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Abstract Silicon neurons represent different levels of biological details and accu-
racies as a trade-off between complexity and power consumption. With respect to
this trade-off and high similarity to neuron behaviour models, relaxation-type oscil-
lator circuits often yield a good compromise to emulate neurons. In this chapter,
two exemplified relaxation-type silicon neurons are presented that emulate neural
behaviour with energy consumption under the scale of nJ/spike. The first proposed
fully CMOS relaxation SiN is based on mathematical Izhikevich model and can
mimic a broad range of physiologically observable spike patterns. The results of
kinds of biologically plausible output patterns and coupling process of two SiNs
are presented in 0.35 µm CMOS technology. The second type is a novel ultra-low-
frequency hybrid CMOS-memristive SiN based on relaxation oscillators and analog
memristive devices. The hybrid SiN directly emulates neuron behaviour in the range
of physiological spiking frequencies (less than 100 Hz). The relaxation oscillator is
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implemented and fabricated in 0.13 µm CMOS technology. An autonomous neu-
ronal synchronization process is demonstrated with two relaxation oscillators cou-
pled by an analog memristive device in the measurement to emulate the synchronous
behaviour between spiking neurons.

Keywords Silicon neuron · Izhikevich model · Hybrid CMOS-memristive ·
Integrate-and-fire · Ultra-low-frequency relaxation oscillator · Artificial synapse ·
Analog memristive device · Neuronal synchronization

1 Introduction

Living species are well adapted to their environments, a result of a hundred million
years of evolution on earth. Due to constrains in space, time and energy, biological
information processing in nervous systems of creatures are shaped during evolu-
tion towards an optimum between capabilities and resource consumption [1–3]. It
provides a benchmark for technical systems particularly when it comes to elaborate
brain functions such as conscious awareness or decision-making which consume an
incredible small amount of energywithin a limited volume (i.e. a space of a brain) [4].
Although, there are continuous remarkable progresses in very large scale integration
(VLSI) technology, the gap still remains between digital processors and biological
computing systems [5, 6].

Neuromorphic engineering emerges and endeavors to develop intelligentmachines
with comparable biological computation and energy efficiency [6–12].More recently,
bio-inspired silicon neurons (SiNs) and artificial neural networks have been vastly
investigated and developed to imitate the biological computing scheme [13–15]. The
nervous system is a fine-grained parallel processing and highly linked neural network
[5, 6, 16, 17]. Therefore, the large superiority of biological computing systems for
certain tasks like sensory processing or pattern recognition comes from its real-time
analog computation in which data processing (e.g., computing and learning) and data
storage (i.e., memory) are inseparably linked. However, digital processors based on
von Neumann architecture execute binary computing with a strict separation of data
processing and storing [6, 18, 19]. Hence, a large part of power consumption is
distributed on the data transfer between processing units and memory. As a conse-
quence, the artificial neurons capable of real-time analog computing have recently
received increasing interest in silicon neuron design [20]. Furthermore, due to high
similarity to neuron behaviour models, the relaxation-type oscillators draw more
attentions in recent researches [21, 22].

In this chapter, two exemplified high energy efficient relaxation-type silicon neu-
rons are presented. These two analog silicon neurons represent two promising devel-
opment strategies in artificial neuron design. One strategy is fully CMOS technology
spiking neurons based on mathematical neuron models (here: the Izhikevich-model)
and generating a broad range of physiologically observable spike patterns. Spiking
frequency, i.e. operating speed, of these artificial neurons is considerably higher than
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that of biological neurons (e.g. typical mean firing frequencies of biological neurons
are in the range of up to 100 Hz). Another strategy is hybrid silicon neurons, which
use CMOS analog oscillators and analog memristive devices to implement neuron
and synapse circuits. These hybrid SiNs directly emulate the behaviour of neurons
at the biological frequency. Both SiNs introduced here allow real-time analog com-
putation rather than binary data processing and enable the realization of large scale
monolithic analog neural network in the future.

Before introducing details of two exemplified SiNs, the analog memristive device
used in the hybrid SiNs is introduced below firstly. Then Izhikevich-model based
low-power SiN is introduced in Sect. 2 including the theories, topology, simulation
andmeasurement results. In Sect. 3 the hybrid SiN based on low frequency relaxation
oscillator is described. In order to understand the synchronization process of memris-
tive coupling, the design andmeasurement results of single oscillator is introduced at
first. Subsequently, the autonomous synchronization processes of two pulse-coupled
oscillators via a RC network and an analog memristive device are experimentally
verified, respectively. Finally, a brief conclusion in Sect. 4 completes the chapter.

1.1 Memristive Devices

Themutual memristive coupling of two self-sustained relaxation oscillators has been
successfully realized experimentally [22], through the use of an Ag-doped-TiO2−x -
Al memristive device with digital switching behavior. Compared with Ag-doped-
TiO2−x -Al memristive devices, interface-based memristive devices like the double
barriermemristive devices (DBMDs) [23]with analog switching behavior (i.e., a con-
tinuous change in resistance) behave more similarly to synapses in nervous systems.
Consequently, to come closer to emulate the process of synchronization in neurons,
in Sect. 3.3.3 an interface-based device will be adopted as an artificial synapse in our
experiments. A brief overview of DBMDs is provided in the following. Interested
readers are referred to the literature for more details [23–30].

