset generators (cf.

Section 3.3.2), the final pose estimation was developed. As RoPose was under continuous

development since the first simulation-based approach was published [I] and adapted the

same estimation system to real data in [II], this Section will focus on the final proposed

system which is now based on the new simple baseline structure introduced by Xiao et

al. [178]. Besides an additional prediction of the ROI of different targets (cf. Section

3.3.5), the changes made to adopt the new CNN structure, almost completely affect the

final heatmap regression. The core of the most parts of the processing pipeline, like the

main data handling (cf. Section 3.3.3.3), the training procedure and loss function (cf.

Section 3.3.3.4), as well as the post-processing (cf. Section 3.3.4) could be preserved.

The flow chart in Figure 3.6 visualizes the needed steps to estimate the probabilities of

a target’s joints.

Figure 3.6: Flow chart of the proposed RoPose detection pipeline. The additional steps have to be
performed to extract ROIs of possible target instances while the joint estimation itself is performed
for each detected instance given by the pre-detection.

The proposed network structure by Xiao et al. [178] first relates on a feature extracting

backbone. As the older RoPose regression system used the VGG16 structure [130] the

current system builds upon a ResNet50 feature extractor [137]. As the original authors

tested their system with various backbone versions, RoPose follows the suggested method

(designated as method (a) in [178]) which seems a good compromise between accuracy

and speed for the proposed system, according to the provided evaluation results in

the original paper. The top layers of the ResNet50 was dropped and the output of

its C5 layer (cf. Table 1 in [137], named conv5_x) form the feature input for the

following three de-convolutional layers with a kernel size of 4× 4, followed by a 1× 1

Thomas Gulde - PhD Thesis - 68



3 Dynamic robot-arm supervison

dense convolutional output-layer to allow for the needed regression to the heatmaps.

For all de-convolutional layers, standard ReLU [115] was used as activation functions

followed by a 2D batch normalization [128]. To generate the heatmaps, the final output

convolutions’ activation function is simply linear. The final regression architecture is

shown in the following Figure 3.7, more details about the structure can be found in the

original work [178].

Figure 3.7: Final RoPose regression architecture based on the simple heatmap regression pipeline
presented by Xiao et al. in [178]. After the ROIs of possible targets are extracted, cropped, and
preprocessed from the raw input image, they will be fed into the ResNet50-backbone [137] to
extract the base features. The added three de-convolutional layers are followed by a 1×1 convo-
lutional output-layer, which finally performs the regression, will produce the ready to use dense
probability maps.

As suggested in method (a) in the original work [178] the shown network structure is

designed to take preprocessed (cf. Section 3.3.3.3) three-channel RGB input of the size

256×192 and produces eight heatmaps of the size 64×48 which can be used to extract

the final joint positions (cf. Section 3.3.4).

At the very end, this setup produces an independent dense probability map for each joint

(cf. Figure 3.8) and extracted ROI which is used as a base for the post-processing steps

to extract the final 2D pixel position for each joint.

Thomas Gulde - PhD Thesis - 69



3 Dynamic robot-arm supervison

Figure 3.8: Examples of predicted dense probability heatmaps for each of the robot’s joints.

The final, meanwhile PyTorch-based [126] implementation covering the here presented

system were made publicly available in [i].

3.3.3.3 Data Handling, Preprocessing and Ground Truth

No matter what kind of NN is involved, the correct handling of the available data

sources is a crucial part of the system. A deep learning-based estimation system like

RoPose can only work if the data representation for the network’s input and output is

clear and followed strictly, no matter if the network is trained or just used for predic-

tion.

As introduced in Section 3.3.3.2, the final regression network expects only the extracted

ROI of the pre-detected robot-arm (Figure 3.10(a)) in form of an RGB image. Generally,

an image (img) is represented by three channels (c) containing the color values of each

pixel (puv), usually in form of 8 bit unsigned integer values ranging between 0 and 255

(intmin − intmax). This range and data format is not perfect for NNs that extensively

use floating-point operations. However, the first simple preprocessing step is to cast

Thomas Gulde - PhD Thesis - 70



3 Dynamic robot-arm supervison

the input’s channel values into floating points and normalize them to a well-arranged

value range. This normalization can easily be performed by dividing each pixel in each

channel by intmax producing a color value range of 0.0− 1.0 suitable for the network

use10.

p′uv =
pc

uv

intmax
(3.9)

In order to stick to the targeted network’s input size of 256× 192, the image has to

be down- or upsampled, depending on the relative size of the bounding box. Different

to Xiao et al. [178] where the bounding box itself was modified to fit with the net-

work’s aspect ratio and so also automatically conserves the aspect ratio of the original

image, RoPose employs a zero value padding mechanism as shown in Figure 3.10(b),

to keep these ratio dimensions. The padding mechanism places the cropped image in

the center of an input matrix with the aspect ratio of the network’s planned input size

and fills all not occupied pixels with a constant value (cpad = 0.0) as pictured in Fig-

ure 3.9. To quantify the added padding, a 1× 4 vector Cpad is used to describe the

amount of pixels used for the padding on each side (left, right, top, bottom) of the

image.

Cpad =













Cpad,le f t

Cpad,rigth

Cpad,top

Cpad,bottom













(3.10)

Figure 3.9: Impact of the padding mechanism on the input and GT data. (a) padding along the
x-dimension, (b) padding along the y-dimension.

10This range is not a hard specification. It is also common practice to range an input between −1.0 and 1.0
or −0.5 and 0.5.

Thomas Gulde - PhD Thesis - 71



3 Dynamic robot-arm supervison

After the padding, the resizing factor (fresize), used to resize each ROI to the target size,

can be calculated with the known dimensions of the padded ROI (Sroi) and the static

input size of the network (Sinp).

fresize =

(

fx

fy

)

=

( Sroi,x

Sinp,x
Sroi,y

Sinp,y

)

(3.11)

To transfer these preprocessing steps to a particular GT, all factors calculated for the

input image have to be applied to the original 2D joint information based on the image

plane coordinates (pn) of the original image stored in each dataset, relative to the upper-

left coordinate of the target’s bounding box (pbb).

p′
n =

(

pn −pbb +

(

Cpad,le f t

Cpad,top

))(

1
fx
1
fy

)

(3.12)

The projected and preprocessed joint information from the available datasets and the

origin coordinates of the bounding box are used to generate the final regression target

by placing 2D Gaussian blurred peaks at the absolute pixel coordinates of each joint.

As such a GT preparation is used by various keypoint estimation systems (e.g. [153,

154, 219, 138]) this procedure can be seen as a common practice in this research field.

While Figure 3.10(c) shows an example of the combined regression targets based on the

input resolution, Figure 3.10(d) demonstrates the final combined heatmaps based on the

output size (64×48) of the network and represents the direct supervised training input

of the network.

Figure 3.10: Data representation for the input and GT used to train RoPose. (a) Raw input created
by cropping the image with the bounding box of the target. (b) Resized and padded network input
(size: 256×192). (c) Combined generated GT in input resolution. (d) Combined resized GT to fit
the network’s output resolution (size: 64× 48). Note: This figure shows the combined heatmaps
for the sake of clarity, the actual GT data passed to the network consist of multiple heatmaps,
containing one peak per heatmap and an additional segmentation mask for the background.

Thomas Gulde - PhD Thesis - 72



3 Dynamic robot-arm supervison

When looking at the required preprocessing, it does not matter if the architecture of the

first RoPose model [I, II] is considered, or the current implementation. Both versions

build upon a well known deep feature extraction backbone which demands special pre-

processing to benefit from the pre-trained network weights and allow for a transfer of

these features to our specific problem. Luckily, both used backbones [137, 130] employ

the identical preprocessing. The preprocessing step consists of an additional normaliza-

tion for every sample. This normalization focuses on the different color channels and

is based on the extracted color mean and standard deviations of a specific dataset (cf.

ImageNet[55]) and is thus an essential data preparation step that has to be integrated

in the system.

3.3.3.4 Standard Training Routine

The GT that was used to teach the employed CNN the final regression to the heatmaps

was already detailed and can be created for each example as described in Section 3.3.3.3.

The bounding box used to determine the ROI around each example was directly taken

from the annotations and is therefore not based on other algorithms. To simulate a

more general dataset, traditional image data augmentation methods based on affine

transformations (see Section 2.1.4), were used. Figure 3.11 shows the influence of the

various transformations on the input and GT data.

Figure 3.11: Visualization of the augmentation impact for the input (upper row, size: 256× 192)
and the related GT (size: 64× 48). (a) non augmented reference input and GT, (b) flipped, (c)
rotated (α =−35◦), (d) scaled (sx,y = 0.7), (e) sheared (shx,y = 0.2), (f) displaced (x,y = 40 pix),
(g) combined affine augmentation.

Besides the employed affine augmentation strategies, additional augmentation techniques

[220], like adversarial data augmentation [221, 222, 223] could be used and may be

Thomas Gulde - PhD Thesis - 73



3 Dynamic robot-arm supervison

integrated within the training procedure to increase the estimation performance [224] in

the future.

The standard loss-function ( fn) that will be minimized during the training is defined

by Eq. 3.13 and can also be seen as common practice because it is used in various

related applications [225, 138] as well as in the original work [178] of the adopted

regression network. fn is used to calculate the summed quadratic difference between each

probability GT pt and prediction pp of the target heatmaps (with vmax = 64,umax = 48

corresponding to the output size of the network). This basically transfers the standard

MSE as shown in Eq. 2.94 to a multidimensional tensor.

fn =
1

D

H

∑
h=1

umax

∑
u=1

vmax

∑
v=1

(pt
uv − pp

uv)
2 (3.13)

with H = number of joint probability heatmaps and
D = overall dimension of the tensor

In order to optimize the deployed model, standard SGD [141] (cf. Section 2.6.3) was

used. For the SGD based training, the learning rate (lr) for each epoch (tepoch, start-

ing with 1) is defined by decaying the start learning rate lr0 by an exponential factor

calculated as shown in Eq. 3.14 where k denotes a decay.

lr = lr0 ∗ e−ktepoch (3.14)

The final RoPose model presented in this thesis was trained for 400 epochs with a

batch-size of 80 while r0
learn was set to 0.001 and the decay factor k to 0.001. The

model was trained with enabled augmentation that involved scaling (±10.0%), flipping,

rotation (±180deg) and translation(±10.0%). The implementation of the augmentation

pipeline itself is based on the imgaug Python-library [226].

3.3.4 Post-Processing

After the network performed the regression and estimated the probability for each joint

in separate heatmaps, additional post-processing steps need to be performed to ex-

tract the final 2D position. The main step is the non-max suppression to extract the

peak probabilities, the maximum value, within each heatmap. This action will extract

Thomas Gulde - PhD Thesis - 74



3 Dynamic robot-arm supervison

the coordinate indices (In
x,y) of the maximum value within each estimated heatmap

(Hn).

At this point, the system’s design offers some additional possibilities to improve the

final estimation accuracy. Instead of taking the indices of the maximum raw output as

the basis for the pixel estimation, the output heatmaps can be upsampled to fit e.g. the

original input size of the estimation network. This leads to a subpixel accuracy compared

to the raw output heatmaps and should increase the detected peak’s accuracy.

To upsample 2D data various established methods like 2D nearest neighbor-, bilinear,

or bicubic interpolation exist. As the nearest neighbor approach would just copy the

potential highest peak value of a joint to a dense area, it was not considered as a

suitable technique and bilinear and bicubic techniques were used. Examples of the

various upsampling results are shown in Figure 3.12.

Figure 3.12: Accuracy impact of upsamling the raw output with different allgorithms. (a) Raw
input fed into the network (size: 256×192). (b) Raw output from the network (size: 64×48). (c)
Upsampled output (bilinear) (size: 256×192). (d) upsampled output (bicubic) (size: 256×192).

Visually, it seems there is almost no difference between bilinear and bicubic based up-

sampling. As usual, the naked eye is not the best judge and the final accuracy impact

on the joint estimation accuracy was analyzed and discussed within the evaluation in

Section 5.5.

However, because such an upsampling operation has to be applied on all output heatmaps,

additional computation power is needed which will negatively affect the framerate of

the final application. Besides the upsampling itself, an increased heatmap size will

increase the size of the pixel probabilities that have to be considered by the non-

max suppression that naturally will increase the computation time for this operation

as well.

Besides OpenCV [193], SciPy [117] also offers modules to perform the upsampling

on the Central Processing Unit (CPU) and were used within the implementation of

Thomas Gulde - PhD Thesis - 75



3 Dynamic robot-arm supervison

the postprocessing. In the final application, the upsampling was directly embedded

in the network structure after training the network (cf. Section 6). This enables a

Graphics Processing Unit (GPU) based upsampling of the data, leaving the impact to the

computation time mainly to the non-max suppression algorithm, compromising between

performance and accuracy.

The identified maximum probability position for each of the N joints (pn) is only valid

within the cropped ROI used as input for the network. In order to transfer the extracted

joint positions to positions valid for the original input image (p′
n), all the performed

preprocessing steps (cf. Section 3.3.3.3) have to be reversed. This is more or less trivial

but requires the distinguished storage of all parameters used for the preprocessing, such

as the input resize-factor fresize, the absolute applied padding (cpad) for every border of

the image, and the position of the upper left corner of the extracted ROI on the image

(proi).

p′
n = proi +pnfresize −

(

Cpad,le f t

Cpad,top

)

(3.15)

3.3.5 Bounding Box Estimation

As the bounding box detection can be seen as a pre-detection system to estimate the raw

ROI for a robot system of interest, this step of the estimation is completely independent

of all other procedures that are performed within the estimation task. There are versatile

common prediction systems available. The R-CNN published by Girshick et al. [227]

and also the refurbished Faster-R-CNN [228] provide one of the first deep learning-

based bounding box detectors used for multiple object detection. As the original R-CNN

work completely lacks real-time performance because it is based on a huge amount of

independent region proposals per image which are also evaluated by a CNN. The Faster-

R-CNN allows much faster predictions by employing ROI-pooling directly on the feature

maps which are extracted from the raw input image.

Another prominent example is the single shot multibox detector. The estimator pub-

lished by Liu et al. is generally faster as the known R-CNN based systems but shows

a slightly lower accuracy [229]. Like many other applications, this model employs a

VGG model [130] to extract base feature maps and adds additional convolutional layers

to classify the trained classes and perform the final regression for the bounding box

areas.

Thomas Gulde - PhD Thesis - 76



3 Dynamic robot-arm supervison

In 2016, even before the single shot multibox detector were available, Redmon et al.

published the first version of You Only Look Once (YOLO) [230, 231, 232]. Their system

still delivers near SOTA performance and was under heavy development in the last years.

YOLO is now available in its official fourth version, is highly adjustable in parameters like

input size, and outperforms most of their counterparts when it comes to computational

performance [233]. The compromise between close to SOTA accuracy and also very

fast computation makes YOLO the perfect candidate for the pre-prediction task and was

thus chosen instead of the known alternatives.

In order to efficiently transfer the estimation architecture from [I, II] to the new structure,

the publicly available PyTorch implementation of YOLOv3 from Ultralytics LLC11 [234]

was wrapped into the RoPose project and network structure.

The original YOLO model does not contain a class to predict the positions of industrial

robot arms. To enable the needed detection, the network model needs to be retrained

and extended by an additional robot class. As described in Section 4.1, the possi-

bility to detect additional classes such as humans will become handy in extended use

cases. As in our special case, YOLO only needs to distinguish between humans and

robot-arm targets, the network was adjusted to the needed two-class detection and was

trained with all images of the 2017 COCO-dataset [54] which was extended with the

generated RoPose data. Some Augmented training examples can be seen in Figure

3.13.

11https://github.com/ultralytics/yolov3

Commit: 98068efebc699e7a652fb495f3e7a23bf296affd

Thomas Gulde - PhD Thesis - 77

https://github.com/ultralytics/yolov3


3 Dynamic robot-arm supervison

Figure 3.13: Example of the data used to train the bounding box detector. For augmentation also
randomly combined affine transformations were used.

As suggested in the original implementation [234], SGD based optimization with a start

base learning rate of r0
learn = 2.324e−3 and momentum m = 0.97 was used for train-

ing. Because no problems with the detection of the original COCO- human class were

noticed, no explicit evaluation was performed and the evaluation coming with the used

implementation should be comparable to the resulting model. For the newly added

robot-class, the performance evaluation is detailed in the specific evaluation Section

5.3.

3.4 Automatic Extrinsic Camera Calibration

Some of the most important information to know when observing a robot’s workspace

with a vision sensor is the transformation of the 6DoF pose of the sensor relative to

the robot’s base coordinate system. Only when this transformation is available, it is

possible to transfer positional information from the image plane to the robot workspace.

To estimate this pose, the extracted keypoint information of the here proposed RoPose

Thomas Gulde - PhD Thesis - 78



3 Dynamic robot-arm supervison

system can be fused with the 3D positioning information of each joint, which are accu-

rately known by the intrinsic robot controller12. The extrinsic relations, shown in Figure

3.14, were also exploited for the labeling based camera calibration procedure presented

in Section 3.3.2.2.

Figure 3.14: Relations between the 2D keypoints and the corresponding 3D positions known by
the robot controller (adapted from [I] Fig. 5) © 2018 IEEE.

