
 

Simulating Temporally and Spatially Correlated Wind Speed Time
Series by Spectral Representation Method

Qing Xiao, Lianghong Wu*, Xiaowen Wu*, and Matthias Rätsch

m

Z(t)

m

Z(t)

Z(t)

Z(t) m

Abstract: In this paper, it aims to model wind speed time series at multiple sites. The five-parameter Johnson

distribution is  deployed to relate the wind speed at  each site to a Gaussian time series,  and the resultant -

dimensional Gaussian stochastic vector process  is employed to model the temporal-spatial correlation of

wind speeds at  different sites. In general, it is computationally tedious to obtain the autocorrelation functions

(ACFs) and cross-correlation functions (CCFs) of , which are different to those of wind speed times series.

In  order  to  circumvent  this  correlation  distortion  problem,  the  rank  ACF  and  rank  CCF  are  introduced  to

characterize  the  temporal-spatial  correlation  of  wind  speeds,  whereby  the  ACFs  and  CCFs  of  can  be

analytically obtained. Then, Fourier transformation is implemented to establish the cross-spectral density matrix

of , and an analytical approach is proposed to generate samples of wind speeds at  different sites. Finally,

simulation  experiments  are  performed  to  check  the  proposed  methods,  and  the  results  verify  that  the  five-

parameter  Johnson  distribution  can  accurately  match  distribution  functions  of  wind  speeds,  and  the  spectral

representation method can well reproduce the temporal-spatial correlation of wind speeds.

Key words: multivariate  wind  speed  time  series; rank  autocorrelation  function; rank  cross-correlation  function; cross-

spectral density matrix; five-parameter Johnson distribution

1    Introduction

Due to the increasing integration of wind resources into
the  power  grid,  reliable  statistical  models  are  invoked
to  capture  the  stochastic  nature  of  wind  speed[1, 2].
Hitherto,  several  approaches  have  been  attempted  to
handle  this  issue,  such  as  the  autoregressive  moving
average  (ARMA)  model,  Markov  chain  method,  and
stochastic differential equation method.
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Mathematically, the wind speed can be modeled as a
stochastic  process ,  and  the  wind  velocity  at  an
arbitrary  time  instant  is  regarded  as  a  random
variable [3]. One notable feature of  is that the
wind  velocity  exhibits  a  certain  level  of
correlation  with  ( ),  and  this  temporal
correlation of wind speed is generally characterized by
the autocorrelation function (ACF).
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The  ARMA  model  deploys  a  set  of  weighted
Gaussian  stochastic  processes  to  simulate [4].  By
selecting appropriate parameters for the ARMA model,
it  can  well  reproduce  the  ACF  of .  However,  the
ARMA  model  cannot  directly  generate  wind  speed
samples  with  a  non-Gaussian  distribution  and  fails  to
well  reproduce  the  actual  probability  distribution  of

.  In  comparison  to  the  ARMA  model,  Markov
chain method can accurately capture the non-Gaussian
distribution of wind speed[5, 6],  but it does not perform
very  well  for  characterizing  the  time  correlation  of

;  more  specifically,  Markov  chain  method  is
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X(t)difficult  to  accurately  reproduce  the  ACF  of [7].
Although  this  problem  can  be  alleviated  by  using  a
Markov chain model with a larger number of states,  it
would  lead  to  a  larger  transition  matrix  and  present
additional difficulties in computation[8].
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In  Ref.  [9],  it  suggested  a  stochastic  differential
equation  based  method  to  simulate .  This  method
employs a sum of exponential functions and sinusoidal
functions to represent the ACF of ; then, it deploys
a  weighted  sum  of  stochastic  differential  equation
processes to obtain a Gaussian stochastic process ,
which  is  used  to  prescribe  the  ACF of ;  finally,  it
uses  the  marginal  transformation  to  transform  to

 and to match the distribution function of . One
point  worth  noting  is  that  the  marginal  transformation
strategy can also be conjuncted with the ARMA model,
whereby  the  task  of  modeling  wind  speed  time  series

 can  be  decoupled  into  two  independent  parts:
fitting  the  distribution  function  of  and  matching
the ACF of [10].