The schematic of a double barriermemristive device is shown in Fig. 1a. It consists
of a Nb/NbOz/Al2O3/NbxOy /Au material stack [23, 28], in which Nb and Au are
the bottom and top electrodes, respectively, while Al2O3 acts as tunnel barrier and
the NbxOy /Au interface forms a Schottky-like contact [23, 24, 29]. The devices are
produced by DC magnetron sputtering of all materials on 100 mm wafer without
breaking the vacuum and subsequent structuring by standard photolithography, lift-
off and etching [23, 24]. Figure1b shows a typical absolute value of the current
density versus voltage (|J| − V) hysteresis curve of DBMDs [23]. A gradual resistive
switching behavior is present [23] rather than abrupt resistance jumps observed by
digital memristive devices [22]. In the |J| − V measurement, the voltage has been
ramped from 0 to 3 V to set the device from its initial high resistance state (HRS)
to a low resistance state (LRS). Afterwards, the voltage has been ramped down to
-2 V and back to 0 V to reset the device. Voltage was applied to the top electrode
while the bottom electrode was grounded. Using low voltages (e.g., 0.5 V) allows
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Fig. 1 A schematic structure a and current density versus voltage characteristics of a double barrier
memristive device plotted as absolute value on a semi-logarithmic scale (b). b is reproduced from
[23] (licensed under CC BY 4.0—https://creativecommons.org/licenses/by/4.0/)

for non-destructive read-out of the device state. The diode-like characteristic with
a high J-V non-linearity obtained by the Schottky barrier facilitates integration into
passive crossbar arrays [27], since the current at negative bias voltage is negligible
compared to positive bias. The devices can further be gradually switched by using
voltage pulses with different amplitudes andwidths [26]. Switching occurs for pulses
with a width in the millisecond regime or beyond. The non-linear switching process
is further crucial dependent on the voltage amplitude. Moreover, the memristive state
relaxes towards HRS with time [23]. These effects are considered in the coupling
experiments shown in Sect. 3.3.3. Due to the diode-like characteristics, the main
interaction between two oscillators happens when a positive voltage is applied to
the memristive device, i.e. higher output voltage from an oscillator connected to the
top electrode and lower output voltage from an oscillator connected to the bottom
electrode, as it is shown in Sect. 3.3.3.

2 Izhikevich-Model Based Low-Power Neuron

In 2003, Izhikevich presented a mathematical model [31] that describes the spik-
ing and bursting behavior of cortical neurons. This model combines the biological
plausibility of the Hodgkin-Huxley type [32] and the computational efficiency of the
integrate-and-fire model [33]. It has been described, in [31], as a two-dimensional
system:

v′ = 0.04v2 + 5v + 140 − u + I (1)

u′ = a(bv − u) (2)

https://creativecommons.org/licenses/by/4.0/
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Fig. 2 Block diagram of the
Izhikevich-model based
low-power neuron

where v′ and u′ are the derivatives of v and u with respect to time, respectively:
v represents the membrane voltage; and u is a membrane recovery variable that
provides a negative feedback to the membrane voltage [31]. The variable I adds
incoming synaptic currents to the system. All variables in (1) and (2) and also the
parameters a and b are dimensionless.

In [13], the Izhikevich model was implemented in a 0.35 µm CMOS technology,
consisting of 14 transistors for a single neuron.This neuron’s output,which represents
the membrane potential measured at the axon, is tunable by the five different inputs.
Figure2 shows the different inputs and one output of the neuron. The output Vmem

stays at a resting potential, as long as no currents at the postsynaptic input Isyn exceed
the threshold. By changing the inputs Vc, Vd and Vth , different biologically plausible
spike patterns can be generated [13]. The neuron uses a silicon area of 70 × 40µm2

and has a power consumption of 8 pJ/spike.

2.1 Topology

The schematic of this neuron is shown in Fig. 3. We adapted the circuit presented
in [13] for the usage in a low-power analog neural network. As shown in Fig. 3,
the current input Isyn is directly connected to the membrane voltage output. In a
neural network built without additional current output, the input current of the first
neuron will couple directly to the second neuron. In the biological neuron as in Fig. 2,
however, the current input Isyn is separated from the axon voltage Vmem . Therefore,
a dedicated current output node delivering the current Iaxon is added to the circuit.
This output can be taken to represent an action potential propagating towards the
synapse. Furthermore, we modified the biasing circuit of the original circuit. Instead
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Fig. 3 Schematic of the neuron circuit, divided in four parts: the membrane voltage (blue), the
slow variable (green), the comparator (yellow) and the axon output (orange)

of a voltage bias via Vbias , we employ current-biasing using a mirrored input current
Ibias . This enables more sensitive bias control in an integrated circuit.

The neuron circuit can be structured into four parts: a circuit representing the cell
membrane and, specifically, the membrane voltage (Fig. 3, blue), the slow variable
(Fig. 3, green), a comparator (Fig. 3, yellow), and the axonoutput (Fig. 3, orange). The
membrane circuit integrates the Isyn current on the capacitor Cmem . The compara-
tor controls a transistor which discharges the membrane capacitance to the resting
voltage between spikes. This voltage level is defined by the applied input voltage
Vc. The slow variable circuit represents Eq. (2), and slows the depolarization of the
membrane voltage. The input voltage Vd controls the amount of charge stored on the
capacitor Cu .

