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Abstract: Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant
social and economic impact in today’s society. NDDs are predicted to become the second-most
common cause of death in the next few decades due to an increase in life expectancy but also to a
lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic
and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways
contributing to these pathologies. The development of new approaches for early diagnosis and
new therapies, together with the identification of non-invasive and more cost-effective diagnostic
biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on
peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells
(platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs—
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs
and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable
sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical
signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of
the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs
from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM
is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine,
in particular for early diagnostics of various medical conditions. AFM is a unique instrument
without an analog, allowing the generation of three-dimensional cell images with extremely high
spatial resolution at near-atomic scale, which are complemented by insights into the mechanical
properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between
the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve
as biomarkers in combination with the currently used diagnostic tools. We highlight the strong
correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS,
and AD.

Keywords: platelets; red blood cells; cell morphology; cell nanomechanics; atomic force microscopy;
biomarkers; neurodegenerative disorders

1. Introduction

The increase in human life expectancy is contributing to an increase in the number of
patients with neurodegenerative diseases (NDDs)—Alzheimer’s disease (AD), Parkinson’s
disease (PD), and amyotrophic lateral sclerosis (ALS) being the most common ones. NDDs
are age-dependent pathologies [1] that share common dysfunctions in fundamental cellular
processes, such as mitochondrial blood-brain barrier dysfunction [2–4], oxidative stress and
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generation of reactive oxygen species [5–7], dysregulation of calcium homeostasis [8–10],
and are associated with progressive degeneration and/or loss of neurons in the central and
peripheral nervous systems, movement problems, and/or memory impairment. Besides
age, sex dimorphisms play an important role in the development and progression of AD,
PD, and ALS [11]. In most cases, the causes of NDDs are idiopathic. The presence of
environmental toxins, genetic predisposition, and the processes of oxidative stress and
inflammation associated with the aging of the body play a role in the etiology of these
conditions [1]. The genetic contribution was found to be higher in AD, Huntington’s
disease, and brain degeneration and lower in PD, a motor neuron disease, and prions [12].
One of the current theories about the occurrence of NDDs is that it is largely related to
systemic inflammation [13,14]. The immune cells that underlie the neuro-inflammatory
response are involved in the clearance of accumulated pathological proteins and ensure the
survival of neighboring neurons and the maintenance of brain homeostasis. These cells,
however, can release molecules that promote oxidative stress and damage to surrounding
neurons and abnormally remove healthy cells from the brain [13–15]. Recent studies have
also shown that there may be a correlation between genetic and environmental agents,
including exposure to heavy metals, pesticides, dietary habits, stress, and other factors such
as inflammatory cytokines, leading to modulation of the normal functioning of the central
nervous system and increased neuronal sensitivity to oxidative stress or apoptosis [16].

Abnormal accumulation of insoluble, toxic aggregates from misfolded specific proteins
(β-amyloid peptide (Aβ), tau-protein (tau), and α-synuclein (α-syn)) in the brain and in
peripheral body fluids, blood cells, and tissues [17–21] is a common mechanism of NDDs,
also called “protein misfolding disorders” [22–24]. Recent findings proved that misfolded
proteins cannot only self-assemble [25], but also interact with each other or with other
“pathological proteins”, forming toxic heteroaggregates present in the brains and peripheral
blood cells of patients [18,26,27].

Despite the advances in diagnostic and therapeutic methods, the treatments applied
only alleviate the symptoms or slow the disease’s progression. Furthermore, motor and/or
cognitive deficits usually appear at a relatively advanced stage of neurodegeneration, and
hence neuronal loss in the substantia nigra and dopaminergic deficiency in PD patients,
and accumulation of protein plaques and tangles resulting in neuronal dysfunction and
cell death in AD patients, appeared before the clinical diagnosis. This is because of the lack
of reliable biomarkers that allow early diagnosis of NDDs. Therefore, the development
of new approaches for cheaper and faster diagnostics, respectively, for the detection of
novel reliable, more cost-effective, and readily accessible diagnostic biomarkers and the
establishment of new therapies for these diseases is of utmost importance [19,27,28]. The
pathological features of these diseases allow such markers to be identified in peripheral
blood cells, peripheral fluids, and tissues.