Ideally, each image of a robot-arm can be used to extract all 2D keypoints of the

system which will deliver up to seven unique correspondences (cf. Section 3.3.1). These

correspondences can then be fed into any known PnP algorithm (cf. Section 2.4.3)

to estimate the camera pose. As the robot’s intrinsic poses usually originate in its

intrinsic coordinate system, the resulting camera pose will also be relative to the robot

base.

As already mentioned in Section 3.3.2.2, the final accuracy of the employed calibration

method [103, 193] depends on the accuracy of the extracted 2D keypoints. As it can

not be expected that the presented RoPose system delivers perfect joint coordinates

(see Section 5.1 for a detailed evaluation), an algorithm to collect and organize the

estimated joints also were presented in [II]. When it is possible to assume the trans-

formation between the robot’s base position and the camera temporarily (or perma-

nently) as static, the correspondences of multiple frames can be collected and stored.

In addition to the bare collection of the positional information, the confidence of each

joint given by the proposed heatmap from the CNN (cf. Section 3.3.3.2) is used to

rate each estimation. Based on this rating it is possible to feed only the best-rated

12Disclaimer: The Reutlingen University has a patent pending for the here mentioned calibration procedure
and system (DPMA: Nr. 10 2018 101 162.8). The author of this thesis declares that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Thomas Gulde - PhD Thesis - 79



3 Dynamic robot-arm supervison

correspondences into the PnP algorithm and improve the overall calibration accuracy

[II].

A critical drawback of the presented calibration scenario is that the controller infor-

mation and the extracted keypoints have to be recorded as synchronous as possible.

Especially when the calibration is performed while the robot is rapidly moving, this can

lead to a relevant discrepancy between the correspondences which will strongly affect the

calibration accuracy. As our final application is realized with ROS all information was

synchronized based on its availability within the ROS environment and the contained

timestamps13.

13The official supplementary video created for ICRA2019 also covers the autonomous calibration process
and can be found at IEEEExplore: https://ieeexplore.ieee.org/document/8793900/media

Thomas Gulde - PhD Thesis - 80

https://ieeexplore.ieee.org/document/8793900/media


4 Enhanced Collaborative Workspace

Observation

4.1 Simultaneous Human and Robot-arm detection

To detect the pose of humans and industrial robots simultaneously was the logical next

step after a sole robot-arm pose estimation was available in order to enable the as-

pired workspace observation for collaborative systems. As shown in Section 3.3.3.2,

a somewhat simple network architecture that was originally developed for human pose

estimation was successfully adapted to robot-arms. At this point, there is no need to

reinvent the wheel and drop all valuable information already obtained e.g. from the pre-

detector that natively contains a class for humans. The proposed architecture for the

ColRoPose system is shown in Figure 4.1 and consists of two identically structured, but

independent, pose heatmap regression networks.

Figure 4.1: System architecture for the collaborative pose estimation system. Both estimation
networks follow the same structure and pipeline and are based on the extracted bounding box
estimations of the pre-detection system.

It is obvious that this architecture will double the parameter size of the complete esti-

mation model, which could be problematic for the target system, e.g. owed to a possible

memory shortage on edge devices. Besides this drawback the separated architecture also

has some advantages. One of them is, that both estimation pipelines can be trained

Thomas Gulde - PhD Thesis - 81



4 Enhanced Collaborative Workspace Observation

independently and on separate datasets. As the robot detection system of ColRoPose

could be trained on the specific generated datasets as already detailed, the human pose

estimation again sticks to the original model [178] and the official model-code from the

repository1 was wrapped in the RoPose project. As RoPose is a novel system, it is most

likely that the available datasets will grow in the future. This will add more diversity

like new robots, new scenes, new poses, and also new special robot appearances to the

database and a combined model would require new training or fine-tuning of the whole

system, while the realized architecture will restrict the additional training effort to the

robot pose estimation network.

Some final estimation results of ColRoPose are shown in Figure 4.2. In addition to

these images the performance for all multi-person datasets are visualized in a video

available online2. Please note that the generated collaborative datasets do not contain

the GT for the human instances. This has on one side technical issues because no

proper tracking system that would be more accurate than visual tracking systems was

available within the robots operating space, and also human resource reasons which

prevented the research team from label the human poses for the recorded datasets by

hand.

Figure 4.2: Example estimation results of the proposed ColRoPose system.

1https://github.com/microsoft/human-pose-estimation.pytorch

Commit: 18f1d0fa5b5db7fe08de640610f3fdbdbed8fb2f
2https://www.thomas-gulde.de/ropose/result_example

Thomas Gulde - PhD Thesis - 82

https://github.com/microsoft/human-pose-estimation.pytorch
https://www.thomas-gulde.de/ropose/result_example


4 Enhanced Collaborative Workspace Observation

The missing GT for the human poses is the sole reason why there is no proper evaluation

of the human pose estimator on the newly generated datasets and this work will stick

to the original authors’ evaluation [178]. As shown in Figure 4.2, the system is basically

able to reconstruct the poses of multiple human instances as well as of the robot system

within the collaborative area. Figure 4.2 also shows the noticed main drawback of the

system, namely occlusion. The human detection part can not handle the occlusion from

the robot system properly and this is also the case for RoPose itself despite it is not

shown in Figure 4.2.

The architecture detailed in Figure 4.1 is not the sole solution to tackle the heatmap

extraction task and there is a possibility to keep the networks main structure but reduce

the over-all parameter size. As the only model base, both pipelines have in common, is

the pre-detector, two separate feature extractors, and de-convolutional stacks are needed

to perform both regressions. In order to also generalize the feature extractor for both

estimation systems, some experiments were conducted. By the time of the submission

of this thesis the author was not able to train a more general feature base suitable for

both regression systems and the results were not usable for the given purpose. At this

point, the author also can not name the exact reason for the occurring problems but

expect them to be mainly training and dataset-specific issues. Detailed guesses why the

training of a general model failed include:

• Unbalanced Data

Because the datasets like COCO [54] are available for years, it is clear that all

those datasets are in fact larger, more general, and more diverse than the here

presented self-generated RoPose datasets. The RoPose datasets would need more

estimation targets, various backgrounds, light conditions and domains as well as

occlusions. This discrepancy leads to unbalanced training especially of the feature

extractor.

• Incompatible feature structure

Besides the fact that feature extractors have proven to be able to extract general

features of multiple classes, it could always be possible that the given feature-

base needed for the regression of the heatmaps for the prediction of the joints of

humans and robots are incompatible. In the author’s opinion, this is more likely to

be not true. Maybe the problem of a more diverse joint estimation system needs

to be tackled from another point of view and future applications need to stop to

distinguish between human joints and robot joints and need to start to develop a

general joint detection system and add an additional joint classification afterward.

Thomas Gulde - PhD Thesis - 83



4 Enhanced Collaborative Workspace Observation

• The need of a special, problem specific, training routine

To cover the problems introduced by two different pose models, a very special

training routine would be needed which could handle at least the problems with

unbalanced data. This will include options like freezing the weights of the feature

extractor after some training iterations, or a more or less adaptive training data

scheduler which could prevent the model to overfit in one direction by introducing

a smart way to arrange the training samples.

Because of these open problems, combined with the lack of any super-computer train-

ing system to perform a proper hyper-parameter and data constellation search or op-

timization [235], the decision was taken to stick to the introduced parallel architec-

ture.

4.2 Kinematic Chain Tracking

Many of the mentioned use cases and applications which can profit from RoPose involve

continuous supervision of more or less wide areas. Within such situations, it could also

become useful if the proposed system would be able to differentiate between various

instances of robots and humans within the sensor’s field of view. In order to allow for

such behavior, each instance needs to be sufficiently described based on the extracted

information. Such a descriptor can also be used to distinctly track an instance in a

continuous sensor stream. The resulting positional history can then be exploited to

roughly predict future locations of the instances to overcome possible errors and miss-

detections of other involved systems, like the employed pre-detection system (cf. Section

3.3.5). In order to avoid a tracking solution that is based on the visual appearance of

a target which will lead to problems e.g. with identical robot types, the keypoint-based

tracking pipeline outlined in the sequence diagram in Figure 4.3 were integrated into

RoPose.

Thomas Gulde - PhD Thesis - 84



4 Enhanced Collaborative Workspace Observation

Figure 4.3: Sequence diagram of the proposed tracking algorithm. Bold methods indicate the
main parts of the tracking pipeline. The YOLO detection model can optionally be finetuned with
examples where the pre-detection itself fails but the tracking pipeline does manage it to predict
bounding boxes based on the known history of the tracker which lead to successful joint detection
of humans or robots.

After a new image is available for the estimation system, all needed steps to perform the

pre-detection (cf. Section 3.3.5) have to be performed. The pre-detector estimates the

bounding boxes for possible targets which are compared to the known bounding boxes

stored and organized by the new tracker. The tracker creates an internal knowledge base

of the past system states and is able to predict bounding boxes of already known targets

based on their tracked movement history (cf. Section 4.2.3). The predicted bounding

boxes are compared to the pre-detector’s estimations and will return just the predicted

bounding boxes that are not covered by the already available detections. These bounding

Thomas Gulde - PhD Thesis - 85



4 Enhanced Collaborative Workspace Observation

box instances provided by the tracker are just added to the pre-detector’s results and the

main estimator will use this combination of predicted ROIs to extract a joint estimation,

employing the known procedure (cf. Section 3.3.3.2 and Section 4.1). The tracker

uses the extracted pose information to calculate the current pose descriptors for each

instance (cf. following Section 4.2.1). Directly after the final pose estimation the given

information can be used to detect ROIs that the pre-detector was not able to detect.

The additional bounding box information is used to generate new training samples that

can be used to autonomously finetune the employed pre-detector as detailed in Section

4.3.

4.2.1 Pose Descriptor

A pose descriptor should offer an abstract way to sufficiently describe the joint constel-

lation of a robot arm. This will allow for a comparison of such descriptors and identify

specific instances of a target in different frames which can be used for tracking. Figure

4.4 provides an overview of the elements used to calculate a pose descriptor based on

the joint positions extracted with RoPose.

Figure 4.4: Visualization of the features used for pose description. The baseline (vbase) is defined
by the X-axis direction of the image frame and is used as the comparison orientation for each angle
αn. For each base-joint (bi) a vector vik can be calculated pointing to each estimated target-joint
(tk). The collection of the lengths and angles of the vectors is used as the pose descriptor.

The complete joint-based descriptor itself is defined by a collection of parameter sets

(p j) with a descriptor size (dsize) that depends on the number of available joints ( jmax)

of the specific model.

Thomas Gulde - PhD Thesis - 86



4 Enhanced Collaborative Workspace Observation

dsize = jmax ∗ ( jmax −1) = 42, with jmax = 7 (4.1)

The pose descriptor’s parameters are based on a set of describing vectors vik. Each

of these vectors can be defined by iterating through all pose joints and calculating the

vector between the current base-joint (bi) and every target joint (tk) available in the

pose model. So basically each base-joint has jmax−1 counterparts leading to the in Eq.

4.1 detailed descriptor size. Defining each base-joint as a local origin for the vector vik

is formally defined as follows:

vik = tk −bi (4.2)

The baseline vector vbase shown in Figure 4.4 is defined by the X-axis of the image and

is used as the reference orientation for the following angle definitions. The parameter

vector p j consists of two parts encoding the angle αik, defined as the angle between

vbase and vik and also the length information of each vector normalized with length of

the image diagonal di.

v′ = vbase −vik

p j =

(

αik
|vik|
di

)

=

(

|arctan2(
v′y
v′x
)|

|vik|
di

)

, with 1 ≤ i ≤ dsize

(4.3)

The calculated parameter sets can then be used to derive a similarity (simAB) between

two descriptors, comparing each parameter set p jA from a descriptor A with another

descriptor B with the parameter set p jB. Within this similarity calculation, two different

normalizations are introduced to enforce a value range of 0.0 ≤ sim ≤ 1.0 for both the

relative angle and length. As in R
2, the resulting angle difference can be normalized as

follows.

simα(p j) = 1−
αA −αB

π
, 0.0 ≤ simα ≤ 1.0 (4.4)

In contrast to [6] where only joint distances are encoded in the descriptor, the pre-

sented similarity calculation also uses the additional angle based joint relations. A more

advanced normalization method has to be used for the length, taking the areas into

account that are defined by each target’s 2D bounding box (bT ) described by the joint

Thomas Gulde - PhD Thesis - 87



4 Enhanced Collaborative Workspace Observation

constellation of the descriptor’s target (T ). The bounding box based area norm factor

(bnorm) is given by the square root of the mean area of both bounding box areas A(bA)

and A(bB)

bnorm =

√

A(bA)+A(bB)

2
(4.5)

A(bT ) = bT,xbT,y (4.6)

and is used for normalization of the length difference between each parameter set that

can be used to also calculate the length similarity simlen:

simlen(p j) = 1−

√

(|v jA|− |v jB|)2

bbnorm
, 0.0 ≤ simlen ≤ 1.0 (4.7)

Finally, both similarities of a parameter set can be combined using the weighted mean of

the angle and length similarity. To also enforce the desired value range of 0.0 ≤ sim jAB ≤

1.0 and additional weight constraint have to introduced to keep the summed weight to

exactly 1.0.

sim jAB = wαsimα(p j)+wlensimlen(p j), 0.0 ≤ sim jAB ≤ 1.0 (4.8)

As these weightings for wα and wlen are currently set to 0.5 it is basically the mean

value in the current implementation. The overall similarity of the whole parameter set

is given by the mean of all similarities:

sim′
AB =

∑
jmax

j=0 sim jAB

jmax
, 0.0 ≤ sim′

AB ≤ 1.0 (4.9)

To avoid any corruption of the similarity calculation forced by not estimated joints of one

of the comparing targets, each sub-similarity calculation where any of these not available

joints is involved is ignored and not integrated into the overall similarity calculation.

Because the presented descriptor only describes a local pose view, it does not consider

the global position of the target on the image plane. This could lead to ambiguous

high similarities between multiple targets and an additional global position matching

was integrated. For this purpose, the in Section 2.7.2 presented IoU is considered as a

Thomas Gulde - PhD Thesis - 88



4 Enhanced Collaborative Workspace Observation

good indicator and has been integrated in the similarity calculations, again based on a

weighted manner as follows3:

simAB = (1−wIoU)sim′
AB +wIoU IoUAB (4.10)

The presented description method demands that a similarity between two descriptors

can only be calculated when a certain number of joints of both targets are available4.

Besides this missing joint problem, the chosen descriptor method has other drawbacks

in the current implementation. The static baseline reference, defined by a specific image

locality, and the fact that the descriptor is based directly on the 2D joint projections

on the image plane introduces a hard camera viewpoint dependency. However, in order

to achieve perspective independence, the extrinsic calibration information (cf. Section

3.4) could be used to project the 2D joints into some kind of a virtual norm space and,

respectively, a norm camera plane. A descriptor calculation within such a virtually defined

environment could help to eliminate the perspective dependency but is then directly

coupled to the extrinsic calibration procedure and the error such a system introduces.

It is planned to develop such an advanced descriptor in the future when the calibration

error can be reduced. Such a method would also introduce new problems and unknowns,

like advanced multi-instance handling, and would require further research and proper

evaluation. The currently implemented descriptor and resulting similarities are evaluated

in Section 5.6.1 and have been open sourced in [v].

4.2.2 Tracking

With the descriptor specified in Section 4.2.1, it becomes possible to compare derived

pose constellations of detected kinematic chains of visible robot arms. The derived

similarity between multiple detected targets can then be used to assign instances to

each other by matching the targets with the highest similarity considering a defined

minimum threshold value5. Such a procedure assumes that the movement of a target

from one available frame to another will be minimal. The implemented matching itself

has to be seen as a greedy algorithm and is performed for all available instances. If there

are problems related to very fast movements of subparts of the target, it is also possible

3In practice wIoU were set to 0.25.
4In practice a similarity between two descriptors is calculated when at least three joint pairs for the com-

parison targets are available.
5In practice and with the used hardware this threshold were set to 0.65 for the given robot targets (cf.

Section 5.6.1)

Thomas Gulde - PhD Thesis - 89



4 Enhanced Collaborative Workspace Observation

to introduce an additional weight factor for each joint within the kinematic chain. It

would probably improve the overall robustness of the descriptor by lowering the similarity

impact for the upper joints of a kinematic chain because the final 2D projections of these

parts are also affected by the positions of all superior elements caused by the physical

nature of a kinematic chain.

4.2.3 Temporal Target ROI Prediction

The tracking system can now be used to predict the position of the robot system based

on its given tracking history. Also similar to Xiao et al. [178] and many other available

works (e.g. [236, 237]) the 2D representation of the collective motion of the observed

joints and targets forms the base for the prediction algorithm. This so called motion

field therefore describes a target’s joint-configuration over multiple frames. For a more

understandable explanation, let’s assume that an instance can be successfully tracked and

assigned over multiple frames which naturally is an essential requisite for the following

prediction system.

Based on the tracker, it is possible to generate a continuous position history for the

enveloping bounding box as well as for each detected joint element of an instance. For

each joint, the motion from one frame to another can be described and parameterized

based on the raw 2D positions resulting in a direction vector (m), an absolute distance

(d), and also speed (s)6 (cf. Section 2.5). The motion of a tracked bounding box

is based on the motion of each of the four edge points describing the bounding box

itself in the same way as for the joint positions. Figure 4.5 visualizes both tracking

methods.

6The speed parameter is handled on an iterative per-frame basis, no particular time relation was introduced
here but could improve the system especially when the frame rate can not be assumed as constant.