A possible configuration for the neural network is presented in Fig. 4. The first
layer neuron output current is connected to the synaptic inputs of the second layer.
The coupling strength is set via the axon output current by programmable weighted
current mirrors. Although the neurons are interconnected, the individual membrane
voltages of each neuron can be monitored through the output Vmem . In doing so, the
output of the neural network can be combined using the information of the different
membrane voltages.

2.2 Simulation Results

The circuit shown in Fig. 3 is implemented in a 0.35 µm CMOS technology and
simulated in the Cadence design environment. It is able to generate multiple biolog-
ically plausible spike patterns when a stimulation current is applied to the input. By
changing the control parameters presented in the previous section, the output of the
neuron varies.
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Fig. 4 Configuration of multiple neurons in a neural network

2.2.1 Individual Izhikevich-Model Based Low-Power Neuron

The circuit can either be supplied with the nominal operating voltage for this technol-
ogy of 3 V or with reduced power consumption with 1.5 V. The different operating
modes are capable of generating different output patterns. The simplest pattern–
single spikes–is shown in Fig. 5. The input current is integrated on the membrane
capacitance until the membrane voltage reaches the threshold voltage and a spike is
generated. After the spike, the slow variable keeps the circuit reset for a short time.
This pattern is generated with a supply voltage of VDD = 3 V, Vd = Vc = 0, Vth =
700 mV, Ibias = 1µA, and Isyn = 200 nA. All voltages refer to Vss (–1.5 V/–750
mV). Even though the spike frequency is considerably higher than that of a biological
neuron, the spike shape is realistic.

With Vc = 100 mV and Isyn = 1µA, fast spikes with a reset offset of 100 mV
(shown in Fig. 6a) are generated. The larger the value of Isyn , the faster Cmem is
charged; thus, the membrane voltage reaches the threshold voltage of the comparator
faster. The state trajectory presented in Fig. 6b shows that the circuit reaches a limit
cycle. This happens very quickly compared to the circuit in [13]. Additionally, there
is only very small jitter in this state.

In the low-power configuration the supply voltage is reduced to 1.5 V, Ibias is
set to 20 nA, and Isyn is set between 100 nA and 1 µA. For a fair comparison of
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Fig. 5 Simulated transient waveform of the circuit’s spiking membrane voltage

Fig. 6 a Transient
waveform of Membrane
Spiking Voltage. b State
trajectory of (a)
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different circuit implementations and spike patterns, the energy consumption per
spike is frequently reported, referring to the spike as the smallest computational unit.
Thus, the total current consumed by the circuit is integrated over the time of a single
spike event and multiplied by the supply voltage. Under low-power operation, an
energy consumption of 8–10 pJ per spike is simulated, which is in good agreement
with what was achieved in [13].

2.2.2 Coupled Izhikevich-Model Based Low-Power Neuron

Two neurons are connected as shown in Fig. 4 to form a simple network. The current
output Iaxon of neuron 1 connects to the current input Isyn of neuron 2. The neurons
are both operated in their low-power configurations, and the variables are set to
Vc =130 mV, Vd = 0 V, Vth =540 mV, Isyn1 =300 nA, and Isyn2 =200 nA, where
Isyn1 is applied to neuron 1 and Isyn2 to neuron 2. Thereby, both neurons generate
the same spike pattern with different spike frequencies. The state of each neuron can
be seen by assessing the different Vmem outputs. The membrane voltages of neurons
1 and 2 are shown in Fig. 7a. After about 30 µs, both neurons become locked and
oscillate in synchrony. Figure7b shows the change in amplitude, while Fig. 7c shows
the change in the frequencies during the settling process. As expected, the initially
faster neuron 1 remains unchanged, while neuron 2 changes its output to the same
frequency as neuron 1. Thereby, the frequency first rises close to that of neuron 1,
but then drops to 830 Hz before beginning to rise again. Additionally, the amplitude
changes during the settling process. While the frequency of neuron 2 is slow—
between 15 and 20 µs—its amplitude is high, as more energy can be stored in Cmem .
After both neurons settle to the same frequency, the amplitude of neuron 1 remains
larger than that of neuron 2, as Isyn differs between the neurons.

2.3 Measurement Results

The circuit was implemented and fabricated in 0.35μmCMOS technology. Figure8a
shows a microphotograph of the die, where the rectangular shape indicates the loca-
tion of the circuit. Figure8b presents the related layout of this neuron, with an area
of 33.4 × 55.9 µm2

For all measurements, the neuron was operated in low-power mode (supply volt-
age 1.5 V). All variable inputs were generated externally, using a laptop-controlled
multifunctional input/output card. The output waveformsmeasured during a constant
Isyn input are presented in Fig. 9a–d. Figure9a shows simple slow spikes (Vc = Vd =
0 V, Vth = 0.9 V, Ibias = 20 nA, Isyn = 200 nA). The frequency was about 900 Hz
and, therefore, close to biological spike frequencies. Additionally, the spike shape
was in good agreement with that of biological spikes. By changing the input volt-
age to Vc = 100 mV and setting Vth = 0.96 V, the neuron generated fast spikes, as
presented in Fig. 9b. The spikes were fired with a frequency of 30 kHz. Due to the
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Fig. 7 a Vmem of the coupled neurons during the settling process. b Change in amplitude during
the settling process. c Change in frequency during the settling process
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Fig. 8 a Photograph of the fabricated die with marked dimensions of 33.4 × 55.9µm2. b Layout
of the presented neuron