In  practical  settings,  wind  speed  time  series  at
adjacent  sites  also  show  a  correlation  with  each  other
due  to  similar  weather  conditions[11].  This  spatial
correlation  can  be  characterized  by  the  cross-
correlation  function  (CCF)[12].  Among  the
aforementioned three methods, only the ARMA model
has been extended to a vector form, and to capture the
CCFs  of  multivariate  wind  speed  time  series.  In  Refs.
[10, 13], it suggested to match the CCFs of multivariate
wind  speed  time  series  by  regulating  the  correlation
among Gaussian stochastic processes of ARMA model.
However,  because  the  wind  speed  generally  follows  a
non-Gaussian  probability  distribution,  it  leads  to  the
correlation  distortion  problem[14],  and  tedious
numerical algorithms should be employed to determine
the  ACFs  and  CCFs  of  wind  speeds  in  the  standard
normal space[10, 15].

This paper sets out to develop a convenient algorithm
to  simulate  multivariate  wind  speed  time  series.  The
main content and contribution are as follows.

(1) A  five-parameter  Johnson  distribution  is
employed  to  reconstruct  probability  distributions  of
wind speed samples, which can strictly match the lower
and  upper  bounds  of  wind  velocity  and  directly  map
wind speed samples to the standard normal space;

(2) The  rank  ACF  and  rank  CCF  are  proposed  to
measure  the  temporal-spatial  correlation  of  wind
samples at  multiple sites.  They are invariant under the
marginal  transformation  and  allow  for  analytical

procedures  to  determine  the  ACF  and  CCF  of  wind
speeds in the standard normal space;

(3) The spectral representation method is customized
for generating samples of wind speed with a prescribed
rank temporal-spatial correlation.

The  structure  of  the  following  parts  is  organized  as
follows. Section 2 defines the rank ACF and rank CCF.
Section  3  introduces  the  spectral  representation
method,  the  five-parameter  Johnson  distribution,  and
the  procedures  of  the  proposed  method.  In  Section  4,
the  case  study  is  performed.  Section  5  gives  the
conclusion.

2    Statistical  Features  of  Multivariate  Wind
Speed Time Series

m
m X(t) = (X1(t),

X2(t), . . . , Xi(t), . . . ,Xm(t))T

X(t)

Consider wind speeds at  different sites, which can be
denoted  as  an -dimensional  vector 

.  The  statistical  features  of
 can be characterized by

(1) the  distribution  functions  of  wind  speed  at  each
site;

(2) Xi(t) i = 1,2, . . . ,m the  ACF  of  ( ),  which
characterizes the temporal correlation;

(3) the  CCF  of  wind  speed  time  series  at  different
sites, which measures the spatial correlation.

{xi,k} k = 1,2, . . . ,n
i Xi(t)

Let  ( )  denote  samples  of  wind
speed at the -th site, and the empirical CDF of  is
defined by
 

F̂i(Xi) =
1
n

n∑
k=1

I
(
xi,k ⩽ Xi

)
,

I
(
xi,k ⩽ Xi

)
=

{
1, if xi,k ⩽ Xi;
0, else

(1)

X(t)

In  this  paper,  instead  of  the  commonly  used  linear
ACF  and  CCF,  the  rank  ACF  and  rank  CCF  are
employed  to  measure  the  time-spatial  correlation  of

. With the empirical CDF in Eq. (1), it has
 

ui,k = F̂i(xi,k), k = 1,2, . . . ,n (2)

Then
 

ρi,i(τ) |τ=s·∆τ=

N∑
k=M

(
ui,k −µi

) (
ui,k+s−µi

)
(N −M+1) ·σ2

i

(3)