Thomas Gulde - PhD Thesis - 90



4 Enhanced Collaborative Workspace Observation

(a) Jointwise Tracking (b) Bounding Box Tracking

Figure 4.5: Comparison of both tracking methods. (a) Prediction is based on a motion flow track-
ing of each separate joint. The target’s bounding box is subsequently recreated based on the
predicted joint positions. (b) Prediction is based on a motion flow of the two defining bounding
box corners’ positions.

For the pose based tracking, the bounding box needs to be extracted from the predicted

kinematic chain, which is performed by finding the bounding coordinates defined by the

given joint positions and expanding the resulting box by 20%. Based on a static count

of history motion flow data H, each specific history h is also weighted by a given weight

wh to adjust the particular impact on the final prediction. This weighting mechanism

should help the tracking system to produce more accurate predictions that are adjusted

to the targets performed trajectory. The predicted position (Pt) for a current frame (t)

is then calculated as follows:

Pt =
Pt−1 +∑

H
h=1 mhdwh

H
, with

H

∑
h=1

wh = 1.0 (4.11)

The weight factor was introduced to dampen the influence of older motions, so it is

important to keep an eye on the correct order of the given histories H. It is de-

fined that h1 is the latest known tracked motion of an instance and hH the old-

est.

The presented algorithm allows for multiple ways to determine the history weighting.

Within this thesis, an exponential weighting mechanism based on a single decay factor

(k) was implemented and is shown in Figure 4.6.

Thomas Gulde - PhD Thesis - 91



4 Enhanced Collaborative Workspace Observation

Wh(k) =

{

e−kh k ≥ 0
e−kh

e−kH k < 0

Figure 4.6: History weight factor used by the tracking mechanism. An exponential decaying
weight factor shifts more weight to more recent histories. The factor k of Wh of is used to control
the impact of the considered movement histories.

To ensure that the accumulated weight factors will be 1.0 the weights also need to be nor-

malized before they can be used in Eq. 4.11 to fit the defined constraint:

wh =
Wh

∑
H
h=1 wh

(4.12)

Examples of predicted bounding boxes for both, the pose based and the bounding box

based method, are shown in Figure 4.7, while a final evaluation of the performance gained

by the tracking and prediction system as well as the influence of the history handling is

presented in Section 5.6.3.

Thomas Gulde - PhD Thesis - 92



4 Enhanced Collaborative Workspace Observation

Figure 4.7: Examples of the predicted bounding boxes. The examples combine the GT bounding
box (red), the bounding box produced by the pose-based tracker (green) and also the result pro-
duced by the bounding box based tracking system (blue)

4.3 Self-Supervised Finetuning of the Pre-Detector

As the pose estimation’s accuracy of the basic system without the additional tracking

mechanism directly depends on the information delivered by the pre-detector, a system

that automatically improves the bounding box prediction model would be helpful. As

already delineated in the diagram in Figure 4.3, successful pose detection based on

reconstructed tracked bounding boxes in which the pre-detection mechanism failed can

be used to generate new training samples to fine-tune the model. Besides normal false

negative responses of the pre-detector, occlusion can be seen as one of the main sources

of failure where the applied tracking mechanism can help to improve the accuracy.

Figure 4.8 shows some examples of automatically extracted fine-tune samples, based on

the position information recovered by the tracking.

Thomas Gulde - PhD Thesis - 93



4 Enhanced Collaborative Workspace Observation

Figure 4.8: Examples of auto-generated training data based on the proposed tracking system. The
examples are recreated if the origin pre-detector could not detect an already known target. Such
data can be used to finetune a bounding box detector. The produced ROIs could also exceed the
shape of the original image. For the fine-tuning process, such predicted areas will be clipped to
the given shape of the new training image.

At this point, it is important to understand that there is no out-of-the-box solution

for the finetuning of a SOTA deep learning model. Each model has its mannerisms

and needs to be handled differently in the finetuning process. As it is always a good

advice to use small learning rates and usually non-adaptive optimizers like SGD, the main

challenge is to set up the model’s layers. It is rarely a good idea to finetune all layers of a

model, as some weights of the network’s architecture could be frozen due to the training

process [238, 239]. In the case of YOLOv3, every layer except the main YOLO-Layers,

where the network performs the explicit extraction of the anchor boxes on different image

scales were frozen (cf. [231, 232, 230]). Precisely these are the convolutional layers 82,

94, and 106 out of the 106-layered architecture. This was also the only direct network

modification that was applied while finetuning. For the optimization, the SGD optimizer

with a static learning rate of lrstatic = 1e−5 was employed.

The proposed self-supervised finetuning should theoretically be able to raise the accuracy

of the bounding box detection close to the system with activated tracking. A detailed

evaluation of the impact of the presented on-the-fly finetuning process can be found

within the evaluation in Section 5.7.

Thomas Gulde - PhD Thesis - 94



4 Enhanced Collaborative Workspace Observation

Despite the fact that the basic evaluation shows that the accuracy of the bounding box

detector can be improved with such a mechanism, potential users have to be conscious

of over-fitting the model to the given domain of the finetuning process. As such an over-

fitting could not lead to noticeable problems in applications where e.g. the specific model

is only targeted in a well defined and constant area, it is preferable to train on as general

data as possible. To avoid over-fitting it is recommended to mix the self supervised

training’s examples with already known data used for the bootstrapping learning process

of the model.

Thomas Gulde - PhD Thesis - 95



5 Evaluation

5.1 Keypoint Detection

For the whole RoPose related evaluation presented in the following sections, the same

amount of evaluation data was used and none of the systems were ever trained with

these datasets. This so-called hold-out validation is a suitable method to evaluate the

generalized performance of a system, but also has some drawbacks such as the loss of

valuable evaluation data for the training process (cf. [240]).

The evaluation data collection consists of twelve separate RoPose datasets generated

as detailed in Section 3.3.2, summing up to exactly 3213 evaluation samples with five

different camera positions relative to the robots origin. The datasets containing labeled

samples, with and without additional single or multiple humans1 also introducing partly

or complete occlusions of the robot itself.

A complete iterative k-fold validation (cf. [241, 240]) was not performed mainly because

of the given time and hardware constraints. An e.g. ten-fold cross-validation would

have required ten complete training sessions for each of the presented networks, which

would sum up to over a month of training time with the available hardware setup.

However, the current evaluation codebase would also need additional dataset scheduling

algorithms to perform such validations, which is surely on the agenda of the author’s

future work.

5.2 PCK Metric

Before presenting the results of the evaluation, a relevant metric is briefly introduced.

As the PCK metric was discussed in Section 2.7.3 the threshold factor ( fth) needs to

be defined. The factor fth could be related to the length of the Bounding Box (BB) as

proposed by Yang et al. [155], something like the head segment of a human [156] or it

could also be set to a static value. While a robot’s equivalent to a human’s head segment

could be the distance between the first two known joints (cf. Figure 3.1), this distance

is used as the possible dynamic reference value. Table 5.1 gives an overview about how

1Note that the available labels not contain human pose transformations yet. Only the poses of the robot’s
kinematic chain are available within the collected data.

Thomas Gulde - PhD Thesis - 96



5 Evaluation

these different approaches would affect the absolute threshold reference based on the

available RoPose datasets.

Table 5.1: Possible PCK threshold references lengths.

Mean Max Min Mean Max Min

Base Seg. 36.6 51.8 31.7 49.6 73.1 28.2

BB Diag. 512.8 1335.5 104.1 692.5 1497.2 104.1

BB Height 394.5 719.0 58.8 522.0 719.0 58.8

BB Width 321.9 1125.4 85.8 435.2 1279.0 85.8

Evaluation Datasets All Datasets

Absolute dimensions of the possible PCK threshold relations in Pixel [pix]. The numbers show
the mean, maximum and minimal lengths for the different approaches to calculate the threshold
reference values for all available real datasets (training-, test- and evaluation Dataset) and also for
the evaluation datasets only.

The numbers show that all BB relative values introduce a very low error rate in higher

threshold factors. As suggested in Section 2.7.3, the PCK could be evaluated based at

a very low factor just as 0.1 which could also be used for the here presented evaluation

[155]. Figure 5.1 shows the example PCK plots based on the introduced threshold

references, evaluated at various factors.

It is obvious that a fth relative to the diagonal length of a bounding box (Figure 5.1(a))

adds almost no value to the evaluation because the resulting absolute steps between the

thresholds are very large, and the steep slope will not allow for a proper comparison of

the curves. As the base segment length (Figure 5.1(b)) also offers a way to compare the

performances especially at lower absolute thresholds, this target size depending view is

used whenever a PCK result of an estimator is compared. It would also be suitable to

set the relative factor to a static number such as 20 (shown in Figure 5.1(c)). Because

the evaluation will also provide an absolute comparison of the given predictions and the

GT on the pixel level, it is considered as not necessary to cover this case when the PCK

results are evaluated.

Thomas Gulde - PhD Thesis - 97



5 Evaluation

(a) Threshold reference set to the GT’s BB di-
agonal.

(b) Threshold reference set to the base seg-
ment’s length.

(c) Static threshold of 20 pixel.

Figure 5.1: Effect of the relative thresholds to the PCK metric. (a) fth relative to the GT’s bounding
box diagonal length. (b) fth relative to the GT’s base segment length (length between the first two
joints starting with the robot’s base). (c) fth relative to a static pixel value (example: 20pix). The
colors indicate results for each joint.

Thomas Gulde - PhD Thesis - 98



5 Evaluation

5.3 Bounding Box Detector

To evaluate the YOLO based bounding box detection system (cf. Section 3.3.3.2 and

3.3.5), the IoU-Metric (cf. Section 2.7.2) serves as the main key-value in the following

evaluation.

The IoU of the predicted bounding box and the the corresponding GT were evaluated

with a varying threshold factor (thbb, with 0.0 <= thbb <= 1.0). In this case, thbb

defines the rejection threshold that is used to classify all detections where IoU < thbb as

not detected. This methods results in a basic binary classification and the Precision and

Recall metrics (cf. Section 2.7.1) can be finally applied. The trained YOLO-model’s

performance for the robot bounding box detection is summarized in the Precision/Recall-

curve in Figure 5.2.

Figure 5.2: PR-curve of the YOLO-based RoPose bounding box detection. The AUC results in an
AP of ~0.724. Details of the employed metric are given in Section 2.7.

The reached F1-Scores of the detector evaluated at the given thresholds are shown in

Figure 5.3.

Thomas Gulde - PhD Thesis - 99



5 Evaluation

Figure 5.3: F1-Scores of the YOLO-based RoPose bounding box detection evaluated at various
thresholds thbb. Details of the employed metric are given in Section 2.7.

The evaluation procedure enables the extraction of the key values listed in Table 5.2

and allow for an objective rating of the employed detector’s final performance on the

evaluation datasets.

Table 5.2: Evaluation key values of the bounding box detector.

AP F1@0.2 F1@0.5 F1@0.8 mIoU

Results 0.724 0.84 0.82 0.58 0.418

The resulting AP and F1-Scores at the evaluated thresholds as well as the solid mean

IoU of the YOLO-based bounding box extraction shows that the system performs well

enough to serve as the needed pre-detection in the given data domain because the de-

tector is able to detect slightly over 80% of the target robot arms with an IoU above

or equal to 0.5. The comparable low mean IoU can be traced back to FN detec-

tions. Such FNs will directly lead to a zero IoU and have a high impact on the mean

value.

Thomas Gulde - PhD Thesis - 100



5 Evaluation

5.4 RoPose Base System

After the pre-detection, the RoPose keypoint estimation system needs to be evaluated.

As detailed in Section 5.5, it is recommended to include an upsampling of the probability

map to increase the final accuracy. For the following evaluation an additional upsampling

step that increases the 64×48 sized network outputs to the origin input size of 256×192

based on an bicubic algorithm was employed (cf. method D in Section 5.5). To train

the system the routine described in Section 3.3.3.4 was employed. The resulting PCKs

for each of the joints are shown in Figure 5.4.

Figure 5.4: Joint estimation PCK results. While the combined value (blue) encodes the mean of
all joints, each joint’s PCK is shown in the respective color. Details of the employed metric are
given in Section 5.2.

The development of the PCK-curves is almost identical and thus, there is some variance

between each joint’s absolute accuracy, especially when looking at the joints at the end

of the kinematic chain. This is the exact same behavior already discovered with the

previous published models [I, II] and is likely related to the larger positional variance the

upper joints could engage because each joint which can be seen as a lower chain element

will affect the final position of such a specific joint.

Thomas Gulde - PhD Thesis - 101



5 Evaluation

Table 5.3: Evaluation key values of the base RoPose keypoint estimation.

PCK@0.2 PCK@0.5 PCK@0.8

combined 0.498 0.798 0.858

J0 0.449 0.8 0.843

J1 0.736 0.863 0.884

J2 0.656 0.862 0.883

J3 0.521 0.837 0.91

J4 0.425 0.801 0.866

J5 0.349 0.725 0.837

J6 0.346 0.698 0.78

An absolute, not threshold-related, view on an explicit two-dimensional error distance

within the given image plane should also be provided when evaluating a system like

RoPose. These numbers are visualized in the form of violin plots in Figure 5.5, confirming

the conclusion drawn from the PCK analysis.

Figure 5.5: Violin graph of the absolute joint-wise estimation error in pixel, evaluated on images
with a size of 1280× 720. While the width of each violin indicates the distribution, the red and
black lines denote the mean and median values, respectively.

Again, the data show a lower overall performance of the upper-level joint estimation

compared with the first parts of the kinematic chain. It is always important to consider

Thomas Gulde - PhD Thesis - 102



5 Evaluation

the pixel dimensions of the error. The evaluation was performed on images with a

raw input size of 1280× 720, resulting in a maximum error distance of ∼ 1468pix.

The comparatively large mean values (red lines in Figure 5.5) occur because the raw

estimation system produces some heavy outliers (emax = 1121pix). Such outliers can

easily be rejected in the final application (cf. Section 6) by comparing the estimated

poses with the predicted poses delivered by the tracker. Table 5.3 finally shows the raw

numbers of the evaluated key values. Table 5.4 presents the absolute numbers of the

given joint-wise estimation errors.

Table 5.4: Rounded absolute joint-wise estimation errors [pix].

Comb. J0 J1 J2 J3 J4 J5 J6

Mean 39.98 49.68 34.16 32.0 17.51 42.27 47.2 57.05

Median 7.19 7.86 4.19 5.18 6.93 8.22 9.7 9.9

Variance 10.75 11.27 10.15 9.44 7.09 11.15 11.52 12.2

The evaluation of the main keypoint estimation shows that the system performs suffi-

ciently well on the given data basis. The data show that the developed model can be

used within the proposed system architecture to perform the keypoint regression, and

combined with the post-processing pipeline it will produce accurate positional guesses.

However, this evaluation is performed on recorded datasets where the base of the robot

is static within the domain of each set. It is part of the authors future work to realize

a technical solution to also generate datasets with a dynamic moving robot platform.

Such an addition will improve the system’s performance and especially the quality of

available datasets.

Because the above evaluation was based on the perfect bounding box input given by

the GT, it is also necessary to investigate how the system behaves based on the bound-

ing box information from the pre-detector. As these evaluations can be perfectly cou-

pled with a direct comparison of the tracking, this evaluation is also placed in Section

5.6.3.

Thomas Gulde - PhD Thesis - 103



5 Evaluation

5.5 Output Upsampling

In order to show the impact of the different upsampling strategies (cf. Section 3.3.4)

of the introduced probability maps, an evaluation of the joint estimation performance

was performed for each of the available upsampling methods (None, Bilinear and Bicu-

bic) and also for two different target size strategies. As the size of 256× 192 is the

input size of the heatmap regression network, the term Original Size specifies a direct

upsampling to the original raw size of the cropped ROI of the estimation target. The

main results are summarized in Table 5.5 and show the resulting PCKs of all joints

combined.

Table 5.5: Impact on combined PCK of different upsampling strategies.

Method Target Size PCK@0.2 PCK@0.5 PCK@0.8

A None 64×48 0.355 0.774 0.851

B Bilinear 256×192 0.477 0.797 0.858

C Bilinear Original Size 0.462 0.796 0.857

D Bicubic 256×192 0.492 0.797 0.858

E Bicubic Original Size 0.498 0.798 0.858

Comparison of different upsampling strategies and their impact on the pose estimation accuracy.
As the term Target Size refers to the final target size each probability map was upsampled to,
Original Size refers to the the raw size of the extracted ROI before it was fed in the pose regression
network.

Besides the various upsampling algorithms, Table 5.5 also shows the impact of upsam-

pling the data to the original input size of the cropped robot. The size of the raw ROIs

is usually larger than the statically defined input size of the network. Whenever this is

not the case, downsampling is performed with the given method. Figure 5.6 shows the

combined joint PCKs in more detail.

Thomas Gulde - PhD Thesis - 104



5 Evaluation

Figure 5.6: PCKs related to different probability map upsampling strategies. All lines show the
development of the PCK accuracy, again evaluated at different thresholds. The PCKs combine all
given joints of the robot and the enumeration in the legend correspond to the defined characters of
each method in Table 5.5.

The results clearly show that the integration of any additional upsampling step (B-

E) outperforms the none upsampling strategy (A) when it comes to more restricting

thresholds. If any application needs such an accuracy boost, and the time constraints

allow for additional processing time, such an upsampling should be considered. As

Figure 5.6 shows, there is not much difference for each of the other methods. Setting

the target size to the original ROI (B and D) except the original image size (C and E)

even performs slightly better when bilinear upsampling is involved but is responsible for

a small accuracy decrease with the bicubic setup. The differences between bilinear and

bicubic are marginal at high restricting thresholds but may are negligible at systems that

do not need this small accuracy boost.