Fig. 9 Measurement of different output pattern during a constant current input: a Slow simple
spikes with a frequency of 900 Hz. b Fast simple spikes with a frequency of 30 kHz. c Periodical
bursting behavior. d Aperiodic bursting behavior

high frequency, the neuron was not able to fully discharge to Vc. Figure9c shows
periodic bursting (Vc = 0.1 V, Vd = 0.1 V, Vth = 0.85 V, and Isyn = 1µA). The
neuron generated three very fast spikes and then discharged to Vc periodically. The
opposite -aperiodic bursting- is presented in Fig. 9d. The setup was the same as that
for periodic bursting, except that Vd was set to Vdd .
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3 Ultra-Low-Frequency Hybrid CMOS-Memristive Silicon
Neuron

Synchronization and memory of spiking neurons are vastly accepted and explained
as underlying mechanisms of neuronal signal processing, such as recognition, per-
ception and awareness, in brains of living creatures [17, 34–40]. In neuromorphic
engineering, to emulate neuron activities, a variety ofways to transfer these biological
mechanisms to electronic circuits are realized [10, 41–43]. Researches in recent years
demonstrate that the neuromorphic system built by hybrid CMOS-memristive silicon
neurons consisting of relaxation oscillators and memristive devices is a promising
candidate for neuromorphic computing, since they allow one to emulate neuronal
synchronization and synaptic functionalities in a detailed way with energy efficiency
and a high packing density [11, 19, 22, 44–49]. One example is given in Fig. 10. It
shows an experiment based on two discrete self-sustained relaxation oscillators cou-
pled with an Ag-doped-T iO2−x -Al memristive device to emulate basal coupling and
an autonomous synchronization scheme for neuronal ensembles [22]. More specif-
ically, two relaxation oscillators with intrinsic oscillation frequencies of 543 Hz
and 414 Hz, respectively, are pulse-coupled through a resistor–capacitor network
comprising a single memristive device. A synchronization process is observed as
anticipated, i.e. the left ‘slow’ oscillator eventually follows the right ‘fast’ oscillator.

The experiment successfully demonstrates that, with the memristive pulse-
coupling of two relaxation oscillators, two relevant dynamic aspects of biology
(memory and synchronization) can be transferred to electronic circuits in a small-
scale compact system. In the future, the construction of a large scale pulse-coupled
memristive oscillator network is expected to facilitate the emulation of higher cogni-
tive functions and perceptual processes. Very large-scale integrated (VLSI) circuits

Fig. 10 Block diagram of discrete setup of two mutually coupled self-sustained relaxation oscilla-
tors with intrinsic frequencies of f1N = 414 Hz and f2N = 543 Hz, respectively. M(x,t) (middle)
is a memristive resistor network, where x is the state variable of the memory process
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have been shown as a feasible solution owing to their variety of advantages: highly
complex neural network connections, highly efficient parallel computing, and real-
time processing [7, 12, 19, 20, 50]. However, to directly transfer the design in the
experiment given in Fig. 10 to neuromorphic VLSI network, the structure of the
oscillator from the experiment has two constraints: at first, the oscillator is based on
a programmable unijunction transistor (PUT; 2N2067), discrete resistors and capac-
itors. It is necessary to find a new circuit structure to replace PUT by using basic
elements (i.e. CMOS transistors) in VLSI; In addition, the frequency of oscilla-
tion and static power consumption of the oscillator from the above experiment are
limited by discrete resistors and capacitors. Especially for the biological frequency
applications—at which the frequency should be less than one hundred hertz and
below—it is infeasible to realize ultra-large resistors or capacitors in the custom
on-chip design to satisfy the ultra-low frequency requirements. As a result, a new
integrated relaxation-type oscillator is highly demanded.

In this section, we present a study of a hybrid CMOS-memristive silicon neu-
ron consisting of a monolithic ultra low frequency relaxation oscillator which is
designed and realized in CMOS technology and the analog memristive device intro-
duced before. The circuit design, simulation andmeasurement results of the proposed
relaxation oscillator are introduced at first. Then, the principle of pulse coupled oscil-
lators is explained and examined by experiments of resistive coupling system. At the
end, an autonomous synchronization process is demonstrated by experiments of
memristive coupling system. This hybrid SiN is strongly biologically oriented and
paves the way for large neuromorphic VLSI system.

3.1 Ultra-Low-Frequency Relaxation Oscillator

This section introduces the design, the oscillation mechanism, the simulation and
measurement results of the relaxation-type oscillator which is fabricated with 130
nm IHP technology. The supply voltage 3.3 V is adopted to meet the state transition
requirements of the analog memristive devices used to realize a coupling between
on-chip oscillators. To make oscillator self sustained, negative differential resistance
(NDR) circuit is adopted here.