ρi,i(τ) Xi(t)
i = 1,2, . . . ,m τ ∆τ

N
(N + |s|) ⩽ n (M+ s) > 0 µi

{ui,k} k = 1,2, . . . ,n σi

where  denotes  the  rank  ACF  of 
( ),  and  and   are  the  time  lag  and  the
recording interval, respectively.  is the number of the
used wind samples, and  and . 
is  the  mean  of  ( ),  and  is  the
standard deviation. M and s are integers.
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The proposed rank CCF is given by
 

ρi, j(τ) |τ=s·∆τ=

N∑
k=M

(ui,k −µi)(u j,k+s−µ j)

(N −M+1) ·σiσ j
(4)

ρi, j(τ) Xi(t) X j(t)
i, j = 1,2, . . . ,m; i , j

where  is  the  rank  CCF  between  and  
( ).

X(t)

With  the  rank  ACF  in  Eq.  (3)  and  the  rank  CCF  in
Eq.  (4),  the  rank  cross-correlation  matrix  can  be
established  to  characterize  the  temporal-spatial
correlation of .
 

ρ(τ) =



ρ1,1(τ) · · · ρ1, j(τ) · · · ρ1,m(τ)
...

...
...

ρi,1(τ) · · · ρi, j(τ) · · · ρi,m(τ)
...

...
...

ρm,1(τ) · · · ρm, j(τ) · · · ρm,m(τ)


(5)

3    Spectral Representation Method Based on
Translation Model

X(t)

In  this  section,  a  spectral  representation  method  is
proposed to match the empirical CDFs and rank cross-
correlation matrix of .

3.1    Translation model

Z(t) = (Z1(t),Z2(t), . . . ,Zi(t), . . . ,Zm(t))T m
Zi(t)

i = 1,2, . . . ,m

X(t) = (X1(t),X2(t), . . . ,
Xi(t), . . . ,Xm(t))T

Let  be  an -
variate  Gaussian  stochastic  vector  process,  and 
( )  follow the standard normal distribution.
Based  on  marginal  transformation,  the  multivariate
wind  speed  time  series 

 can be simulated by
 

X1(t)
...

Xi(t)
...

Xm(t)


◀

Xi(t)=F−1
i {Φ[Zi(t)]}

←−−−−−−−−−−−−−−



Z1(t)
...

Zi(t)
...

Zm(t)


(6)

F−1
i (·) Xi(t) i = 1,2, . . . ,m

Φ(·) Zi(t) i = 1,2, . . . ,m
where  is the inverse CDF of  ( ).

 is the CDF of  ( ).
Z(t)Denote the linear cross-correlation matrix of  as

 

ρ(τ) =



ρz;1,1(τ) · · · ρz;1, j(τ) · · · ρz;1,m(τ)
...

...
...

ρz;i,1(τ) · · · ρz;i, j(τ) · · · ρz;i,m(τ)
...

...
...

ρz;m,1(τ) · · · ρz;m, j(τ) · · · ρz;m,m(τ)


(7)

ρz;i,i(τ) Zi(t) i = 1,2, . . . ,m
ρz;i, j(τ) Zi(t) Z j(t)

i, j = 1,2, . . . ,m; i , j

where  is the linear ACF of  ( ),
and  is  the  linear  CCF  between  and  
( ).