Again the absolute pixel-error has to be considered. Figure 5.7 shows the absolute com-

bined pixel distances for each of the employed upsampling methods.

Thomas Gulde - PhD Thesis - 105



5 Evaluation

Figure 5.7: Absolute combined error for the upsampling strategies. The violin shows the combined
estimation error in pixel, evaluated on images with a size of 1280×720. While the width of each
violin indicates the distribution, the red and black lines denote the mean and median values.

The absolute view on the error numbers also confirms the marginal difference between

the upsampling strategies. Again the original image’s input size of 1280× 720 needs

to be considered when looking at the numbers presented in Table 5.6 (cf. Section 5.4)

.

Table 5.6: Absolute estimation errors of different upsampling strategies [pix].

A B C D E

mean 41.664 40.266 40.361 40.024 39.982

median 9.532 7.527 7.741 7.277 7.192

Because the differences between the methods are marginal it was decided to integrate

method D, the bicubic upsampling to the target’s input size, in the final RoPose appli-

cation. This decision was mainly based on a computational point of view as the strict

target size of 256× 192 will reduce the computation effort of the keypoint extraction

to a more deterministic value as compared to a variable output size coupled at the raw

image input’s ROI.

Thomas Gulde - PhD Thesis - 106



5 Evaluation

5.6 Tracking

The evaluation of the tracking system itself is split in three parts. While the Sections

5.6.1 and 5.6.2 examine the performance of the base descriptor and the influence of

the introduced weighting, Section 5.6.3 will investigate the impact of the complete

tracking procedure. As already detailed in Section 4.2.3, the tracking procedure offers

two different methods where the tracking is based purely on edges of the bounding box

(further referred to as method B) or all the available poses of the robot’s kinematic

chain (further referred to as method A).

5.6.1 Descriptor

Before it is possible to tell if a tracking mechanism can be applied to a system, the em-

ployed descriptor, in this case, the abstract pose based descriptor presented in Section

4.2.1 has to be evaluated. The following evaluations are based on the given GT data

of all available datasets, used for training and also for validation. All these data can be

used because no training is involved in order to calculate the descriptor and this leads

to an overall amount of 29.236 usable data samples.

Each pose descriptor can be represented as a vector containing a parameter set (p) of

all 42 parameters (cf. Eq. 4.1 - 4.3). To get an idea how these real data vectors

built up a descriptor space, a method called Stochastic Neighbor Embedding (SNE),

originally introduced by Hinton et al. [242], was employed. The idea behind SNE is

to reduce the complexity of higher dimensional spaces and its members and transforms

them into a lower dimensional space (e.g. two-dimensional) where it could be more easy

to visualize and understand the data. Usually this can’t be done by a simple projection

and the employed transformation needs to preserve the original data clustering of the

multidimensional space. SNE algorithms first assign a random position in the targeted

space for each high-dimensional datapoint and fit these positions in an iterative process.

Each iteration adjusts the lower dimension positions of the datapoints and move them

closer to other samples which have a high similarity in the high-dimensional space. These

pairwise similarities between all datapoints are usually modeled by a normal distribution

based on the multi-dimensional vector distance of each element. The very same similar-

ity estimation is also applied to the low-dimensional datapoints allowing to fit the data

to match the similarities in both spaces. To generate the following plot in Figure 5.8,

an extended algorithm called t-SNE presented by van der Maaten et al. [243] and the

Thomas Gulde - PhD Thesis - 107



5 Evaluation

publicly available implementation within the scikit-learn python toolkit [244] have been

used to apply the dimension reduction. t-SNE uses William Sealy Gosset’s Student’s

t-distribution [245] for the similarity estimation of the lower-dimensional datapoints in-

stead of a normal distribution like introduced in the original work. This helps to better

identify data clusters because the similarities will more spread and the high values will not

concentrate at the distribution’s peak. Because the t-SNE algorithm can just operate

on numerical vectors, the used data needs to be cleared from all samples that contain

not visible joints (cf. Section 4.2.1). For the analysis shown in Figure 5.8 the available

29.236 samples have been cleared from 1.314 descriptor elements that contain invisible

joints, leaving 27.922 samples for the embedding2.

Figure 5.8: 2D-Visualization of the descriptor’s feature space. The high-dimensional vector-space
of the RoPose-descriptor was transformed into an 2D space to visualize the data structure of the
feature space by employing t-SNE [243]. For the embedding all descriptors with invisible joints
have been removed leaving 27.922 samples for the process. A and B show detailed sections from
the whole embedded data. These selections show how the introduced descriptor space directly
models trajectories into close datapoints as a trajectory usually consists of various similar poses.

The with t-SNE embedded feature space visualized in Figure 5.8 clearly shows that

most of the descriptors can be clustered into the trajectories that the targeted robot

2The t-SNE’s perplexity-parameter was set to 10 and a maximum of 5000 iterations for the fitting process
were allowed.

Thomas Gulde - PhD Thesis - 108



5 Evaluation

executed while recording the datasets for RoPose. The data in figure 5.8 show that

the introduced descriptor forms a continuous parameter space that can be used to dis-

tinguish between poses. To show the embedding of the descriptor space on a more

concrete example, a video was created showing the embedding process of the de-

scriptors from a single dataset and the evolving trajectories in the embedded features

space3.

The second part of this evaluation targets the usage of the descriptor to estimate the

similarity between two kinematic chains and is performed by calculating the similarity

between the given robot pose from frame t and t + 1. Some of the datasets contain

frames in which the robot does not move from frame to frame and this means that a

similarity value of 1.0 can possibly be reached. Because the GT data has to be considered

as perfect in the given context, an additional 2D joint noise was introduced. This joint

offset was generated for each joint of the kinematic chain in each frame independently

and is modeled as 2D Gaussian distribution with σ = 0.5 and was also scaled and clipped

to a range between −40 and 40 pixel. This basically introduces a spatial shift for each

available joint on the image plane and the error-range is comparable to the absolute

estimation errors of the estimator (cf. Section 5.4). In addition to the displacing, also

potentially not detected joints have to be considered. Caused by situations as occlusion,

the resulting incomplete kinematic chains will also have an impact on the similarity

calculations. For this reason, joints were randomly set to invisible, so the descriptor will

ignore this particular joint (cf. Section 4.2.1). This invalidation of joints was introduced

with a probability of 0.1. Figure 5.9 shows the histograms of the so calculated frame-

by-frame similarities across the whole data basis.

3https://www.thomas-gulde.de/ropose/tracking

Thomas Gulde - PhD Thesis - 109

https://www.thomas-gulde.de/ropose/tracking


5 Evaluation

Figure 5.9: Distribution over similarity values of the compared descriptors. The similarities were
calculated from the sequential frame information given by the GT of all available datasets. The
bounding box weight factor is set to wIoU = 0.25 (cf. Eq. 4.10). To add a more realistic noise
to the data, each joint was displaced by a 2D Gaussian distributed offset with σ = 0.5, which
also was scaled and clipped to a range between −40 and −40 pixel (blue distribution). The gray
distribution shows the results when random joints were also set to invisible by a probability of 0.1.

Besides the direct comparison with the GT (green distribution), Figure 5.9 also shows

the similarity results after the virtual displacing (blue curve) and the similarity after the

additional joint invalidation (gray curve). These similarity distributions clearly show that

the defined descriptor can be used to estimate a similarity between two 2D kinematic

chains, which makes the descriptor a possible candidate for the needed tracking pipeline.

The marginally positive difference of the joint invalidation manifests due to the invalid

joints not being part of the similarity matching (cf. Section 4.2.1), which could lead to

an overall greater similarity. The distributions show that a similarity threshold value of

around 0.45−0.6 can be considered as a suitable base to match two descriptors. The

graph also shows some outliers with a similarity of zero for displaced and invalidated

samples. These outliers are caused by to many random joint invalidation which leads to

a zero similarity which is the expected behavior.

Thomas Gulde - PhD Thesis - 110



5 Evaluation

5.6.2 Influence of the Tracking History

The tracking system and the future bounding box prediction system employ a weighting

factor which individually weighs the influence of each known history according to its

update time (cf. Section 4.2.3 resp. Equations 4.11 and 4.12). The evaluation of the

employed exponential factor based on a total history amount of ten samples used for

the prediction allows for conclusions about the importance of older histories. Figure

5.10 shows the impact on the predictions’ mean joint distances for different weight

factors k (cf. Figure 4.6)for the pose tracking mechanism. This evaluation is again

based on all 29.236 samples because no learning is involved for the evaluated system

parts.

Figure 5.10: Impact of the weighting parameters to the tracking predictions. The curve shows the
mean difference of the predicted joints in pixel, evaluated at different weighting factors k with a
maximal history amount of ten samples.

The data in Figure 5.10 show a small peak of a lowest distance error that is located

at k = 0.3. In order to maximize the tracking accuracy that value is used for the here

presented system. The final resulting weighting factors for specific history sample that

is hold available in the tracker are visualized in Figure 5.11

Thomas Gulde - PhD Thesis - 111



5 Evaluation

Figure 5.11: The graph shows the specific history weights for k = 0.3 used in the tracking system.

The here presented evaluation shows, that the introduced history weighting has almost no

impact to the final tracking result. This completely conflicts with the author’s hypothesis

that a specific weighting should help the tracking system to give more precise pose

predictions. The main reason for this result could be, that the recorded data samples only

contain strictly linear planed trajectory without common used methods like interpolation

to smooth and accelerate trajectories in industrial robotics. It is part of the author’s

future work to examine if the introduced systematic weighting can support the tracking

in a more realistic scenario.

5.6.3 Evaluation of the Tracking System

To avoid an impact of the employed bounding box detector’s accuracy on the tracking

mechanism evaluation, this main evaluation is based on the ground truth data that is

available in the RoPose datasets and thus is again performed for all 29.236 samples.

The main purpose of the tracking system is to predict the future position of a target’s

bounding box when the bounding box detector of the main pipeline fails. To evaluate the

Thomas Gulde - PhD Thesis - 112



5 Evaluation

tracker’s accuracy, again the IoU metric was employed to compare the known GT and

the predicted bounding box estimated by the tracking system for both, the untouched

as well as virtual displaced joint positions. For the ROI prediction, the best performing

parameter set, e.g. for the history weighting, detailed at Section 5.6.2 was used. Because

this evaluation was based on the given GT of the Datasets, there is no possibility for the

tracker to generate false positive predictions and the Precision will always be 1.0 (cf. Eq.

2.97 with FP= 0). Accordingly Figure 5.12 shows only the development of the F1-scores

which are solely affected by the change of the recall.

Figure 5.12: F1-score of the tracking mechanism based on GT data. The graph combines the
evaluation based on untouched GT values (blue) as well as based on virtually displaced values
(green). The Recall-scores are visualized for both methods based on all poses of the kinematic
chain (Method A) and only on the corner positions (Method B) of the bounding box (cf. Section
4.2.3). The tracker used a maximum history of ten and a weighting factor of k = 0.3. Details of
the employed metric are given in Section 2.7.

The F1-scores show only marginal differences between both methods. The main reason

for this is likely that the bounding box for the tracking is also reconstructed from the

pose constellation itself. This shows that the tracking system can also work on the

lower parameter dimension of just two BB corners instead of all observed joints of

Thomas Gulde - PhD Thesis - 113



5 Evaluation

the robot. The data allows the conclusion, that method A performs slightly better

under more realistic conditions. Method B even outperforms A when it comes to more

ideal conditions and also will need less computational effort because of the mentioned

dimension reduction. Therefore it is recommended to choose the bounding box based

tracking to stabilize the pre-detector if the marginal performance gain is irrelevant for

the application. As the bounding boxes fed into the tracking system are reconstructed

based on the extracted poses, the bounding box tracker should just be as robust against

occlusion as the pose based tracker. Table 5.7 also proves marginal advantages for A

when the bare numbers are considered.

Table 5.7: Evaluation key values of the tracker’s predictions.

F1@0.2 F1@0.5 F1@0.8 mIoU

A Pose 0.999 0.998 0.975 0.928

B B.Box 0.999 0.998 0.974 0.928

A_disp Pose 0.999 0.997 0.847 0.836

B_disp B.Box 0.999 0.997 0.847 0.836

Evaluation key values of the tracker’s predictions evaluated for both methods based on all poses of
the kinematic chain or only on the corner positions of the bounding box (cf. Section 4.2.3). F1@
dedicates to the F1-score evaluation at a specific threshold.

The gathered data show that the tracking system itself shows a higher performance

compared to the raw bounding box detector (cf. Table 5.2). This is expected because

the above evaluation of the tracker was based on the ideal GT and is not able to predict

bounding boxes on a raw image but predicts the current position out of the known history

and its main purpose is to support the ROI estimation if it fails.

A first quantification of the real tracking-impact is the number of restored bounding

boxes compared to the system with deactivated tracking and the corresponding mean

IoUs of the recovered bounding boxes. Table 5.8 shows the final amount of false nega-

tive prediction of both systems and both tracking methods. Because the main prediction

system is now based on YOLO and thus involved a learning process, the following com-

parisons are now solely based on the evaluation dataset of RoPose which sums up to

3201 examples.

Thomas Gulde - PhD Thesis - 114



5 Evaluation

Table 5.8: Performance comparision of the tracking system.

FN-Count rec. mIoU

No Tracking 561 -

Tracking A 36 0.636

Tracking B 37 0.644

Performance key values of systems with and without activated tracking. The table shows the
amount of false negative predictions of each system and also the mean IoUs of the recovered
bounding boxes when tracking is involved.

To also evaluate the positive effect of the tracking system to the final pose estimation

where all subsystems are involved, the evaluation from Section 5.4 was performed in

the same way but with activated bounding box tracking (Method B) and based on the

YOLO predicted BB instead of the given GT. The impact on the final PCK results are

shown in Figure 5.13.

Figure 5.13: Impact of the tracking system on the system’s performance based on a PCK compar-
ison of all joints combined. Details of the employed metric are given in Section 5.2.

At this point, it is clear that additional tracking helps to stabilize the pre-detection and

improves the overall performance of the system. Thus, an additional tracking solution

should always be considered when designing systems similar to RoPose .

Thomas Gulde - PhD Thesis - 115



5 Evaluation

The basic pose prediction used at the time of the submission of this thesis could maybe

significantly improved by implementing other SOTA, mainly machine learning and CNN

based [246, 247] or Kalman filter based [248, 249, 250] tracking approaches . As better

tracking will lead to higher accuracy of the main system and would also improve the

impact of the autonomous fine-tuning pipeline detailed in Section 4.3, it is seen as a

future task to improve the tracker’s prediction accuracy.

5.7 Self-supervised finetuning

To be able to rate the performance impact of the self-supervised finetuning introduced

in Section 4.3 the very same model that was trained for the base evaluation in Section

5.4 and 5.3 was taken as the benchmark and will be referred to as model A, respectively

the finetuned model as model B. The dataset for this finetuning process has been taken

from the evaluation datasets and has been reduced to the largest dataset with the

same viewport (overall 373 samples). Because the RoPose model that is responsible

for the keypoint regression stays untouched, it does not make sense to run another

evaluation on that performance itself, thus this part will concentrate on the bounding

box detector’s performance on all datasets used within this finetuning process before and

after the finetuning. For the fitting process, the SGD optimizer with a learning rate of

lr = 1e−5 was used. No momentum or other methods were used within the finetuning

process.

As this subsystem also produces bounding boxes, again the IoU metric (cf. Section

2.7.2) was employed. Figure 5.14 shows the mean IoU reached by the model before and

after some finetuning epochs.

Thomas Gulde - PhD Thesis - 116



5 Evaluation

Figure 5.14: Mean IoUs of the finetuned YOLO-based RoPose bounding box detector. The num-
bers need to be compared to the initial trained model’s performance (red bar) and show the increase
after various finetuning iterations. Details of the employed metric are given in Section 2.7.

The data in Figure 5.14 shows that the self-supervised finetuning approach is able to

increase the overall performance of the bounding box detector after the first view epochs.

The bars also show the impact of additional finetuning epochs, although they are not

necessary for a real system’s performance comparison. The problem here is that it can not

be expected that the same exact image input is available multiple times in a system that

is deployed to the real world because of the variance caused by changed light conditions,

different human- and robot poses and also changed visual appearances. Regardless, it

is interesting to see how the system behaves in such a context and the data shows how

fast such a model overfits to the given context and even reduces the overall performance

after three epochs. To keep an eye on a realistic impact, this evaluation will concentrate

on the results after a single finetuning iteration as shown in Figure 5.15 and also Table

5.9.

Thomas Gulde - PhD Thesis - 117



5 Evaluation

Figure 5.15: F1-scores of the finetuned YOLO-based RoPose bounding box detector evaluated at
various thresholds thbb. As the origin model’s performance is visualized by the blue curve, the
gray curve shows the increase after one autonomous finetuning iteration. Details of the employed
metric are given in Section 2.7.

Table 5.9: Evaluation key values of the fine-tuned bounding box detector.