3.1.1 Circuit Design and Oscillation Mechanism

The architecture of the proposed integrated self-sustained relaxation oscillator [9] is
shown in Fig. 11. To overcome the obstacle of integration of ultra-large resistors or
capacitors induced from the structure of oscillator in previous experiment, it adopts a
pA-scale charging current to realizems-scale charging time and biological oscillation
frequency. The output current of a MOS-only current reference IREF (1 nA) [51]
is mirrored through two pairs of NMOS current mirrors (N3 and N4, N3 and N5)
and two pairs of PMOS current mirrors (P1 and P3, P2 and P4), in order to supply
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Fig. 11 Schematic of proposed oscillator, which is designed to represent the discrete oscillator in
Fig. 10. The output voltage port Vg is an interface to outside

the charging current Ic (250 pA) and output stage current Io (3 nA), respectively. To
improve the accuracies of the current mirrors, cascode current mirror structures are
adopted (but not shown here). Furthermore, the output stage current Io flows into
configurable diode-connected stacked NMOS transistors (N6, N7, N8, and N9) to
generate the output voltage Vg , which adjusts the threshold voltage VthG of negative
differential resistance (NDR) circuit [52]. It avoids the difficult tradeoff of size of
resistors or power consumption in the structure designed by the experiment shown in
Fig. 10. The NDR circuit consists of PMOS transistor P5, a pair of NMOS transistors
N1 and N2, and the configurable diode-connected stacked NMOS transistors.

The oscillation frequency is tunable by applying a digital configuration to the
programmable capacitor Cc. It consists of binary weighted capacitance with the size
of 1, 2, 4, 8 and 16 C0. By considering chip area and reducing parasitic effects,
the unit capacitance C0 is designed to be 0.94 pF with the size of 25 µm × 25µm.
This enables a programming range of Cc from 0.94 pF to 30 pF. In addition, the
tunable transistor N2 can adjust the NDR region. Another configurable module is
the diode-connected stacked NMOS transistors which control the output voltage Vg

in the range of 2.6–2.8 V in order to ensure the state transition of the memristive
device.

A timing diagram for the voltages Va , Vg , and Vc under the conditions of f= 19.7
Hz and Cc= 4.7 pF is illustrated in Fig. 12. When the circuit is powered on, the
potential of Va and Vg is zero and P5 is turned off. The constant charging current Ic
from P3 begins to flow into the programmable capacitor Cc and potential Va rises
linearly to VaH . At the same time, the output stage current Io from P4 flows into
the diode-connected stacked NMOS transistors and generates output voltage Vg . To
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Fig. 12 Timing diagram of oscillator output voltage Vg and internal voltage potential Va and Vc; tc
indicates the time required for chargingCc, while td is its discharge time (Cc = 4.7 pF, f= 19.7Hz)

make sure P5 keeps turned off before Va arrives at VaH , output voltage Vg should
reach VgH earlier than Va reaches VaH . The time of Vg from 0 to VgH depends on the
output stage current Io and CL which is parasitic capacitance at Vg port. Considering
parasitic capacitance from I/O Pad and additional test point on PCB, to make sure
Vg arriving VgH earlier, Io (3nA) is chosen 12 times bigger than Ic (250pA) here.
When the voltage Va reaches the turn-on voltage VthG (i.e., VaH in Fig. 12) of the
NDR, the transistor P5 turns on, Cc begins discharging and Ic current flows into N1.
It generates potential Vc and turns on N2. In the design, the size of N2 is large enough
to swallow all the current from Io when its Vgs equals Vc with small drain-source
voltage Vds (i.e. Vg). The drain-source voltage ofN2 is then immediately pulled down
(i.e., output voltage Vg is pulled down to be VgL ). This speeds up the discharging of
Cc and generates spike signal Vc.

The capacitor Cc discharges until the voltage Va reaches VaL and the gate voltage
Vc of N1 and N2 also decreases, which reduces the drain current of N2. Io flows
back to the diode-connected stacked NMOS transistors. Thus, Vg becomes high and
switches off P5. Then, the next charging phase starts. From simulated waveforms
in Fig. 12, we can see that Va presents a saw-tooth-type signal, Vg is a rectangular
pulse-type signal, and Vc is a neuron spiking-type signal.

3.1.2 Negative Differential Resistance Regime

The Va–Ic DC characteristics of the proposed oscillator, with different sizes of N2,
are shown in Fig. 13. The width of the NDR region changes with the size of N2; for
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Fig. 13 Va–Ic DC
characteristic for different
values of N2, showing the
negative differential
resistance area. For
increasing size (W/L) of N2,
the NDR area decreases

example, with an aspect ratio of 240 for N2, when Va is less than VthG , P5 is cut
off. When Va = VthG , then P5 turns on, and the oscillator enters an NDR region in
which the voltage Va decreases as Ic increases.