Xi(t) = F−1
i {Φ[Zi(t)]}

Z(t)

ρ(τ)

Z(t)

Because  the  rank  correlation  coefficient  is  invariant
under  the  transformation  in
Formula  (6),  the  rank  cross-correlation  matrix  of 
would  also  be  in  Eq.  (5).  Then,  the  linear  cross-
correlation matrix of  can be calculated by
 

ρz(τ) = 2sin
(π
6
ρ(τ)

)
(8)

3.2    Spectral representation method

ρi,i(τ)The rank ACF  in Eq. (3) is an even function
 

ρi,i(τ) = ρi,i(−τ), i = 1,2, . . . ,m (9)

The rank CCF in Eq. (4) has the following property:
 

ρi, j(τ) = ρ j,i(−τ), i, j = 1,2, . . . ,m; i , j (10)

According to Eqs. (9) and (10), it has
  ρz;i,i(τ) = ρz;i,i(−τ), i = 1,2, . . . ,m;

ρz;i, j(τ) = ρz; j,i(−τ), i, j = 1,2, . . . ,m; i , j
(11)

S Z;i,i(ω)
Zi(t)

Denote  as  the  power  spectral  density
function (PSDF) of , it has
 

S Z;i,i(ω) =
1

2π
r ∞
−∞ ρz;i,i(τ)cos(ωτ)dτ ≈

∆τ

π
∞∑

s=0
ρz;i,i(s ·∆τ)cos(s ·∆τω)

(12)

S Z;i, j(ω) Zi(t)
Z j(t)

Denote  as the cross PSDF between  and
, it has

 

S Z;i, j(ω) =
1

2π
r ∞
−∞ ρz;i, j(τ)e−I·ωτdτ =

Re[S Z;i, j(ω)]− I · Im[S Z;i, j(ω)]
(13)

Re[S Z;i, j(ω)]

S Z;i, j(ω) Im[S Z;i, j(ω)]

S Z;i, j(ω)

where I  is  the  imaginary  unit.  is  the  real
part of ,  and  is the imaginary part
of .

According to Eq. (11), it has
 

ρz;i, j(τ) =
ρz;i, j(τ)+ρz;i, j(−τ)

2
+
ρz;i, j(τ)−ρz;i, j(−τ)

2
=

ρz;i, j(τ)+ρz; j,i(τ)
2

+
ρz;i, j(τ)−ρz; j,i(τ)

2
(14)

ρi, j(τ)+ρ j,i(τ)
2

ρi, j(τ)−ρ j,i(τ)
2

Re[S Z;i, j]

Im[S Z;i, j]

where  is  an  even  function,  and

 is  an  odd  function.  Then,  and

 can be calculated by
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Re[S Z;i, j] =
1
π

r ∞
0 ρz;i, j(τ)cos(ωτ)dτ ≈

∆τ

π
∞∑

s=0
[ρz;i, j(s ·∆τ)+ρz; j,i(s ·∆τ)]cos(s ·∆τω),

Im[S Z;i, j] =
1
π

r ∞
0 ρz;i, j(τ) sin(ωτ)dτ ≈

∆τ

π
∞∑

s=0
[ρz;i, j(s ·∆τ)−ρz; j,i(s ·∆τ)] sin(s ·∆τω)

(15)

Z(t)
With  the  PSDF  from  Eq.  (12)  and  the  cross  PSDF

from Eq. (13), the cross spectral density matrix of 
can be established 

SZ(ω) =



S Z;1,1(ω) · · · S Z;1, j(ω) · · · S Z;1,m(ω)
...

...
...

S Z;i,1(ω) · · · S Z;i, j(ω) · · · S Z;i,m(ω)
...

...
...

S Z;m,1(ω) · · · S Z;m, j(ω) · · · S Z;m,m(ω)


(16)

H(ω)
SZ(ω)

then,  can  be  obtained  by  performing  Cholesky
decomposition on 
 

SZ(ω) = H(ω) ·HT(ω) (17)

H(ω) HT(ω)
H(ω)

where  is a lower triangular matrix, and  is
the conjugate transpose of .