Model AP F1@0.2 F1@0.5 F1@0.8 mIoU

A 0.701 0.812 0.79 0.718 0.501

B 0.772 0.856 0.823 0.742 0.535

The performance analysis shows that such a finetuning process is able to adapt the

pre-trained model to a given special domain where the system is deployed. Again, the

threats that were already discussed in Section 4.3 should always be considered. Such

a procedure could lead to a heavy over-fitting of the model to a given domain and

could so reduce its global performance which could after all also be seen as the wanted

behavior if the estimation accuracy wants to be maxed out at a unique given targeted

domain. From a more general point of view, the so generated new training samples

should be injected in the available database in a balanced manner. Such datasets could

then be used in a general training and finetuning process to also improve the overall

performance.

Thomas Gulde - PhD Thesis - 118



5 Evaluation

It is clear that the mechanism of finetuning also involves a learning, thus optimiza-

tion, process and it is certain that things like the chosen optimizer and the learning

rate will strongly affect the model’s performance and a better tweaked finetuning pro-

cess could improve the final impact of the finetuning system. This evaluation should

only indicate the positive impact of the process to one of the most crucial parts of

the processing pipeline. As the finetuning of deep networks can easily be considered

as a separate research field and there is some literature available that tackles exactly

that topic [239, 251, 252], many methods offer various ways to achieve a performance

increases are available. However, the improvement of the overall training process and

the adjustment of the involved meta parameters is beyond the scope of the present

thesis but is one of the author’s future research interest because this process should

also have an impact on human pose estimation systems that rely on a pre-detection

system.

Thomas Gulde - PhD Thesis - 119



6 Final Application

The final RoPose application is able to extract important information about dynamic

collaborative environemnts (cf. 1.2). It combines all different subsystems as the bound-

ing box pre-detection (cf. Section 3.3.5), the CNN-based heatmap regression pipeline for

industrial robot arms and humans (cf. Section 3.3.3.2 and 4.1) as well as the tracking

and future area prediction system (cf. Section 4.2.3) with the optional self-supervised

fine-tuning mechanism (cf. Section 4.3). The abstract diagram in Figure 6.1 should give

a complete overview of the involved components.

Figure 6.1: Abstract overview of the proposed final application. After a new image is available the
pre-detection system will extract the ROIs for humans and robot objects on the image. These ROIs
will be compared and probably concatenated with not detected but already tracked robot instances
and will then get preprocessed for both pose regression networks. The batch-wise processed and
upsampled probability heatmaps delivered by the two independent CNNs can than be used to
extract the 2D keypoints. This information already describes the current image pose situation
which can be used in higher-level applications. The given information will also be fed into the
tracking system to track the instances and also filter potential FNs examples from the pre-detection
to generate finetune training examples that can be used to tweak the pre-detector to the current
domain.

Every pose estimation cycle starts with the extraction of the ROIs for all targets. These

area estimations will be compared with the potentially available predictions, of the track-

ing system, which will probably add additional ROIs to the robot targets. The resulting

image areas define the input for the separate heatmap regression networks for both target

Thomas Gulde - PhD Thesis - 120



6 Final Application

types and need to be preprocessed to fit the network’s input constraints. After the prop-

agation through the CNNs, the upsampled probability heatmaps will be used to extract

the 2D pose estimation of the target’s joints. This joint information can then be used in

many other higher-level applications and also forms the input for the proposed tracking

system. The tracker will calculate the pose descriptor and compare these results with

the already known tracked instances. The given information can be used to extract FNs

from the pre-detector which will lead to new, autonomously annotated, training samples

that can be used for online finetuning or to build up a growing database for a general

training session.

The proposed architecture offers a flexible way to tune and adjust separate parts of the

processing pipeline without influencing the other elements. This is primarily considered

as an advantage for the RoPose parts just as the pre-detector and heatmap regression,

because the training database can still be seen as limited and not very diverse compared

to the available data sources used for the system parts that target humans. This offers

a convenient way for potential third-party users to adapt the system to their unique

robot. As a proposed solution should never be stated as perfect, there is always some

potential for improvements. On the computer system available1, the whole pipeline

performed at ∼ 12 Frames Per Second (FPS). The corresponding processing time of

0,083ms is considered as the system’s main drawback because this may not be fast

enough to reliably track very fast movements of industrial robot systems. Especially

when looking at safety aspects, the frame rate needs to be significantly improved to

satisfy such application constrains. As Ludl et al. presented, it is possible to increase a

similar human pose estimation based system by turning off the pre-detection and stick to

the tracking prediction after an object was successfully tracked for the first time[6]. Such

a modification could also be implemented in the given application and should improve the

achievable overall framerate under certain circumstances.

Besides the bare computational performance, there is also a lack of accuracy. As usual,

there is nothing like accurate enough and if an application is supposed to somehow reach

a GT-like prediction accuracy, there is the need for a more accurate GT. However, as

the evaluation shows, the main drawback relating to the accuracy is the sometimes large

absolute outliers which definitely should be tackled in further applications. One possible

solution could be a combination of the here presented simple baseline heatmap regression

and the related models from our first publications [I, II] , which will likely result in an in-

creased accuracy but may in turn affect the final frame rate.

1Concrete System Specs: CPU: Intel® i7-8700K | GPU: NVIDIA® GeForce GTX® 1080, CUDA® 11.2.2
and cuDNN 8.1.1.3 | OS: Ubuntu 20.04

Thomas Gulde - PhD Thesis - 121



7 Conclusion and Future Work

7.1 Conclusion

As the main results, benefits as well as drawbacks, problems and issues with the pro-

posed subsystems and the combining final application were discussed in their respective

sections, and in the evaluation itself, a less formal and more general conclusion is left at

this point.

The present thesis shows a possible solution for a data-driven pose estimation system

based on RGB image data, covering the rarely tackled domain of industrial robot-arms.

It shows what is necessary to develop, improve, integrate, deploy, and evaluate such

an application. It was proven that the presented CNN based approach can be adapted

to the given data and can finally be used to extract 2D joint predictions with certain

accuracy and also with a solid framerate. The so available information can now be used

by various higher level applications where an observing camera system is available and

the extracted 2D information of a robot’s kinematic chain may be useful. In addition to

this standard robot-pose extraction, the introduced extension to simultaneously estimate

human joints within the same application leads to a dense, consistent, and therefore rich

information flow.

The exploitation of these extracted robot poses by a novel extrinsic calibration pro-

cedure was also introduced in Section 3.4. This calibration method can be used to

obtain the 3D pose of a monitoring camera device in relation to the robot’s intrinsic

coordinate frame when the 3D joint information of the robot itself is also available.

This proposed procedure allows for a marker-less extrinsic calibration of the camera sys-

tems which enables interesting application for various use cases within an production-

and collaborative environment especially when the location of the camera is dynamic or

unknown.

In order to generate the necessary data basis to train and evaluate RoPose, a dynamic

data- generation and recording system (c.f. 3.3.2) has been presented. The system can

be used to generate synthetic datasets and also to record real datasets of physically

present robots. As the synthetic datasets are naturally fully annotated containing all

3D and projected 2D poses of the robot’s joints, the real world examples rely on an

extrinsic calibration of the used camera in order to provide these labels. In alternative

to traditionally, e.g. marker-based calibration methods, a semi-automatic labeling pro-

cedure, exploiting the introduced joint-based calibration method has also been detailed

Thomas Gulde - PhD Thesis - 122



7 Conclusion and Future Work

within this thesis and the preceded publications. This calibration method just affords

the manual pose labeling of a few frames and so represents a convenient way to enrich

the available datasets with probably unknown view angles.

An additional pose tracking module, introduced in Section 4.2.2, was developed to

increase the systems overall pose estimation accuracy. The presented descriptor is able

to fully describe a 2D kinematic chain of a robot system and so offers a way to track a

robot’s movement by comparing the pose similarities from frame to frame. The tracking

information is than be used to provide a target’s bounding box prediction if the Yolo-

based pre-detector fails to avoid complete false negatives in a frame and so improves the

overall performance.

The tracking procedure was also coupled to an autonomous fine-tuning process that helps

to increase the pre-detector’s performance on-the-fly. This process offers interesting use

cases to adapt a system to new domains, or could simply reduce the amount of data

needed to bootstrap the detection models.

While developing RoPose, various tools, packages, and base applications have emerged

out of this long process (see Section Open Source Contributions at the very beginning

of this thesis). Luckily, the author is able to release and open-source almost everything

with some value in the hope to help other research teams to save some effort or at least

to increase the future database for RoPose1.

7.2 Future Work

There still is a long way to go to realize vision sensor-based applications that fully

consider all safety aspects (cf. Section 1.2), at least in the given context where the pose

estimation targets are industrial robot-arms. As one of the main problems, the lack of

a more general model, could be eliminated with a growing, more diverse, and balanced

data basis, a major accuracy increase would probably need adjustment of all involved

subsystems, approaches and training procedures.

As the autonomous extrinsic calibration process (cf. Section 3.4) is considered crucial

for safety applications, the improvement of this part is one of the author’s main future

research interests. Such accuracy improvements would also increase the overall quality

1The used Datasets and the final weights for the RoPose networks can be downloaded at https://www.

thomas-gulde.de/ropose/downloads

Thomas Gulde - PhD Thesis - 123

https://www.thomas-gulde.de/ropose/downloads
https://www.thomas-gulde.de/ropose/downloads


7 Conclusion and Future Work

of the recorded real world datasets where the semi-automatic labeling procedure will be

used and thus would also help to improve the future GT accuracy which should always

be a research interest when working with labeled datasets.

The main weakness of the here presented approach can be found in the generated data

basis. As this is the most vulnerable part of every data-driven approach, a data basis

can never be large, diverse, general, and balanced enough. One of the main problems

is the static robot position within every single dataset. After an extrinsic calibration is

performed, the origin of the robot’s intrinsic coordinate system is not allowed to move

to ensure that the projected joint coordinates really represents the GT. This could be

solved by an additional hardware system to track the camera or to track the robot’s base

after a first calibration was performed. Theses additional pose relations could be used

to update the extrinsic camera pose relative to the robot’s base in every frame, which

will lead to more dynamic and realistic datasets. The integration of such a system is

also one of the main technical goals in the near future.

The presented tracking mechanism can not be seen as a perfect solution as well.

The fact that the descriptor is based on a camera-plane relative baseline to calculate

angles and their respective similarities introduces a hard viewport dependency. This

makes it impossible to compare estimated 2D joints from multiple camera views. In

order to allow for such a multi-camera tracking the extrinsic calibration information

could be used to project the extracted joints into a normalized coordinate space and

calculate the descriptor’s information based on the than available normalized base-

line.

The presented dataset generator is also capable of generating simulated samples based on

the GAZEBO simulation system. One of the main research interests of the author is to

put this simulation on the next level. With the rise of ROS# [253] there finally is a con-

venient way to realize a simulation based on the popular game engine Unity™, especially

because Ludl et al. presented a Unity™ -based simulation framework which could now be

used as a new basis to generate RoPose datasets as well [5].

It would also drastically increase the benefits of the system if it would be able to estimate

the joints in 3D coordinates instead of 2D. As there is some promising research (cf.

Section 3.3.3.1) within the field of 3D joint estimation approaches based on 2D image

data, modern sensors also provide more or less accurate, dense 3D data, which could be

used to inject the additional dimension into the 2D estimations. At the moment, it is

impossible to tell which will outperform the other.

Thomas Gulde - PhD Thesis - 124



Acknowledgements

It is time to spread some of the biggest thank-yous in the world. The first one definitely

goes to my supervisor Cristóbal Curio and the whole Cognitive Systems Group at Reut-

lingen University for giving me the chance to do research in the area I always loved and

somehow got obsessed with. I am sure it was not always easy to deal with my special

way to approach things and I appreciate your patience and guidance for the last seven

years.

I also had the luck to be placed in the office besides Dennis Burgermeister. I can’t

think of a better PhD-colleague and I am very happy that am allowed to call you a

friend after almost five years of work, travel, discussion, fear, anger and many many

laughs, döners and close to a million nigiri. I learned a lot from you and your scientific

view, and I believe it will be hard to find a software guy like you anywhere in the

world.

My second advisor Andreas Schilling and all his students and collaborators I was al-

lowed to meet in the last years during the presentations you organized - it was al-

ways a pleasure to listen to all your great ideas and having pizza-based talks after-

wards.

Finally, big thanks go to all former cogsys-team members, especially Vinu and Micheal

for helping me restoring all the machines I destroyed while working part time on my

thesis, as well as the whole university service- and professor-team for the great time I

had in Reutlingen and all the students that I worked with.

Thanks, Dennis Schmid, for just being as you are. It does not matter how much time we

are actually spending together but you will always be one of my favorite humans lurking

around on this planet.

Uwe and his extra-nice girl Ramona (i still have no idea how you earned such a diamond)

- thanks for the timeless talks we have every time that help me to remain down on this

planet.

The same thank also goes to Mark, Sabi and the little Lara for the endless fun and all the

time we have spent and we hopefully will spent together.

Christopher you will always be one of my favorite Geislingers, the beers we are having

together are allways the best - I hope there are many more to follow. Special thanks also

goes to your girl Diana who somehow kept you alive for so many years.

Thomas Gulde - PhD Thesis -



Thanks also goes to Timi for just being the friend and person that you are and also your

wife Vanessa for taking care that you won’t kill yourself in some kind of stupid handicraft

work or because you think you are something like an athlete and "playing" football once

a year.

I also won’t forget my years-long nebensitzer Philipp Schweikle, I am not sure if I would

have survived our first semesters without you and I am happy that you still reach out to

me every once in a while.

Also a big thank you goes to my former mentor Rolf who ignited my passion for computer-

vision and accompanied me in my first (more or less) professional experiences of arranging

bits to bytes as well as all the great people from the BS-Group for introducing me to the

world of robotics - i hope there will be an opportunity to work together again at some

day.

I want to thank Paul Brooks especially, for all your lovely and warm words, my lower

weight wingman Jochen, Alex the blob and all the other gym people and their fam-

ilies for preventing me gaining another twenty kilos and all the hard, exhausting and

fun training- and whiskey-sessions we had together - I hope there will be many many

more.

Finally, Stephan Chrischtl (aka Dr. Lovegun) - it does not matter how far away you are

or where in the whole world you try to hide yourself the next time, I will always find

you because I could not imagine to find a better friend in this world anywhere... ever...

Xiaofen, please take care of my budy, I am not sure if he is able to survive a single day

without you anymore.

I really can’t tell where I would be without the daily and endless support of my parents

Elli and Gerhard. I am very proud that I am allowed to call you "Mama und Papa". Even

if the message may not be that clear every day - you are the best parents on earth and

there have been nights I only could fall asleep because I could be certain that you will

always be there for me and now also for my little family.

Thanks also goes to the best imaginable sister Jessica, her husband Stefan, and my two

cute goddaughters Lotta and Lina for just being there, supporting me whenever there is

a need for that, and also for taking me just as I am.

Last and most important - My Schneckle and our little girl Maya also known as the

most beautiful daughter in the world. Without your support and love I would either

have never finished this thesis, or would have submitted it two years earlier. There

is no way to express in words what a lucky man I am and how lucky I feel every

day...

THANK YOU!