The negative-resistance region extends until the valley point is reached, where the
current is defined by Isat . Beyond the valley point, further increases in Va produce
increases in Ic. This region is the so-called saturation region,which should be avoided
in the circuit designed for oscillation-based applications. An appropriate size for N2
is chosen, in order to make sure that the charging current Ic should be greater than
IthG , thus guaranteeing the turning on of the oscillator and also not exceeding Isat .
For this purpose, to make sure Ic (i.e. 250pA) is in the NDR region, the W/L of N2
should be less than 240. In the design, the W/L of N2 is decided 220 and a 4-bit
transistor bank is added to the oscillator to calibrate the size of N2, considering the
deviation of the process. The unit size of the transistor bank is W/L = 1µm/1 µm.

3.2 Simulation and Measurement Results of Relaxation
Oscillator

As shown in Fig. 14, the total area of chip layout is 0.05546 mm2, including the
current reference, the programmable capacitor bank, and the core of the oscillator.
The simulated static power consumption of a single oscillator is 24 nW excluding the
power consumption of the current reference, as the current reference will be shared
with other oscillators in future neuromorphic networks. The power consumption
of the current reference is 255 µW. Figure15 summarizes the performance of the
proposed oscillator for different configurations, based on post-layout simulations
and measurement results. The energy per spike is defined as the power consumption
of a single oscillator core (active power) integrated over the period of spiking. Post-
layout simulations indicate that it varies from 0.8 nJ/spike to 7.12 nJ/spike, and the
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Fig. 14 The photograph of die with core area of 0.05546 mm2. The three main parts of this work,
i.e. current reference (top), oscillator core (middle) and programmable capacitor bank (bottom) are
shown in it

Fig. 15 Post-layout simulation and measurements of oscillation frequency and calculated energy
per spike versus programmable capacitance
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Fig. 16 Measured current versus IC number

oscillation frequency is tunable from 3.15 to 81.30 Hz by programming the on-chip
capacitors. A total of 10 chips were bonded and tested. The output of the current
reference was tested, as shown in Fig. 16. Seven chips were within the acceptable
limits for low-frequency neuromorphic applications. Compared with the simulation
results, the oscillation frequency of chip 9 in the test results was programmable from
3.58 to 13.01 Hz. The oscillation frequency was relatively lower when the charging
capacitor was small (from 1 to 15 C0), due to the parasitic capacitor at the input of
oscillators from PCB and chip package being comparably large, with respect to the
small charging capacitor Cc. The parasitic effects can be reduced in the integrated
on-chip design for neuromorphic network applications.

3.3 Experiments of Coupling Systems

In a previous work the coupling of two relaxation-type oscillators built by discrete
Programmable Unijunction Transistors (PUTs) and by a digital type of memrisitive
device was investigated by Ignatov et al. In this section two types of coupling exper-
iments between both on-chip oscillators were discussed. The first experiment uses a
RC network as intermedia, which aims to check the functionality of synchronization
of the two oscillators. In the second experiment, the two oscillators are coupled by
an analog memristive device. Due to its memristive characteristic, the test allows
us to further observe the autonomous transition process from unsynchronization to
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Fig. 17 Coupling test with RC network

synchronization. This transition phase mimic the synchronization process of neuron
signals [45, 46].

3.3.1 Coupling System with RC Network

The coupling system of two oscillators via a RC network is shown in Fig. 17. Two
capacitors C1 = C2 within the coupling network forms the DC potential decou-
pling between both oscillators. The coupling network which consists of RC serials
connected with C1 and C2 is a passive high-pass filter with a cut-off frequency fc
determined by the following equation [22]:

fc = 1

πRcC1
(3)

In the uncoupled state (i.e. without RC network), the intrinsic frequency f1N of
oscillator 1differs from the intrinsic frequency f2N of oscillator 2.Hereby, f1N < f2N
and the frequency difference is � fN = f2N − f1N .

After the coupling system with RC network is powered on and at t0, the gate
voltage Vg1 and gate voltage Vg2 are charged to be VgH (the blue and green curve in
the lower graph in Fig. 18). At this moment, there is no current flowing through RC
network due to Vg1 = Vg2. The voltage Va1 from oscillator 1 (green dotted curve in
the upper graph in Fig. 18) and Va2 from oscillator 2 (blue dotted curve in the upper
graph in Fig. 18) rise linearly towards VaH as the capacitors Cc1 and Cc2 are charged
with constant charging currents Ic1 and Ic2, respectively, as shown in Fig. 18. Induced
by the difference in the charging capacitor selected for Cc1 and Cc2, Va2 reaches the
turn-on voltage VaH ahead of Va1, as Cc2 < Cc1, under the condition of the same
charging current (i.e., Ic1 = Ic2 = Ic,). At the same time, Vg2 falls at the moment
t1 ahead of Vg1. Therefore, there is a low-resistance signal path existing from Vg2
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Fig. 18 Waveform of
coupled process in
synchronous phase
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to ground and the decreasing of Vg2 cause voltage difference between Vg1 and Vg2.
There is current flowing from Vg1 to Vg2 through RC network. When Vg2 falls down
to be VgL (VgL ≈ 0) at t1d , so Vg1 is

Vgp1 = Rc · IRC (4)

where, IRC is the current flowing through the coupled resistor at the moment of t1d .
Ic comes mainly from the IO1 and the discharging current from parasitic capacitance
at the node of Vg1. To ensure that oscillator 1 follows the faster oscillator 2 (i.e.,
that the two oscillators synchronize), VaH1 (the value of Va1 at the moment of t1d )
should be a threshold voltage Von bigger than Vgp1 in order to turn on pmos transistor
P5_1 in oscillator 1 and lead Cc1 into the self discharging state. Then, Vg1 is pulled
down to be VgL due to the turn-on of P5_1 oscillator 1. After that, the two oscillators
independently go into self-sustained charging state again, and the synchronization
process is repeated. As a result, the two self-sustained oscillators synchronize with
the same frequency of f2N .