Z(t)The equation for generating samples of  is[16]
 

Zi(t) = 2
i∑

j=1

N∑
k=1

|Hi, j(ω j,k)|
√
∆ωcos

[
ω j,kt−φi, j(ω j,k)+ θ j,k

]
(18)

The symbols in Eq. (18) are explained in Table 1.
N Z(t) = (Z1(t),Z2(t), . . . ,

Zi(t), . . . ,Zm(t))T m

SZ(ω)
Z(t) ρz(τ)

Z(t) ρ(τ)

With  a  large  value  of , 
 from  Eq.  (18)  would  be  an -variate

Gaussian  vector  process  with  a  cross  spectral  density
matrix  in  Eq.  (16),  the  linear  cross  correlation
matrix of  would be  in  Eq.  (7),  and the rank
cross-correlation  matrix  of  would  be  in  Eq.

X(t) Z(t)

X(t)

(5).  Because  and   in  Formula  (6)  share  the
same  rank  cross-correlation  matrix,  along  with  Eq.
(16),  Formula  (6)  allows  for  matching  CDFs  and  the
rank cross-correlation matrix of .

In  the  case  where  only  wind  speed  samples  are
available,  the  marginal  transformation  in  Formula  (6)
can  be  approximated  by  the  following  five-parameter
Johnson distribution[17]
 

Xi(t) = F−1
i {Φ[Zi(t)] ≈ ξ+λ ·

[
1+ exp

(
γ−Zi(t)
δ

)]−α (19)

ξ λ γ δ αwhere , , , ,  and  are  parameters,  which  can  be
determined by the algorithm in Ref. [17].

3.3    Procedure

This  section  presents  the  detailed  procedures  of  the
spectral  representation  method  for  simulating
temporally  and  spatially  correlated  wind  speed  time
series.

(1)  With  the  five-parameter  Johnson  distribution  in
Eq.  (19),  fit  distributions  to  wind  speed  time  series  at
each site[17].

(2)  With  Eq.  (2),  calculate  the  rank  ACFs  and  rank
CCFs by Eqs. (3) and (4), and construct the rank cross-
correlation  matrix ρ(τ )  in  Eq.  (5)  for  wind  speed  time
series at multiple sites.

(3)  Determine  the  linear  cross-correlation  matrix
ρz(τ) by Eq. (8), and construct the cross spectral density
matrix SZ(ω) in Eq. (16).

(4)  Generate  samples  of Z(t )  by  Eqs.  (17)  and  (18),
and  transform  samples  of Z(t )  into  samples  of  wind
speed time series by Formula (6) and Eq. (19).

These procedures have also been presented in Fig. 1.

4    Case Study

4.1    Recovering  distribution  functions  of  wind
samples

In this section, a case study is performed based on wind
data  collected  from  three  different  sites[18],  and  the
five-parameter  Johnson  distribution  in  Eq.  (19)  is
employed to fit distributions to wind speed at each site.

Rewrite Eq. (19) as
 

Zi = Ωi(Xi) = γ+δ · ln
 (X− ξ) 1

α

λ
1
α − (X− ξ) 1

α

 (20)

iThen, the CDF of wind speed at the -th site is
 

Fi(Xi) =Φ[Ωi(Xi)], ξ ⩽ Xi ⩽ (ξ+λ) (21)

The PDF of wind speed is 

 

Table 1    Meaning of symbols in Eq. (18).

Symbol Definition

ωu
| ω |> ωuAn upper cutoff frequency, for ,

S Z;i, j(ω) ≈ 0 i, j = 1,2, . . . ,mit has , ( )

∆ω ∆ω =
ωu

N
ω j,k ( j−1) ·∆ω+ j

m
∆ω, k = 1,2, . . . ,N

t t = s ·∆τTime instant: 
θ j,k [0,2π]Uniform random variable over 

| Hi, j(ω j,k) |
√(

Re[Hi, j(ω j,k)]
)2
+

(
Im[Hi, j(ω j,k)]

)2

φi, j(ω j,k) φi, j(ω j,k) = tan−1
(

Im[Hi, j(ω j,k)]
Re[Hi, j(ω j,k)]

)
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fi(Xi) =
dZi

dXi
·ϕ[Ωi(Xi)], ϕ(t) =

1
√

2π
e−

t2
2 (22)

Here,  the PDF and CDF of wind speeds can also be
fitted  by  the  four-parameter  Johnson  distribution  in
Ref. [19].
 