Thomas Gulde - PhD Thesis -



List of Figures

1.1 Shared workspace between a mobile industrial robot-arm and humans. . 2

2.1 Visualization of a translation transformation in R
2. . . . . . . . . . . . . 8

2.2 Visualization of a rotation transformation in R
2 . . . . . . . . . . . . . . 9

2.3 Visualization of the Euler angles in R
3. . . . . . . . . . . . . . . . . . . 10

2.4 Visualization of the axis-angles notation in R
3. . . . . . . . . . . . . . . 12

2.5 Effect of a global reference frame to affine transformations. . . . . . . . 14

2.6 Visualization of a scale transformation in R
2. . . . . . . . . . . . . . . . 15

2.7 Visualization of a shear transformation in R
2 . . . . . . . . . . . . . . . 16

2.8 Visualization of spherical coordinates in R
3. . . . . . . . . . . . . . . . . 17

2.9 Visualization of the SO(2) group. . . . . . . . . . . . . . . . . . . . . . 19

2.10 Extrinsic camera parameters. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11 Visualization of the basic pinhole camera model. . . . . . . . . . . . . . 30

2.12 Visualization of an image plane projection. . . . . . . . . . . . . . . . . 31

2.13 Illustration of the PnP problem. . . . . . . . . . . . . . . . . . . . . . . 33

2.14 Single neuron and its parameters. . . . . . . . . . . . . . . . . . . . . . 36

2.15 Overview of common normalized activation functions. . . . . . . . . . . 37

2.16 Multiple connected neurons forming a neural network. . . . . . . . . . . 38

2.17 Visualization of a spatial convolution operation. . . . . . . . . . . . . . . 39

2.18 Max- and mean pooling operations. . . . . . . . . . . . . . . . . . . . . 41

2.19 Transposed convolutional operation. . . . . . . . . . . . . . . . . . . . . 42

2.20 Examples of common network architectures and structures. . . . . . . . 44

2.21 Example of a precision-recall curve. . . . . . . . . . . . . . . . . . . . . 50

2.22 Visualization of the IoU calculation. . . . . . . . . . . . . . . . . . . . . 51

2.23 Example plot of an IoU based F1-score evaluation. . . . . . . . . . . . . 52

2.24 Example of a PCK plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 The main idea of the RoPose system. . . . . . . . . . . . . . . . . . . . 57

3.2 Overview of the ROS-based data generation pipeline. . . . . . . . . . . . 59

3.3 Overview of the simulated data generation. . . . . . . . . . . . . . . . . 60

3.4 Extrinsic calibration process by hand-labeling the robot poses. . . . . . . 64

3.5 RGB examples of generated real datasets. . . . . . . . . . . . . . . . . . 65

3.6 Flow chart of the proposed RoPose detection pipeline. . . . . . . . . . . 68

3.7 Final RoPose regression architecture. . . . . . . . . . . . . . . . . . . . 69

3.8 Example of predicted joint probability heatmaps. . . . . . . . . . . . . . 70

3.9 Impact of the padding mechanism on the data. . . . . . . . . . . . . . . 71

3.10 Data representation for the input and ground truth. . . . . . . . . . . . 72

Thomas Gulde - PhD Thesis -



3.11 Visualization of the augmentation impact. . . . . . . . . . . . . . . . . . 73

3.12 Accuracy impact of upsamling the raw output with different allgorithms. 75

3.13 Example of the data used to train the bounding box detector. . . . . . . 78

3.14 Relations between the 2D keypoints and the corresponding 3D positions. 79

4.1 System architecture for the collaborative pose estimation system. . . . . 81

4.2 Example estimation results of the proposed ColRoPose system. . . . . . 82

4.3 Sequence diagram of the proposed tracking algorithm. . . . . . . . . . . 85

4.4 Visualization of the features used for the pose description. . . . . . . . . 86

4.5 Comparison of both tracking methods. . . . . . . . . . . . . . . . . . . . 91

4.6 History weight factor used by the tracking mechanism. . . . . . . . . . . 92

4.7 Examples of the predicted bounding boxes. . . . . . . . . . . . . . . . . 93

4.8 Examples of auto generated training data of the tracking system. . . . . 94

5.1 Effect of the relative thresholds to the PCK metric. . . . . . . . . . . . . 98

5.2 PR-curve of the YOLO-based RoPose bounding box detection. . . . . . 99

5.3 F1-Scores of the YOLO-based RoPose bounding box detection. . . . . . 100

5.4 Joint estimation PCKs results. . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Violin graph of the absolute joint-wise estimation error. . . . . . . . . . 102

5.6 PCKs related to different probability map upsampling strategies. . . . . . 105

5.7 Absolute combined error for the upsampling strategies. . . . . . . . . . . 106

5.8 2D-Visualization of the descriptor’s feature space. . . . . . . . . . . . . 108

5.9 Distribution over similarity values of the compared descriptors. . . . . . . 110

5.10 Impact of the weighting parameters to the pose tracking predictions. . . 111

5.11 Specific history weights for k = 0.3. . . . . . . . . . . . . . . . . . . . . 112

5.12 F1-score of the tracking mechanism based on ground truth data. . . . . 113

5.13 Impact of the tracking system on the system’s performance. . . . . . . . 115

5.14 Mean IoUs of the finetuned YOLO-based RoPose bounding box detector. 117

5.15 F1-scores of the finetuned YOLO-based RoPose bounding box detector. 118

6.1 Abstract overview of the proposed final application. . . . . . . . . . . . 120



List of Tables

5.1 Possible PCK threshold references lengths. . . . . . . . . . . . . . . . . 97

5.2 Evaluation key values of the bounding box detector. . . . . . . . . . . . 100

5.3 Evaluation key values of the base RoPose keypoint estimation. . . . . . 102

5.4 Rounded absolute joint-wise estimation errors [pix]. . . . . . . . . . . . . 103

5.5 Impact on combined PCK of different upsampling strategies. . . . . . . . 104

5.6 Absolute estimation errors of different upsampling strategies [pix]. . . . . 106

5.7 Evaluation key values of the tracker’s predictions. . . . . . . . . . . . . . 114

5.8 Performance comparision of the tracking system. . . . . . . . . . . . . . 115

5.9 Evaluation key values of the fine-tuned bounding box detector. . . . . . 118

Thomas Gulde - PhD Thesis -



Abbreviations and Symbols

Abbreviations

AI Artificial Intelligence

2D Two-Dimensional

3D Three-Dimensional

CV Computer Vision

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

DoF Degrees of Freedom

FPS Frames Per Second

GT Ground Truth

ROS Robot Operating System

PnP Perspective-N-Points

LSL Lab Streaming Layer

IoT Internet of Tthings

RNN Recurrent Nerual Network

ROI Region of Interest

C-Space Configuration Space

HRC Human-Robot Collaboration

Thomas Gulde - PhD Thesis -



HRI Human-Robot Interaction

LSTM Long Short-Term Memory

MSE Mean Squared Error

RMSE Root Mean Squared Error

ViSP Visual Servoing Platform

VGG Visual Geometry Group

ReLU Rectified Linear Units

GAN Generative Adversarial Network

AP Average Precision

mAP Mean Average Precision

AUC Area Under Curve

ROC Receiver Operating Characteristics

IoU Intersection Over Union

PCK Probability of Correct Keypoints

TH Threshold

SNE Stochastic Neighbor Embedding

BB Bounding Box

CPU Central Processing Unit

GPU Graphics Processing Unit

SGD Stochastic Gradient Descent

YOLO You Only Look Once

SOTA State of the Art

FP False Positive

FN False Negative

TP True Positive

TN True Negative

CAP Substantial Credit Assignment Path

RANSAC Random Sample Consensus



Symbols

TTT Transformation matrix

RRR Rotation matrix

t⃗ Translation vector

p⃗ Position Vector (3D point)

q⃗ Quaternion

Fx Specific frame or coordinate system

W Robot workspace

G Group

g Lie algebra

ωωω× skew symmetric matrix usually defining a Lie algebra

IIIX Symmetric identity matrix of size X ×X

e Euler’s number, mathematical constant e ≈ 2.71828

xn Input variable of an artificial neuron

wn Weight factor for an explicit input xn

Cbias Optional bias therm of an artificial neuron

lr Learning rate used for optimization

fth Factor for various thresholds

Units

m meter

pix pixel



References

[1] T. Gulde, D. Ludl, and C. Curio, “Ropose: Cnn-based 2d pose estimation of indus-

trial robots,” in 2018 IEEE 14th International Conference on Automation Science

and Engineering (CASE), IEEE, 2018, pp. 463–470.

[2] T. Gulde, D. Ludl, J. Andrejtschik, S. Thalji, and C. Curio, “Ropose-real: Real

world dataset acquisition for data-driven industrial robot arm pose estimation,” in

2019 International Conference on Robotics and Automation (ICRA), IEEE, 2019,

pp. 4389–4395.

[3] T. Gulde, S. Kärcher, and C. Curio, “Vision-based slam navigation for vibro-

tactile human-centered indoor guidance,” in European Conference on Computer

Vision, Springer, 2016, pp. 343–359.

[4] D. Ludl, T. Gulde, and C. Curio, “Enhancing data-driven algorithms for human

pose estimation and action recognition through simulation,” IEEE Transactions

on Intelligent Transportation Systems, pp. 1–10, 2020.

[5] D. Ludl, T. Gulde, S. Thalji, and C. Curio, “Using simulation to improve human

pose estimation for corner cases,” in 2018 21st International Conference on Intel-

ligent Transportation Systems (ITSC), IEEE, 2018, pp. 3575–3582.

[6] D. Ludl, T. Gulde, and C. Curio, “Simple yet efficient real-time pose-based ac-

tion recognition,” in 2019 IEEE Intelligent Transportation Systems Conference

(ITSC), IEEE, 2019, pp. 581–588.

[7] G. Baulig, T. Gulde, and C. Curio, “Adapting egocentric visual hand pose estima-

tion towards a robot-controlled exoskeleton,” in Computer Vision – ECCV 2018

Workshops, Springer International Publishing, 2019, ISBN: 978-3-030-11024-6.

[8] M. Essich, D. Ludl, T. Gulde, and C. Curio, “Learning to translate between real

world and simulated 3d sensors while transferring task models,” in 2019 Interna-

tional Conference on 3D Vision (3DV), IEEE, 2019, pp. 681–689.

[9] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Oct. 2016.

[10] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA), IEEE,

May 2011, pp. 3400–3407.

[11] I. A. Sucan and S. Chitta. “MoveIt!” (), [Online]. Available: http://moveit.

ros.org (visited on 04/04/2022).

Thomas Gulde - PhD Thesis -

http://moveit.ros.org
http://moveit.ros.org


[12] Swartz Center for Computational Neuroscience. “Labstreaminglayer.” (2019), [On-

line]. Available: https://github.com/sccn/labstreaminglayer (visited on

04/04/2022).

[13] B. Gassend. “Dynamic reconfigure.” (2015), [Online]. Available: http://wiki.

ros.org/dynamic_reconfigure (visited on 04/04/2022).

[14] E. Musk, Twitter post, Sep. 2018. [Online]. Available: https://twitter.com/

elonmusk/status/984882630947753984 (visited on 04/04/2022).

[15] B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of manufac-

turing: A review,” Journal of Manufacturing Systems, vol. 39, pp. 79–100, 2016.

[16] A. Rose, B. M. Deros, M. A. Rahman, and N. Nordin, “Lean manufacturing best

practices in smes,” in Proceedings of the 2011 International Conference on In-

dustrial Engineering and Operations Management, vol. 2, 2011, pp. 872–877.

[17] R. Shah and P. T. Ward, “Lean manufacturing: Context, practice bundles, and

performance,” Journal of operations management, vol. 21, no. 2, pp. 129–149,

2003.

[18] P. Ward and H. Zhou, “Impact of information technology integration and lean/just-

in-time practices on lead-time performance,” Decision Sciences, vol. 37, no. 2,

pp. 177–203, 2006.

[19] D. Pollard, S. Chuo, and B. Lee, “Strategies for mass customization,” Journal of

Business & Economics Research (JBER), vol. 14, no. 3, pp. 101–110, 2016.

[20] R. Hämäläinen, M. Lanz, and K. T. Koskinen, “Collaborative systems and en-

vironments for future working life: Towards the integration of workers, systems

and manufacturing environments,” in The impact of digitalization in the work-

place, Springer, 2018, pp. 25–38.

[21] B. Matthias, S. Kock, H. Jerregard, M. Kallman, I. Lundberg, and R. Mellander,

“Safety of collaborative industrial robots: Certification possibilities for a collab-

orative assembly robot concept,” in 2011 IEEE International Symposium on As-

sembly and Manufacturing (ISAM), Ieee, 2011, pp. 1–6.

[22] Reutlingen University. “Kollaborativer routenzug 4.0 (kollro 4.0).” (2016), [On-

line]. Available: https : / / www . esb - business - school . de / forschung /

wertschoepfungs-und-logistiksysteme/forschungsprojekte/kollro-

40/ (visited on 04/04/2022).

[23] J. Schuhmacher and V. Hummel, “Self-organization of changeable intralogistics

systems at the esb logistics learning factory,” Procedia Manufacturing, vol. 31,

pp. 194–199, 2019.

Thomas Gulde - PhD Thesis -

https://github.com/sccn/labstreaminglayer
http://wiki.ros.org/dynamic_reconfigure
http://wiki.ros.org/dynamic_reconfigure
https://twitter.com/elonmusk/status/984882630947753984
https://twitter.com/elonmusk/status/984882630947753984
https://www.esb-business-school.de/forschung/wertschoepfungs-und-logistiksysteme/forschungsprojekte/kollro-40/
https://www.esb-business-school.de/forschung/wertschoepfungs-und-logistiksysteme/forschungsprojekte/kollro-40/
https://www.esb-business-school.de/forschung/wertschoepfungs-und-logistiksysteme/forschungsprojekte/kollro-40/


[24] J. M. Alfred Siewe-Reinke. “Konsens-nhe bw-neurorobotik.” (2017), [Online].

Available: https://www.inf.reutlingen- university.de/forschung/

projekte/konsens-nhe/ (visited on 04/04/2022).

[25] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learn-

ing for computer vision: A brief review,” Computational intelligence and neuro-

science, vol. 2018, 2018.

[26] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[27] J. Fryman and B. Matthias, “Safety of industrial robots: From conventional to col-

laborative applications,” in ROBOTIK 2012; 7th German Conference on Robotics,

VDE, 2012, pp. 1–5.

[28] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, “Safety

in human-robot collaborative manufacturing environments: Metrics and control,”

IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 882–

893, 2015.

[29] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. Chen, E. J. De Visser, and R.

Parasuraman, “A meta-analysis of factors affecting trust in human-robot interac-

tion,” Human factors, vol. 53, no. 5, pp. 517–527, 2011.

[30] A. D. Dragan, S. Bauman, J. Forlizzi, and S. S. Srinivasa, “Effects of robot motion

on human-robot collaboration,” in Proceedings of the Tenth Annual ACM/IEEE

International Conference on Human-Robot Interaction, ACM, 2015, pp. 51–58.

[31] C. Byner, B. Matthias, and H. Ding, “Dynamic speed and separation monitor-

ing for collaborative robot applications–concepts and performance,” Robotics and

Computer-Integrated Manufacturing, vol. 58, pp. 239–252, 2019.

[32] G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, and G. Chrys-

solouris, “Design considerations for safe human-robot collaborative workplaces,”

Procedia CIrP, vol. 37, pp. 248–253, 2015.

[33] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: A review of recent

research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835, 2017.

[34] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations and

trends in signal processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[35] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning for com-

putational biology,” Molecular systems biology, vol. 12, no. 7, 2016.

[36] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in high-

energy physics with deep learning,” Nature communications, vol. 5, p. 4308, 2014.

Thomas Gulde - PhD Thesis -

https://www.inf.reutlingen-university.de/forschung/projekte/konsens-nhe/
https://www.inf.reutlingen-university.de/forschung/projekte/konsens-nhe/


[37] Q. T. Ain, M. Ali, A. Riaz, A. Noureen, M. Kamran, B. Hayat, and A. Rehman,

“Sentiment analysis using deep learning techniques: A review,” International Jour-

nal of Advanced Computer Science and Applications, vol. 8, no. 6, 2017.

[38] P. P. Van Der Smagt and B. J. Krose, “A real-time learning neural robot con-

troller,” in Proceedings of the 1991 International Conference on Artificial Neural

Networks, vol. 1, 1991, pp. 351–356.

[39] F. L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controller with guaran-

teed tracking performance,” IEEE Transactions on Neural Networks, vol. 6, no. 3,

pp. 703–715, 1995.

[40] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller

with guaranteed tracking performance,” IEEE Transactions on Neural Networks,

vol. 7, no. 2, pp. 388–399, 1996.

[41] R. Köker, “A genetic algorithm approach to a neural-network-based inverse kine-

matics solution of robotic manipulators based on error minimization,” Information

Sciences, vol. 222, pp. 528–543, 2013.

[42] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coor-

dination for robotic grasping with large-scale data collection,” in International

symposium on experimental robotics, Springer, 2016, pp. 173–184.

[43] A. A. Apolinarska, M. Pacher, H. Li, N. Cote, R. Pastrana, F. Gramazio, and M.

Kohler, “Robotic assembly of timber joints using reinforcement learning,” Au-

tomation in Construction, vol. 125, p. 103 569, 2021.

[44] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E.

Solowjow, and S. Levine, “Residual reinforcement learning for robot control,” in

2019 International Conference on Robotics and Automation (ICRA), IEEE, 2019,

pp. 6023–6029.

[45] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and P. Abbeel,

“Reinforcement learning on variable impedance controller for high-precision ro-

botic assembly,” in 2019 International Conference on Robotics and Automation

(ICRA), IEEE, 2019, pp. 3080–3087.

[46] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic grasping: A

real-time, generative grasp synthesis approach,” Robotics: Science and Systems

XIV, pp. 1–10, 2018.

[47] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallucinated learn-

ing and sober deployment,” in 2021 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2021, pp. 7316–7322.

Thomas Gulde - PhD Thesis -



[48] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,

“Target-driven visual navigation in indoor scenes using deep reinforcement learn-

ing,” in 2017 IEEE international conference on robotics and automation (ICRA),

IEEE, 2017, pp. 3357–3364.

[49] D. K. Kim and T. Chen, “Deep neural network for real-time autonomous indoor

navigation,” arXiv preprint arXiv:1511.04668, 2015.

[50] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep reinforcement

learning with successor features for navigation across similar environments,” in

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

IEEE, 2017, pp. 2371–2378.

[51] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari, “Inception

recurrent convolutional neural network for object recognition,” Machine Vision

and Applications, vol. 32, no. 1, pp. 1–14, 2021.

[52] K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in optical remote

sensing images: A survey and a new benchmark,” ISPRS Journal of Photogram-

metry and Remote Sensing, vol. 159, pp. 296–307, 2020.

[53] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” arXiv

preprint arXiv:1905.05055, 2019.

[54] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European

conference on computer vision, Springer, 2014, pp. 740–755.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in 2009 IEEE conference on computer vision

and pattern recognition, Ieee, 2009, pp. 248–255.

[56] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,

J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep

learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88,

2017.

[57] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmentation of

crop and weed for precision agriculture robots leveraging background knowledge

in cnns,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA), IEEE, 2018, pp. 2229–2235.

[58] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance segmentation

for autonomous driving,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2017, pp. 7–9.

Thomas Gulde - PhD Thesis -



[59] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 3431–3440.

[60] F. Liu, G. Lin, and C. Shen, “Crf learning with cnn features for image segmenta-

tion,” Pattern Recognition, vol. 48, no. 10, pp. 2983–2992, 2015.

[61] G. Li and Y. Yu, “Visual saliency based on multiscale deep features,” in Proceed-

ings of the IEEE conference on computer vision and pattern recognition, 2015,

pp. 5455–5463.