Therefore, Rc needed for synchronization of RC coupled two oscillators can be
calculated as

Vgp1 = Rc · IRC ≤ (VaH1 − Von) (5)

Therefore,

Rc ≤ (VaH1 − Von)

IRC
, (6)

where VaH1 is determined by

Ic · t1d = VaH1 · Cc1

hence,

VaH1 = Ic · t1d
Cc1

≈ Ic
f2N · Cc1

(7)
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where, t1d ≈ T2. From Ic · T1N = Ic/ f1N = VaH · Cc1, where, T1N is the intrinsic
oscillation period of oscillator 1, we can have

Cc1 = Ic
f1N · VaH

. (8)

Substituting Eq.8 into Eq.7, we obtain

VaH1 = VaH · f1N/ f2N . (9)

Therefore,

Rc ≤ (VaH · f1N
f2N

− Von)

IRC
= [VaH · (1 − � fN

f2N
) − Von]

IRC
(10)

From Eq.10, it can be easily concluded that, when the frequency ratio of the two
oscillators f1N/ f2N gets smaller (i.e.,� fN/ f2N is larger), Rc should be smaller, such
that the two oscillators can synchronize. Therefore, we can obtain the following con-
clusions: The coupling resistance is proportional to the frequency ratio and inversely
proportional to the frequency difference under the same value of f2N .

3.3.2 Measurement Results of Resistive Coupling

To verify the above conclusions, five experiments have been executed and the corre-
sponding results are summarized in Table1. When the frequency ratio ( f1N/ f2N )
varies from 0.207 to 0.889, relative frequency difference (� fN/ f2N ) identically
decreasing from 0.793 to 0.111, the maximal coupling resistance Rc required for
synchronization increases from 564 k� to 251 M�. The variations of Rc matches
our expectation, since Eq.10 is derived by ignoring parasitic factors.

3.3.3 Coupling System with Analog Memristive Device

In this section, an analog memristive device was chosen as coupling element in
the coupling system. Here, devices showing similar electrical characteristics as the
DBMDspresented above are used.These devices incorporateHfO2 insteadofNbxOy .
While a typical |J |-V curve is shown below, a detailed analysis of the device per-
formance will be published elsewhere. The circuit demonstrates an autonomous
phase-locking and frequency synchronization process due to resistance changes in
an analog memristive device.

To test the performance of the memristive coupling system, two oscillators were
assembledwith an analogmemristive device in a single test PCBas shown in Fig. 19a.
The structure of test PCB is depicted in Fig. 19b. Oscillator 1 with lower oscillation
frequency f1N and oscillator 2 with higher oscillation frequency f2N are connected
to the top and bottom electrode (BE) of the memristive device, respectively, through
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Table 1 Measurement results of maximal coupled resistor for synchronization

Oscillators Charging
capacitor(C0)

Intrinsic
frequency of
oscillators(Hz)

Freq. Ratio
( f1N / f2N )

Freq. Diff.
(� fN / f2N )

Coupling
resistor (M�)

f1 32 2.8 0.207 0.793 0.564

f2 2 13.5

f1 16 4.5 0.333 0.667 0.599

f2 2 13.5

f1 9 6.4 0.475 0.526 0.701

f2 2 13.5

f1 32 2.8 0.622 0.378 11

f2 29 4.5

f1 20 4.0 0.889 0.111 251

f2 29 4.5

Vg1 Vg2

DBMD

C1 C2

PicoScope 3000

USB

AD820 AD820

Ch: A
Ch: B

Oscillator 1
              (fN1)

Oscillator 2
              (fN2)

Oscillator 1
Oscillator 2

DBMD

(b) Test PCB diagramm

(a)Test PCB

Fig. 19 Test system for the memristive coupling

series connected DC decoupled capacitor C1 and C2. The gate voltages (Vg1 and
Vg2) of both oscillators were recorded using a PicoScope 3000 Series mixed-signal
oscilloscope after buffered AD820 amplifiers with high input impedance low input
bias current to reduce the loss of signal current.

The layout of a 5 × 5 mm2 chip containing analog memristive device is shown
in Fig. 20a [48]. It contains 25 sub-cells arranged in a 5x5 array. Except for two
sub-cells (Tcells, gray boxes) containing test structures, the other 23 sub-cells can
be used in the experiments. Six devices with area sizes increasing from 100 µm2 to
2500 µm2 [numbered with “1” to “6” in Fig. 20b] are located in a single sub-cell
[23, 48]. To connect the memristive devices with the two oscillators, the chip was
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glued onto a JLCC 44 chip carrier shown in Fig. 20c and some devices with an area
of 400 µm2 (size 3) are wire-bonded for experiments. A typical |J| − V hysteresis of
the HfO2-based devices is given in Fig. 20d. The JLCC 44 chip carrier is then placed
into a PLCC 44 socket on the test PCB to connect two oscillators, as shown in Fig. 19
for experiments.