Xi = ξ+λ−
λ

1+ exp
(Zi−γ
δ

) (23)

The  Johnson  distribution  in  Eq.  (23)  would  be
denoted  as “Johnson-IV” ;  the  five-parameter  Johnson
distribution in Eq. (19) would be denoted as “Johnson-
V”. Table  2 presents  the  parameters  of  Johnson
distributions.

According  to  Johnson  distributions  in  Eqs.  (19)  and
(23),  the  variation  range  of  wind  speed  would  be

Xi ∈ [ξ, (ξ+λ)] i = 1,2,3 ( ). Figure 2 depicts the PDFs of
wind  speeds  at  Site  1,  Site  2,  and  Site  3.  Besides,
Figs.  3a, 3c ,  and 3e  show  the  CDFs  of  wind  speeds;
Figs. 3b, 3d, and 3f present the absolute errors between
the  empirical  CDF  from  Eq.  (1)  and  those  from
Johnson  distributions.  As  can  be  seen,  the  Johnson-V
yields  a  better  fitting  than  Johnson-IV  and  provides  a
more accurate matching for the variation range of wind
speeds.

 

With the five-parameter Johnson
system in Eq. (19), fit

distributions to wind samples of
each site by the algorithm in Ref. [17].

With Eq. (2), calculate the rank
ACFs and rank CCFs of wind

samples by Eqs. (3) and (4), and
construct the rank cross-correlation

matrix ρ(τ) in Eq. (5).

With Eq. (8), determine the linear
cross-correlation matrix ρz(τ),

and construct the cross spectral
density matrix SZ(ω) in Eq. (16).

With Eqs. (17) and (18),
generate samples of Z(t), and
transform them to samples of

X(t) by Formula (6) and Eq. (19).

Start

End
 

Fig. 1    Procedure of the proposed methods.
 

 

Table 2    Parameters of Johnson distributions.

Distribution Site No. ξ λ γ δ α

Johnson-IV
1 −3.7557 112.6225 3.7190 1.7278 −
2 −1.6681 109.3165 4.4072 1.8190 −
3 −4.6994 176.1336 6.1299 2.5057 −

Johnson-V
1 0 37.0000 1.5332 0.8426 0.8192

2 0 37.0000 1.9000 1.1073 0.8812
3 0 40.0000 1.9710 1.1442 0.7914
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Fig. 2    PDFs of Xi (t) (i = 1, 2, 3).
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4.2    Cross  spectral  density  matrix  of  wind  speed
samples

X(t)
Z(t)

X(t)
Z(t)

According  to  Formula  (6),  can  be  modeled  by  a
Gaussian  stochastic  process ,  and  the  temporal-
spatial  correlation  of  is  represented  by  the  cross
spectral density matrix of .

Z(t)

Following  Eqs.  (3)–(5),  the  rank  cross-correlation
matrix of wind speeds is established. Then, the PSDFs
and  cross  PSDFs  of  can  be  obtained  by  Eqs.  (8),
(12), and (13). With Eqs. (11) and (15), it can be seen

that
 

S Z;i,i(ω) = S Z;i,i(−ω),
Re[S Z;i, j(ω)] = Re[S Z;i, j(−ω)],
Im[S Z;i, j(ω)] = −Im[S Z;i, j(−ω)],
Re[S Z;i, j(ω)] = Re[S Z; j,i(ω)],
Im[S Z;i, j(ω)] = −Im[S Z; j,i(ω)]

(24)

S Z;i, j(ω) i, j = 1,2,3 0
ω ⩾ 1 ωu

In Fig. 4, it shows the PSDFs, the real parts of cross
PSDFs,  and  the  imaginary  parts  of  cross  PSDFs.  As
can be seen, values of  ( ) approach 
for .  Thus,  in  Table  1 is  set  to  be  1,  and
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Fig. 3    CDFs and absolute error of Xi (t) (i = 1, 2, 3).
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N = 1000
SZ(ω)

SZ(ω)

.  According  to  Eq.  (17),  Cholesky
decomposition  of  should  be  performed.  It  is
possible  that  may  not  be  positive  semi-definite,
which can be handled by the method in the Appendix.