[62] X. Liu, H. Zhao, M. Tian, L. Sheng, J. Shao, S. Yi, J. Yan, and X. Wang, “Hydraplus-

net: Attentive deep features for pedestrian analysis,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 350–359.

[63] Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, and P.-M. Jodoin, “Non-local deep

features for salient object detection,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jul. 2017.

[64] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image matching from handcrafted

to deep features: A survey,” International Journal of Computer Vision, vol. 129,

no. 1, pp. 23–79, 2021.

[65] W. Chu and D. Cai, “Deep feature based contextual model for object detection,”

Neurocomputing, vol. 275, pp. 1035–1042, 2018.

[66] T. Kong, F. Sun, C. Tan, H. Liu, and W. Huang, “Deep feature pyramid recon-

figuration for object detection,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 169–185.

[67] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer, “A survey of structure from

motion*.,” Acta Numerica, vol. 26, pp. 305–364, 2017.

[68] A. R. Widya, A. Torii, and M. Okutomi, “Structure from motion using dense cnn

features with keypoint relocalization,” IPSJ Transactions on Computer Vision and

Applications, vol. 10, no. 1, pp. 1–7, 2018.

[69] J. Wang, Y. Zhong, Y. Dai, S. Birchfield, K. Zhang, N. Smolyanskiy, and H. Li,

“Deep two-view structure-from-motion revisited,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 8953–8962.

[70] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der

Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolu-

tional networks,” in Proceedings of the IEEE international conference on com-

puter vision, 2015, pp. 2758–2766.

Thomas Gulde - PhD Thesis -



[71] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet

2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2017, pp. 2462–

2470.

[72] R. de Queiroz Mendes, E. G. Ribeiro, N. dos Santos Rosa, and V. Grassi Jr, “On

deep learning techniques to boost monocular depth estimation for autonomous

navigation,” Robotics and Autonomous Systems, vol. 136, p. 103 701, 2021.

[73] L. Madhuanand, F. Nex, and M. Y. Yang, “Self-supervised monocular depth esti-

mation from oblique uav videos,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 176, pp. 1–14, 2021.

[74] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal re-

gression network for monocular depth estimation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 2002–2011.

[75] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, “Multi-scale continuous

crfs as sequential deep networks for monocular depth estimation,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[76] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth

prediction with fully convolutional residual networks,” in 2016 Fourth interna-

tional conference on 3D vision (3DV), IEEE, 2016, pp. 239–248.

[77] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation

from a single image,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 5162–5170.

[78] N. Schneider, F. Piewak, C. Stiller, and U. Franke, “Regnet: Multimodal sensor

registration using deep neural networks,” in 2017 IEEE intelligent vehicles sym-

posium (IV), IEEE, 2017, pp. 1803–1810.

[79] G. Iyer, R. K. Ram, J. K. Murthy, and K. M. Krishna, “Calibnet: Geometrically

supervised extrinsic calibration using 3d spatial transformer networks,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

IEEE, 2018, pp. 1110–1117.

[80] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: An open-source robot operating system,” in ICRA workshop on

open source software, Kobe, Japan, vol. 3, 2009, p. 5.

[81] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, vol. 3, 2004,

pp. 2149–2154.

Thomas Gulde - PhD Thesis -



[82] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vec-

tors,” Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[83] L. Euler, “Formulae generales pro translatione quacunque corporum rigidorum,”

Novi Commentarii academiae scientiarum Petropolitanae, pp. 189–207, 1776.

[84] J. B. Kuipers, Quaternions and rotation sequences: a primer with applications to

orbits, aerospace, and virtual reality. Princeton university press, 1999.

[85] E. G. Hemingway and O. M. OŔeilly, “Perspectives on euler angle singularities,

gimbal lock, and the orthogonality of applied forces and applied moments,” Multi-

body System Dynamics, vol. 44, no. 1, pp. 31–56, 2018.

[86] J. S. Dai, “Euler–rodrigues formula variations, quaternion conjugation and intrin-

sic connections,” Mechanism and Machine Theory, vol. 92, pp. 144–152, 2015.

[87] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume

2: Analytic Methods and Modern Applications. Springer Science & Business Me-

dia, 2011, vol. 2.

[88] J. Gallier and D. Xu, “Computing exponentials of skew-symmetric matrices and

logarithms of orthogonal matrices,” International Journal of Robotics and Au-

tomation, vol. 18, no. 1, pp. 10–20, 2003.

[89] E. Eade. “Lie groups for 2d and 3d transformations.” (2013), [Online]. Available:

http://ethaneade.com/lie.pdf (visited on 04/04/2022).

[90] J.-L. Blanco, A tutorial on SE(3) transformation parameterizations and on-man-

ifold optimization, 2010. [Online]. Available: http://ingmec.ual.es/~jlblan

co/papers/jlblanco2010geometry3D_techrep.pdf (visited on 04/04/2022).

[91] M. Pusa and J. Leppänen, “Computing the matrix exponential in burnup calcula-

tions,” Nuclear science and engineering, vol. 164, no. 2, pp. 140–150, 2010.

[92] J. J. Duistermaat and J. A. Kolk, Lie groups. Springer Science & Business Media,

2012.

[93] D. S. Watkins, Fundamentals of matrix computations. John Wiley & Sons, 2004,

vol. 64.

[94] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine

vision metrology using off-the-shelf tv cameras and lenses,” IEEE Journal on

Robotics and Automation, vol. 3, no. 4, pp. 323–344, 1987.

[95] B. Caprile and V. Torre, “Using vanishing points for camera calibration,” Interna-

tional journal of computer vision, vol. 4, no. 2, pp. 127–139, 1990.

Thomas Gulde - PhD Thesis -

http://ethaneade.com/lie.pdf
http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf


[96] G. P. Stein, “Lens distortion calibration using point correspondences,” in Pro-

ceedings of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, IEEE, 1997, pp. 602–608.

[97] Z. Tang, R. G. von Gioi, P. Monasse, and J.-M. Morel, “A precision analysis

of camera distortion models,” IEEE Transactions on Image Processing, vol. 26,

no. 6, pp. 2694–2704, 2017.

[98] E. E. Hemayed, “A survey of camera self-calibration,” in Proceedings of the IEEE

Conference on Advanced Video and Signal Based Surveillance, 2003., IEEE, 2003,

pp. 351–357.

[99] X. X. Lu, “A review of solutions for perspective-n-point problem in camera pose

estimation,” in Journal of Physics: Conference Series, IOP Publishing, vol. 1087,

2018, p. 052 009.

[100] C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional data,” in

Proceedings of the 2001 ACM SIGMOD international conference on Management

of data, 2001, pp. 37–46.

[101] L. Quan and Z. Lan, “Linear n-point camera pose determination,” IEEE Transac-

tions on pattern analysis and machine intelligence, vol. 21, no. 8, pp. 774–780,

1999.

[102] F. Vigueras, A. Hernández, and I. Maldonado, “Iterative linear solution of the

perspective n-point problem using unbiased statistics,” in 2009 Eighth Mexican

International Conference on Artificial Intelligence, IEEE, 2009, pp. 59–64.

[103] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n) solution to

the pnp problem,” International journal of computer vision, p. 155, 2009.

[104] L. Ferraz, X. Binefa, and F. Moreno-Noguer, “Very fast solution to the pnp prob-

lem with algebraic outlier rejection,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2014, pp. 501–508.

[105] S. Choi, T. Kim, and W. Yu, “Performance evaluation of ransac family,” Journal

of Computer Vision, vol. 24, no. 3, pp. 271–300, 1997.

[106] J. A. Hesch and S. I. Roumeliotis, “A direct least-squares (dls) method for pnp,”

in 2011 International Conference on Computer Vision, IEEE, 2011, pp. 383–390.

[107] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi, “Revisiting the

pnp problem: A fast, general and optimal solution,” in Proceedings of the IEEE

International Conference on Computer Vision, 2013, pp. 2344–2351.

Thomas Gulde - PhD Thesis -



[108] S. Urban, J. Leitloff, and S. Hinz, “Mlpnp-a real-time maximum likelihood so-

lution to the perspective-n-point problem.,” ISPRS Annals of Photogrammetry,

Remote Sensing & Spatial Information Sciences, vol. 3, no. 3, 2016.

[109] I. Morgan, U. Jayarathne, A. Rankin, T. M. Peters, and E. C. Chen, “Hand-eye

calibration for surgical cameras: A procrustean perspective-n-point solution,” In-

ternational journal of computer assisted radiology and surgery, vol. 12, no. 7,

pp. 1141–1149, 2017.

[110] B. K. Horn and B. G. Schunck, “Determining optical flow,” in Techniques and

Applications of Image Understanding, International Society for Optics and Pho-

tonics, vol. 281, 1981, pp. 319–331.

[111] B. K. Horn and B. G. Schunck, “"determining optical flow": A retrospective,”

1993.

[112] S. Mukherjee, “Ai versus md: What happens when diagnosis is automated?” The

New Yorker, vol. 3, 2017. [Online]. Available: https://www.newyorker.com/

magazine/2017/04/03/ai-versus-md (visited on 04/04/2022).

[113] B. Krose and P. v. d. Smagt, An introduction to neural networks. 2011.

[114] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:

Comparison of trends in practice and research for deep learning,” in 2nd Inter-

national Conference on Computational Sciences and Technology, 2021, pp. 124–

133.

[115] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations

in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[116] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”

arXiv preprint arXiv:1710.05941, 2017.

[117] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-

peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M.

Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,

E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-

alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.

Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contrib-

utors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,”

Nature Methods, vol. 17, pp. 261–272, 2020.

[118] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural net-

works, vol. 61, pp. 85–117, 2015.

[119] I. Goodfellow, Y. Bengio, and A. Courville. “Deep learning.” (2016), [Online].

Available: http://www.deeplearningbook.org (visited on 04/04/2022).

Thomas Gulde - PhD Thesis -

https://www.newyorker.com/magazine/2017/04/03/ai-versus-md
https://www.newyorker.com/magazine/2017/04/03/ai-versus-md
http://www.deeplearningbook.org


[120] L. Tan and J. Jiang, Fundamentals of analog and digital signal processing. Au-

thorHouse, 2007.

[121] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine

vision. Cengage Learning, 2014.

[122] J. Canny, “A computational approach to edge detection,” IEEE Transactions on

pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[123] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015.

[124] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

arXiv preprint arXiv:1603.07285, 2016.

[125] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia,

Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow:

Large-scale machine learning on heterogeneous systems, Software available from

tensorflow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[126] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.

Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.

Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“Pytorch: An imperative style, high-performance deep learning library,” in Ad-

vances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates,

Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/

paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf.

[127] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,”

in Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, 2016, pp. 2135–2135.

[128] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International conference on machine

learning, PMLR, 2015, pp. 448–456.

Thomas Gulde - PhD Thesis -

https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[129] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger, “Understanding batch

normalization,” in Advances in Neural Information Processing Systems, 2018,

pp. 7694–7705.

[130] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[131] H. Shrivastava, A. Garg, Y. Cao, Y. Zhang, and T. Sainath, “Echo state speech

recognition,” in ICASSP 2021-2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 5669–5673.

[132] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-

current neural networks,” in 2013 IEEE international conference on acoustics,

speech and signal processing, IEEE, 2013, pp. 6645–6649.

[133] W. Du, Y. Wang, and Y. Qiao, “Rpan: An end-to-end recurrent pose-attention net-

work for action recognition in videos,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 3725–3734.

[134] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[135] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” in NIPS 2014 Workshop on

Deep Learning, December 2014, 2014.

[136] D. Stathakis, “How many hidden layers and nodes?” International Journal of Re-

mote Sensing, vol. 30, no. 8, pp. 2133–2147, 2009.

[137] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[138] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose

estimation,” in European conference on computer vision, Springer, 2016, pp. 483–

499.

[139] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

[140] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods from a

machine learning perspective,” IEEE transactions on cybernetics, 2019.

[141] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in

Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

Thomas Gulde - PhD Thesis -



[142] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural

networks for perception, Elsevier, 1992, pp. 65–93.

[143] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in

Neural networks: Tricks of the trade, Springer, 2012, pp. 9–48.

[144] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv pre-

print arXiv:1609.04747, 2016.

[145] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image

inpainting for irregular holes using partial convolutions,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 85–100.

[146] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[147] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” Journal of Machine Learning Research,

vol. 12, no. Jul, pp. 2121–2159, 2011.

[148] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning

lecture 6a overview of mini-batch gradient descent,” 2012.

[149] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value

of adaptive gradient methods in machine learning,” in Advances in Neural Infor-

mation Processing Systems, 2017, pp. 4148–4158.

[150] D. L. Olson and D. Delen, Advanced data mining techniques. Springer Science &

Business Media, 2008.

[151] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding classifiers to max-

imize f1 score,” arXiv preprint arXiv:1402.1892, 2014.

[152] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Gen-

eralized intersection over union: A metric and a loss for bounding box regres-

sion,” in Proceedings of the IEEE/CVF conference on computer vision and pat-

tern recognition, 2019, pp. 658–666.

[153] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-

chines,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 4724–4732.

[154] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose es-

timation using part affinity fields,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

Thomas Gulde - PhD Thesis -



[155] Y. Yang and D. Ramanan, “Articulated human detection with flexible mixtures of

parts,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,

no. 12, pp. 2878–2890, 2012.

[156] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estima-

tion: New benchmark and state of the art analysis,” in Proceedings of the IEEE

Conference on computer Vision and Pattern Recognition, 2014, pp. 3686–3693.

[157] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual servoing in

robotics,” ieee Transactions on Robotics and Automation, vol. 8, no. 3, pp. 313–

326, 1992.

[158] J. A. Piepmeier, G. V. McMurray, and H. Lipkin, “Uncalibrated dynamic vi-

sual servoing,” IEEE Transactions on Robotics and Automation, vol. 20, no. 1,

pp. 143–147, 2004.

[159] F. Sadeghi, A. Toshev, E. Jang, and S. Levine, “Sim2real viewpoint invariant vi-

sual servoing by recurrent control,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 4691–4699.

[160] C. Lenz, “Context-aware human-robot collaboration as a basis for future cognitive

factories,” Ph.D. dissertation, Technische Universität München, 2011.

[161] C. Lenz and A. Knoll, “Mechanisms and capabilities for human robot collabora-

tion,” in The 23rd IEEE International Symposium on Robot and Human Interac-

tive Communication, IEEE, 2014, pp. 666–671.

[162] C. Morato, K. N. Kaipa, B. Zhao, and S. K. Gupta, “Toward safe human robot

collaboration by using multiple kinects based real-time human tracking,” Journal

of Computing and Information Science in Engineering, vol. 14, no. 1, p. 011 006,

2014.

[163] M. Kalaitzakis, B. Cain, S. Carroll, A. Ambrosi, C. Whitehead, and N. Vitzilaios,

“Fiducial markers for pose estimation,” Journal of Intelligent & Robotic Systems,

vol. 101, no. 4, pp. 1–26, 2021.

[164] M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza, “A monocular pose

estimation system based on infrared leds,” in IEEE International Conference on

Robotics and Automation (ICRA), 2014, IEEE, 2014, pp. 907–913.

[165] K. M. Lundeen, S. Dong, N. Fredricks, M. Akula, J. Seo, and V. R. Kamat, “Op-

tical marker-based end effector pose estimation for articulated excavators,” Au-

tomation in Construction, vol. 65, pp. 51–64, 2016.

[166] J. Bohg, J. Romero, A. Herzog, and S. Schaal, “Robot arm pose estimation through

pixel-wise part classification,” in 2014 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2014, pp. 3143–3150.

Thomas Gulde - PhD Thesis -



[167] F. Widmaier, D. Kappler, S. Schaal, and J. Bohg, “Robot arm pose estimation by

pixel-wise regression of joint angles,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, 2016, pp. 616–623.

[168] V. Patil, W. Van Gansbeke, D. Dai, and L. Van Gool, “Dont forget the past: Re-

current depth estimation from monocular video,” IEEE Robotics and Automation

Letters, vol. 5, no. 4, pp. 6813–6820, 2020.

[169] K. Han and K. Hong, “Geometric and texture cue based depth-map estimation for

2d to 3d image conversion,” in 2011 IEEE International Conference on Consumer

Electronics (ICCE), IEEE, 2011, pp. 651–652.

[170] X. Gratal, J. Romero, and D. Kragic, “Virtual visual servoing for real-time robot

pose estimation,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 9017–9022, 2011.

[171] H. Lei, F. Zhou, and C. Zhuang, “Multi-stage 3d pose estimation method of robot

arm based on rgb image,” in 2021 7th International Conference on Control, Au-

tomation and Robotics (ICCAR), IEEE, 2021, pp. 84–88.

[172] J. Mišeikis, I. Brijačak, S. Yahyanejad, K. Glette, O. J. Elle, and J. Torresen, “Two-

stage transfer learning for heterogeneous robot detection and 3d joint position

estimation in a 2d camera image using cnn,” in 2019 International Conference on

Robotics and Automation (ICRA), IEEE, 2019, pp. 8883–8889.

[173] J. Miseikis, I. Brijacak, S. Yahyanejad, K. Glette, O. J. Elle, and J. Torresen,

“Multi-objective convolutional neural networks for robot localisation and 3d po-

sition estimation in 2d camera images,” in 2018 15th International Conference on

Ubiquitous Robots (UR), IEEE, 2018, pp. 597–603.