3.3.4 Measurement Results of Memristive Coupling

As discussed above, the bigger the frequency ratio ( f1N / f2N ) is, the larger coupling
resistance is needed for synchronization. Hence, the two oscillators can immediately
synchronize without a small coupling resistance, when the frequency ratio ( f1N / f2N )
is big. The initial resistance value of the memristive device is small enough for their
mutual coupling and synchronization.However, for small frequency ratios ( f1N / f2N ),
the two oscillators require a small coupling resistance for synchronization. When
the initial resistance value is not small enough, as long as the resistance of the
memristive device decreases gradually to Rc defined by the Eq.10, the two oscillators
can synchronize.

A representative synchronization process of two oscillators coupled with a mem-
ristive device is shown in Fig. 21. A device with area size of 400µm2 numbered with
“3” in Fig. 20b was used in this experiment. By considering the switch dynamic and
retention characteristics of the devices, the intrinsic frequencies of the two oscilla-
tors 1 and 2 were f1N = 2.24 Hz and f2N = 5.90 Hz, respectively. Initially, due to
the high resistance of the memristive device, the two self-sustained oscillators can
not synchronize (i.e. they are in the desynchronous state (DS)). In each discharging
period of oscillator 2, the Vg1 was pulled down to be Vgp1 = RM · IM when Vg2

reaches VgL (about 0 V), where RM was the resistance of memristive device, IM
was the current flowing through the memristive device during each discharging from
oscillator 2. As a consequence, every discharge of the faster oscillator (in this case,
oscillator 2) would trigger a discharge of Vg1 to be Vgp1. During this period, voltage
Vgp1 exerted on the top electrode of the memristive device and the bottom electrode
of the memristive was VgL . The voltage difference happened at each discharge period
of the faster oscillator and gradually changed the resistance value of the memristive
device. As long as the resistance of coupledmemristive device decreased less than Rc

calculated by Eq.10 and then Vgp1 ≤ VaH1 − Von , oscillator 1 can follow the rhythm
of oscillator 2. In this experiment, after about 125 s, the two oscillators synchronized
due to the state transition of the memristive device from a high to low resistance
state.

In upper graph of Fig. 21, the transient frequency variations of oscillator 1 and 2
are given. In the desynchronous state phase (DS phase), the frequency of oscillator 1
was equal to its intrinsic frequency ( f1 = f1N = 2.24Hzwhich is calculated by 0.3V
threshold voltage). For the first 66 s, the oscillator network remained desynchronous
until the intermediate phase (I phase) was reached. The intermediate state is charac-
terized by the fact that the frequency of oscillator 1 jumps between the frequency f2N
and f1N at irregular time intervals. The intermediate phase ended till synchronous
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Fig. 20 a The layout of a 5 × 5 mm2 chip containing analog memristive device. b Layout of a
sub-cell. c Chip glued on JLCC 44 chip carrier and wire-bonded. d Typical |J| − V hysteresis of
the HfO2-based devices
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Fig. 21 Synchronization process ofmemristive coupling: Upper graph: f1 and f2 were the transient
frequency variations of both self-sustained oscillators. The continuous resistance change of the
memristive device caused a desynchronous phase (DS phase), an intermediate phase (I phase), and
a synchronous phase (S phase). Middle graph: Transient waveform of Vg1 and Vg2 signal. Lower
graph: Zoomed in transient waveforms of Vg1 and Vg2 signal in desynchronous phase (in yellow
background) and synchronous state (in green background), respectively, corresponding time slots
in the whole synchronization process are marked by the yellow bar and the green bar in the middle
graph

phase (S phase) was reached at 125 s when phase and frequency of both oscillators
synchronized. In the synchronous state phase, each Vg2 pulse of oscillator 2 triggered
oscillator 1 to discharging fully and generated a full gate pulse (i.e. amplitude of Vg1

is from VgH to ground). Oscillator 2 oscillated at its intrinsic frequency f2N over the
entire period of time.

4 Conclusion

In this work, two types of biologically plausible silicon neurons have been realised in
integrated circuit technology. The first low-power spiking silicon neuron is inspired
by mathematical Izhikevich model and built by relaxation oscillator implemented
in 0.35 µm CMOS technology. It achieves an energy consumption of 8∼10 pJ per
spike under low-power operation mode and synchronous processes of two coupled
neurons is demonstrated in the simulation results. The measurement results show
that it can mimic a broad range of physiologically observable spike patterns. This
area and energy efficient fully CMOS silicon neuron could be used as a universal



382 X. Cheng et al.

neuron circuit integrated in large scale analogue VLSI systems. The second ultra-
low-frequency hybrid SiN achieves the biological spiking frequencies below 100
Hz with energy consumption in the range of 0.8–7.12 nJ/spike. To emulate a basic
neural network, two integrated ultra-low-frequency relaxation oscillators coupled
by an external analog memristive device were proposed. The autonomous neuronal
synchronization processes of this basic neural network are presented and analysed.
The realisation of biologically plausible oscillators in CMOS technology and an
analog memristive device fabricated on silicon wafer pave the way towards large
scale hybrid analog integrated neural network realisation in future.
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