4.3    Sample generation

The parameters in Eq. (18) are as follows:
 

ωu = 1, N = 2000.

Z(t)
Xi(t) i = 1,2,3

Because  samples  of  from  Eq.  (18)  are  stationary
and  ergodic,  samples  of  ( )  from Eq.  (19)
are  also  expected  to  be  stationary;  that  is  to  say,  the

Xi(t)
i = 1,2,3

CDF and rank ACF of  would not change over time
( ).

1.5×105Here,  it  generates  samples,  the  following
two sets of wind speed samples are considered:

105Set-I: It comprises of the first  samples;
5×104+1

1.5×105
Set-II:  It  comprises  of  the  ( )-th  to

( )-th samples.
Figures 5a,  5c,  and 5e depict  the empirical  CDFs of

the  original  wind  speed  samples  from  Ref.  [18],  Set-I
and  Set-II; Figs.  5b,  5d,  and  5f  present  the  absolute
errors  between  these  empirical  CDFs. Figures  6a,  6c,
and 6e show the rank ACFs of these three sets of wind
speed samples; Figs. 6b, 6d, and 6f present the absolute
errors  between  these  rank  ACFs.  An  inspection  of
Figs. 5 and 6 indicates that:

(1) The CDFs and rank ACFs of  samples  from Eqs.
(18)  and  (19)  are  in  accordance  with  those  of  the
original wind speed samples;

(2) The CDFs and rank ACFs of Set-I and Set-II are
in  close  agreement,  and  samples  from  Eqs.  (18)  and
(19) are stationary and ergodic.

X(t)
In this paper, the rank CCF in Eq. (4) is introduced to

measure the spatial correlation of . With Eq. (10), it
can be seen that
 

ρ1,2(τ) = ρ2,1(−τ),

ρ1,3(τ) = ρ3,1(−τ),
ρ2,3(τ) = ρ3,2(−τ).

ρ1,2(τ) ρ1,3(τ)
ρ2,3(τ)

Thus,  it  just  requires to check how well , 
and  can  match  the  expected  CCFs. Figure  7
shows  the  rank  CCFs  of  generated  samples  and  their
absolute  errors  with  respect  to  those  of  original  wind
samples.  The  results  illustrate  the  effectiveness  of  the
proposed method for reproducing the spatial correlation
of multivariate wind speed time series.

4.4    Discussion

Although this paper aims to match the rank ACFs and
CCFs  of  wind  samples,  the  spectral  representation
method  also  allows  for  reproducing  the  linear  ACFs
and  CCFs  of  target  wind  speed  samples.  The
procedures are as follows.

(1) Fit  distributions  to  wind  speed  samples  at  each
site by the five-parameter Johnson distribution;

(2) X(t)
Z(t)

 Generate  samples  of  by  Eq.  (20),  and
calculate the linear ACFs and CCFs of ;

(3) Follow Steps (3) and (4) in Section 3.3 to produce
sample realizations of wind speed time series.

But  this  approach  cannot  be  used  to  generate  wind
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Fig. 4    PSDFs and cross PSDFs of Z(t).
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speed  samples  with  a  prescribed  linear  cross-
correlation matrix.

t

If wind speed time series are not stationary, statistical
properties  of  wind  speed  would  vary  in  time.  In  this
case,  the  marginal  transformation  in  Formula  (6)
should take the time instant  into consideration
 

Xi(t) = F−1
i {Φ[Zi(t)]; t} (25)

As  for  the  temporal-spatial  correlation  of  wind
speeds,  they  can  be  represented  by  the  evolutionary
spectrum[20], and samples of non-stationary wind speed

time  series  can  be  generated  by  the  evolutionary
spectrum representation method[21].