[174] F. Zhou, Z. Chi, C. Zhuang, and H. Ding, “3d pose estimation of robot arm with

rgb images based on deep learning,” in International Conference on Intelligent

Robotics and Applications, Springer, 2019, pp. 541–553.

[175] C. Heindl, S. Zambal, T. Ponitz, A. Pichler, and J. Scharinger, “3d robot pose

estimation from 2d images,” arXiv preprint arXiv:1902.04987, 2019.

[176] C. Heindl, S. Zambal, and J. Scharinger, “Learning to predict robot keypoints us-

ing artificially generated images,” in 2019 24th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA), IEEE, 2019, pp. 1536–

1539.

[177] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and

S. Birchfield, “Camera-to-robot pose estimation from a single image,” in 2020

IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020,

pp. 9426–9432.

Thomas Gulde - PhD Thesis -



[178] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and

tracking,” in Proceedings of the European Conference on Computer Vision (ECCV),

2018, pp. 466–481.

[179] C. Beleites, U. Neugebauer, T. Bocklitz, C. Krafft, and J. Popp, “Sample size

planning for classification models,” Analytica chimica acta, vol. 760, pp. 25–33,

2013.

[180] J. Cho, K. Lee, E. Shin, G. Choy, and S. Do, “How much data is needed to train a

medical image deep learning system to achieve necessary high accuracy?” arXiv

preprint arXiv:1511.06348, 2015.

[181] I. Balki, A. Amirabadi, J. Levman, A. L. Martel, Z. Emersic, B. Meden, A. Garcia-

Pedrero, S. C. Ramirez, D. Kong, A. R. Moody, et al., “Sample-size determination

methodologies for machine learning in medical imaging research: A systematic

review,” Canadian Association of Radiologists Journal, 2019.

[182] Open Source Robotics Foundation. “Ros geometry package.” (2009), [Online].

Available: https://github.com/ros/geometry (visited on 04/04/2022).

[183] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing: A generic

software platform with a wide class of robot control skills,” IEEE Robotics and

Automation Magazine, vol. 12, no. 4, pp. 40–52, Dec. 2005.

[184] S. Edwards and C. Lewis, “Ros-industrial: Applying the robot operating system

(ros) to industrial applications,” in IEEE Int. Conference on Robotics and Automa-

tion, ECHORD Workshop, 2012.

[185] “Ros-industrial.” (2016), [Online]. Available: https://rosindustrial.org/

(visited on 04/04/2022).

[186] Open Source Robotics Foundation. “Gazebo robot simulation made easy.” (2014),

[Online]. Available: http://gazebosim.org/ (visited on 04/04/2022).

[187] UNIVERSAL ROBOTS. “Universal robots.” (2019), [Online]. Available: https:

//www.universal-robots.com/ (visited on 04/04/2022).

[188] F. Messmer, K. Hawkins, S. Edwards, S. Glaser, and W. Meeussen. “Univer-

sal_robot.” (2019), [Online]. Available: https://github.com/ros- indust

rial/universal_robot (visited on 04/04/2022).

[189] G. Guennebaud, B. Jacob, et al. “Eigen v3.” (2010), [Online]. Available: http:

//eigen.tuxfamily.org (visited on 04/04/2022).

[190] C.-C. Wang, “Extrinsic calibration of a vision sensor mounted on a robot,” ieee

Transactions on Robotics and Automation, vol. 8, no. 2, pp. 161–175, 1992.

Thomas Gulde - PhD Thesis -

https://github.com/ros/geometry
https://rosindustrial.org/
http://gazebosim.org/
https://www.universal-robots.com/
https://www.universal-robots.com/
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org


[191] K. Daniilidis and E. Bayro-Corrochano, “The dual quaternion approach to hand-

eye calibration,” in proceedings of 13th International Conference on Pattern Recog-

nition, IEEE, vol. 1, 1996, pp. 318–322.

[192] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions

on pattern analysis and machine intelligence, vol. 22, 2000.

[193] G. Bradski, “The opencv library.,” Dr. Dobb’s Journal: Software Tools for the

Professional Programmer, vol. 25, no. 11, pp. 120–123, 2000.

[194] D. Tang, T. Hu, L. Shen, Z. Ma, and C. Pan, “Apriltag array-aided extrinsic cal-

ibration of camera–laser multi-sensor system,” Robotics and biomimetics, vol. 3,

no. 1, p. 13, 2016.

[195] E. Westman and M. Kaess, “Underwater apriltag slam and calibration for high

precision robot localization,” in Tech. Rep, Carnegie Mellon University, 2018.

[196] C. Nissler and Z.-C. Marton, “Robot-to-camera calibration: A generic approach

using 6d detections,” in 2017 First IEEE International Conference on Robotic

Computing (IRC), IEEE, 2017, pp. 299–302.

[197] F. Zhao, T. Tamaki, T. Kurita, B. Raytchev, and K. Kaneda, “Marker based simple

non-overlapping camera calibration,” in 2016 IEEE International Conference on

Image Processing (ICIP), IEEE, 2016, pp. 1180–1184.

[198] Intel Corporation. “Intel® realsense™ technologie.” (2019), [Online]. Available:

https : / / www . intel . com / content / www / us / en / architecture - and -

technology/realsense-overview.html (visited on 04/04/2022).

[199] Intel Corporation. “Ros wrapper for intel® realsense™ devices.” (2019), [On-

line]. Available: https://github.com/IntelRealSense/realsense- ros

(visited on 04/04/2022).

[200] Microsoft. “Kinect for windows.” (2019), [Online]. Available: https://docs.

microsoft.com/en- us/windows/apps/design/devices/kinect- for-

windows (visited on 04/04/2022).

[201] Y. Chen, Y. Tian, and M. He, “Monocular human pose estimation: A survey

of deep learning-based methods,” Computer Vision and Image Understanding,

vol. 192, p. 102 897, 2020.

[202] Q. Dang, J. Yin, B. Wang, and W. Zheng, “Deep learning based 2d human pose

estimation: A survey,” Tsinghua Science and Technology, vol. 24, no. 6, pp. 663–

676, 2019.

Thomas Gulde - PhD Thesis -

https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://github.com/IntelRealSense/realsense-ros
https://docs.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://docs.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://docs.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows


[203] Z. Liu, J. Zhu, J. Bu, and C. Chen, “A survey of human pose estimation: The

body parts parsing based methods,” Journal of Visual Communication and Image

Representation, vol. 32, pp. 10–19, 2015.

[204] R. Poppe, “Vision-based human motion analysis: An overview,” Computer vision

and image understanding, vol. 108, no. 1-2, pp. 4–18, 2007.

[205] L. Qiu, X. Zhang, Y. Li, G. Li, X. Wu, Z. Xiong, X. Han, and S. Cui, “Peeking

into occluded joints: A novel framework for crowd pose estimation,” in European

Conference on Computer Vision, Springer, 2020, pp. 488–504.

[206] T. Golda, T. Kalb, A. Schumann, and J. Beyerer, “Human pose estimation for

real-world crowded scenarios,” in 2019 16th IEEE International Conference on

Advanced Video and Signal Based Surveillance (AVSS), IEEE, 2019, pp. 1–8.

[207] M. Andriluka, U. Iqbal, E. Ensafutdinov, L. Pishchulin, A. Milan, J. Gall, and S.

B., “PoseTrack: A benchmark for human pose estimation and tracking,” in CVPR,

2018.

[208] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].

Available: http://yann.lecun.com/exdb/mnist/ (visited on 04/04/2022).

[209] M. Defferrard, S. P. Mohanty, S. F. Carroll, and M. Salathé, “Learning to recog-

nize musical genre from audio,” in WWW ’18 Companion: The 2018 Web Confer-

ence Companion, 2018. [Online]. Available: https://arxiv.org/abs/1803.

05337.

[210] M. Andriluka, U. Iqbal, E. Ensafutdinov, L. Pishchulin, A. Milan, J. Gall, and S.

B. “Posetrack eccv 2018 challenge results.” (2018), [Online]. Available: https:

//posetrack.net/workshops/eccv2018/posetrack_eccv_2018_results.

html (visited on 04/04/2022).

[211] M. Defferrard, S. P. Mohanty, S. F. Carroll, and M. Salathé. “Crowdai musical

genre recognition.” (2018), [Online]. Available: https :/ /github .com / cro

wdAI / crowdai - musical - genre - recognition - starter - kit (visited on

04/04/2022).

[212] J. Walsh, N. O’ Mahony, S. Campbell, A. Carvalho, L. Krpalkova, G. Velasco-

Hernandez, S. Harapanahalli, and D. Riordan, “Deep learning vs. traditional com-

puter vision,” in Advances in Computer Vision Proceedings of the 2019 Computer

Vision Conference (CVC), Volume 1, Apr. 2019, pp. 128–144.

[213] L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “Multi-scale structure-aware network for

human pose estimation,” in Proceedings of the European Conference on Com-

puter Vision (ECCV), 2018, pp. 713–728.

Thomas Gulde - PhD Thesis -

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1803.05337
https://arxiv.org/abs/1803.05337
https://posetrack.net/workshops/eccv2018/posetrack_eccv_2018_results.html
https://posetrack.net/workshops/eccv2018/posetrack_eccv_2018_results.html
https://posetrack.net/workshops/eccv2018/posetrack_eccv_2018_results.html
https://github.com/crowdAI/crowdai-musical-genre-recognition-starter-kit
https://github.com/crowdAI/crowdai-musical-genre-recognition-starter-kit


[214] S.-T. Kim and H. J. Lee, “Lightweight stacked hourglass network for human pose

estimation,” Applied Sciences, vol. 10, no. 18, p. 6497, 2020.

[215] L. Tian, P. Wang, G. Liang, and C. Shen, “An adversarial human pose estimation

network injected with graph structure,” Pattern Recognition, vol. 115, p. 107 863,

2021.

[216] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang, “Adversarial posenet: A structure-

aware convolutional network for human pose estimation,” in Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp. 1212–1221.

[217] C.-J. Chou, J.-T. Chien, and H.-T. Chen, “Self adversarial training for human pose

estimation,” in 2018 Asia-Pacific Signal and Information Processing Association

Annual Summit and Conference (APSIPA ASC), IEEE, 2018, pp. 17–30.

[218] W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, and X. Wang, “3d human pose

estimation in the wild by adversarial learning,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2018, pp. 5255–5264.

[219] V. Belagiannis and A. Zisserman, “Recurrent human pose estimation,” in 12th

IEEE International Conference on Automatic Face & Gesture Recognition (FG

2017), 2017, IEEE, 2017, pp. 468–475.

[220] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for

deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019.

[221] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan,

“Gan-based synthetic medical image augmentation for increased cnn performance

in liver lesion classification,” Neurocomputing, vol. 321, pp. 321–331, 2018.

[222] X. Zhu, Y. Liu, J. Li, T. Wan, and Z. Qin, “Emotion classification with data aug-

mentation using generative adversarial networks,” in Pacific-Asia Conference on

Knowledge Discovery and Data Mining, Springer, 2018, pp. 349–360.

[223] X. Peng, Z. Tang, F. Yang, R. S. Feris, and D. Metaxas, “Jointly optimize data

augmentation and network training: Adversarial data augmentation in human pose

estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2018, pp. 2226–2234.

[224] L. Perez and J. Wang, “The effectiveness of data augmentation in image classifi-

cation using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[225] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolutional

network and a graphical model for human pose estimation,” in Proceedings of the

27th International Conference on Neural Information Processing Systems-Volume

1, 2014, pp. 1799–1807.

Thomas Gulde - PhD Thesis -



[226] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J.

Banerjee, G. Vecsei, A. Kraft, et al. “imgaug.” (2020), [Online]. Available: http

s://github.com/aleju/imgaug (visited on 04/04/2022).

[227] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1440–1448.

[228] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information pro-

cessing systems, 2015, pp. 91–99.

[229] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European conference on computer vision,

Springer, 2016, pp. 21–37.

[230] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 779–788.

[231] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–

7271.

[232] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[233] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and

accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[234] C. Ultralytics, Ultralytics - yolov3 on github, 2021. [Online]. Available: https:

//github.com/ultralytics/yolov3 (visited on 04/04/2022).

[235] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-pa-

rameter optimization,” in Advances in neural information processing systems,

2011.

[236] J. Shin, S. Kim, S. Kang, S.-W. Lee, J. Paik, B. Abidi, and M. Abidi, “Opti-

cal flow-based real-time object tracking using non-prior training active feature

model,” Real-Time Imaging, vol. 11, no. 3, pp. 204–218, 2005.

[237] S. Bullinger, C. Bodensteiner, and M. Arens, “Instance flow based online multiple

object tracking,” in 2017 IEEE International Conference on Image Processing

(ICIP), IEEE, 2017, pp. 785–789.

[238] B. Chu, V. Madhavan, O. Beijbom, J. Hoffman, and T. Darrell, “Best practices for

fine-tuning visual classifiers to new domains,” in European conference on com-

puter vision, Springer, 2016, pp. 435–442.

Thomas Gulde - PhD Thesis -

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3


[239] W. Ouyang, X. Wang, C. Zhang, and X. Yang, “Factors in finetuning deep model

for object detection with long-tail distribution,” in The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Jun. 2016.

[240] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation.,” Encyclopedia of database

systems, vol. 5, pp. 532–538, 2009.

[241] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out valida-

tion on colossal datasets for quality classification,” in 2016 IEEE 6th International

conference on advanced computing (IACC), IEEE, 2016, pp. 78–83.

[242] G. E. Hinton and S. Roweis, “Stochastic neighbor embedding,” Advances in neu-

ral information processing systems, vol. 15, 2002.

[243] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of

machine learning research, vol. 9, no. 11, 2008.

[244] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learn-

ing in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

[245] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.

[246] A. Doering, U. Iqbal, and J. Gall, “Joint flow: Temporal flow fields for multi

person tracking,” arXiv preprint arXiv:1805.04596, 2018.

[247] J. Hwang, J. Lee, S. Park, and N. Kwak, “Pose estimator and tracker using tem-

poral flow maps for limbs,” in 2019 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2019, pp. 1–8.

[248] V. Lippiello, B. Siciliano, and L. Villani, “Adaptive extended kalman filtering for

visual motion estimation of 3d objects,” Control Engineering Practice, vol. 15,

no. 1, pp. 123–134, 2007.

[249] S.-K. Weng, C.-M. Kuo, and S.-K. Tu, “Video object tracking using adaptive

kalman filter,” Journal of Visual Communication and Image Representation, vol. 17,

no. 6, pp. 1190–1208, 2006.

[250] P. R. Gunjal, B. R. Gunjal, H. A. Shinde, S. M. Vanam, and S. S. Aher, “Moving

object tracking using kalman filter,” in 2018 International Conference On Ad-

vances in Communication and Computing Technology (ICACCT), IEEE, 2018,

pp. 544–547.

Thomas Gulde - PhD Thesis -



[251] D. Zhang, L. Yang, D. Meng, D. Xu, and J. Han, “Spftn: A self-paced fine-tuning

network for segmenting objects in weakly labelled videos,” in The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[252] Y.-X. Wang, D. Ramanan, and M. Hebert, “Growing a brain: Fine-tuning by in-

creasing model capacity,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 2471–2480.

[253] M. Bischoff. “Ros#.” (2017), [Online]. Available: https://github.com/sieme

ns/ros-sharp (visited on 04/04/2022).

Thomas Gulde - PhD Thesis -

https://github.com/siemens/ros-sharp
https://github.com/siemens/ros-sharp

	Abstract
	Publications
	Open Source Contributions
	Content

	Introduction
	Motivation
	Collaborative Robotics and its Challenges
	AI in robotics, computer vision and perception
	Contributions of this Thesis

	Background and Basics
	Transformations in Cartesian Coordinate Systems
	Transformations in R2 and R3
	Translation
	Rotation and Orientation Representations
	Affine Transformations

	Spherical Coordinate Systems
	Lie Groups
	Basic Definitions
	Special Orthogonal Group in R2 - SO(2)
	Special Orthogonal Group in R3 - SO(3)
	Special Euclidean Group in R2 - SE(2)
	Special Euclidean Group in R3 - SE(3)

	2D Camera Calibration
	Extrinsic Camera Parameters
	Pinhole Camera Model and Calibration Parameters
	Perspective-N-Points (PnP)

	Optical Flow and Motion Estimation
	Neural Networks
	Artificial Neurons and Networks
	Convolutional Neural Networks
	Training, optimization and Loss Functions

	Accuracy Metrics
	Precision and Recall
	Bounding Box Accuracy
	Distance and Probability of Correct Keypoints (PCK)


	Dynamic robot-arm supervison
	Problem
	Related Work
	RoPose
	Idea
	Data Generation
	Keypoint detection
	Post-Processing
	Bounding Box Estimation

	Automatic Extrinsic Camera Calibration

	Enhanced Collaborative Workspace Observation
	Simultaneous Human and Robot-arm detection
	Kinematic Chain Tracking
	Pose Descriptor
	Tracking
	Temporal Target ROI Prediction

	Self-Supervised Finetuning of the Pre-Detector

	Evaluation
	Keypoint Detection
	PCK Metric
	Bounding Box Detector
	RoPose Base System
	Output Upsampling
	Tracking
	Descriptor
	Influence of the Tracking History
	Evaluation of the Tracking System

	Self-supervised finetuning

	Final Application
	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations and Symbols
	References