5    Conclusion

In conjunction with the five-parameter Johnson system,
this  paper presents a spectral  representation method to
capture  statistical  features  of  multivariate  wind  speed
time  series.  Through  theoretical  discussions  and
numerical  experiments,  the  following  conclusions  can
be drawn.
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Fig. 5    Comparison for empirical CDFs and absolute error of samples of Xi (t) (i = 1, 2, 3).
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(1) The distribution functions of wind speeds can be
well  fitted  by  the  five-parameter  Johnson  distribution,
and  the  lower  and  upper  bounds  of  wind  velocity  are
strictly  matched  by  the  five-parameter  Johnson
distribution.

(2)  If  the  translation  model  is  employed  to  simulate
multivariate wind speed time series, the rank ACF and
rank  CCF serve  useful  tools  to  measure  the  temporal-
spatial  correlation  of  wind  speeds  at  multiple  sites,  as
well as to facilitate the simulation process

(3)  The  case  study  verifies  the  effectiveness  of

spectral representation method, and the PSDF and cross
PSDF  can  be  used  to  reproduce  the  rank  temporal-
spatial correlation of wind speeds at multiple sites.

Appendix

A    Remedying cross spectral density matrix

SZ(ω)
{λ1,λ2, . . . ,λi, . . . ,λm} SZ(ω)

SZ(ω)
SZ(ω)

Denote  the  eigenvalues  of  in  Eq.  (16)  as
.  Because  is  an  Hermite

matrix,  if  is  not  semi-definite  positive,  at  least
one eigenvalue of  would be negative. Denote
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Fig. 6    Comparison for rank ACFs and absolute error of  Xi (t) (i = 1, 2, 3).
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λ̂ =min{λ1,λ2, . . . ,λi, . . . ,λm} (A1)

SZ(ω)
Note that an Hermite matrix is positive semi-definite if
and only if all eigenvalues are not negative, then 
can be remedies by
 

ŜZ(ω) =
SZ(ω)−diag(̂λ, . . . , λ̂, . . . , λ̂)

1− λ̂
(A2)

diag (̂λ, . . . , λ̂, . . . , λ̂)

m×m

where  is  a  diagonal  matrix  of  size
.

B    Nomenclature

CDF: Cumulative distribution function;
PDF: Probability distribution function;
ACF: Autocorrelation function;
CCF: Cross-correlation function;
PSDF: Power spectral density function;
X(t): Wind speed time series;
X(t1/t2) t1/t2:Wind velocity at the time instant ;
X(t): Wind speed time series at multiple sites;
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Fig. 7    Rank CCFs and their absolute errors of wind speed samples.
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Xi(t) i: Wind speed time series at the -th site;
Zi(t): Gaussian stochastic process;
Z(t): Gaussian stochastic vector process;
F̂i(·) Xi(t): Empirical CDF of ;
F−1

i (·) Xi(t): Inverse CDF of ;
Φ(·) : CDF of standard normal variable;
ρi,i(τ) Xi(t): Rank ACF of ;
ρi, j(τ) Xi(t) X j(t): Rank CCF between  and ;
ρ(τ) X(t): Rank cross-correlation matrix of ;
ρz;i,i(τ) Zi(t): Linear ACF of ;
ρz;i, j(τ) Zi(t) Z j(t): Linear CCF between  and ;
ρz(τ) Z(t): Linear cross-correlation matrix of ;
S Z;i,i(ω) Zi(t) : PSDF of ;
S Z;i, j(ω) Zi(t) Z j(t) : Cross PSDF between  and ;
SZ(ω) Z(t): Cross spectral density matrix of ;
H(ω): The lower triangular matrix.
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