2. Current Biomarkers for the Diagnosis of Alzheimer’s Disease, Parkinson’s Disease,
and Amyotrophic Lateral Sclerosis

Currently, the diagnosis of the majority of NDDs is based on clinical examination
combined with a number of laboratory methods: liquid biopsy, biophysical, biochemical,
genetic, imaging, “omics” techniques, machine learning, etc. [19,29–35].

Brain imaging techniques, such as magnetic resonance imaging (MRI) [36], diffusion
and advanced diffusion MRI, and alternative imaging approaches (diffusion tensor imaging,
neurite orientation dispersion and density imaging, free-water imaging, etc.), are powerful
noninvasive tools for the detection of brain biomarkers and microstructural characteristics
of the brain [37,38]. Positron emission tomography (PET) is another promising tool to
identify abnormal brain metabolism (18F-FDG PET) [39] and to detect amyloid deposition
(Amyloid PET) [40–43] and disease staging with amyloid and tau PET [44]. These tech-
niques, however, are expensive and not routine clinical practice. “Omics” technologies are
also effective tools for the detection of molecular biomarkers. Proteomics and metabolomics
can detect proteins and neurotransmitter metabolites involved in NDDs [45,46], and create a
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characteristic profile of specific biomarkers for certain pathologies or for several pathologies
sharing similar characteristics [47,48].

Considerable efforts are ongoing to identify fluid biomarkers, specific proteins/peptides,
and miRNAs in body fluids, which are readily detected in both cerebrospinal fluid (CSF)
and blood plasma [19,48–50]. CSF is one of the most important sources of biomarkers
because it directly reflects all biochemical changes in the brain [51], which are also sensed
in blood plasma. Both CSF and blood plasma were screened for the presence of NDD
biomarkers and potential differential diagnoses [30,52–54]. Among the fluid markers for
the detection and monitoring of the preclinical and clinical stages of NDDs, the most
established ones are Aβ42, total tau-protein (t-tau), phosphorylated tau-protein (p-tau181),
and neurofilament light (NfL) in AD [55], α-syn in PD [56–61] and clusterin [62], creatinine,
albumin, transactive response DNA binding protein 43 kDa (TDP-43) in ALS [63–65], as
well as RNA biomarkers [66]. While CSF sampling is an invasive procedure, blood plasma
is more accessible and less invasive; however, the biomarkers in plasma are present in low
concentrations and are difficult to detect [33]. In recent years, high-sensitivity techniques,
such as mass spectrometry [67] and digital ELISA, that allow the detection of compounds
at low concentrations have been developed [68]. Plasma biomarkers (Aβ42, Aβ40, α-syn,
p-tau181, t-tau, NfL, and TDP-43) were also identified by means of single-molecule array
technology (SIMOA) [69].

2.1. Fluid Biomarkers in Alzheimer’s Disease

The combination of several plasma biomarkers has demonstrated improved accuracy
for AD diagnosis compared to individual ones, which also showed good accuracy [70–73].
It has been established that CSF p-tau levels increase while CSF Aβ levels decrease in
AD [74–76]; the plasma ratio Aβ42/Aβ40 and p-tau181 protein can distinguish between
AD and a healthy state [77–80]. The plasma Aβ42/Aβ40 ratio significantly correlates
with Aβ accumulation detected by mass spectrometry assay and by PET scans; the latter
also predicted AD progression [81]. Some authors postulated the use of p-tau181 as a
marker for disease progression [82,83]. Additionally, hyperphosphorylated tau isoforms
could be helpful for distinguishing AD with greater accuracy, especially at early disease
stages [84,85].

Analysis of the combination of some potential plasma biomarkers (p-tau181, t-tau,
Aβ42, Aβ40, NfL, TDP-43, t-tau/Aβ42, and Aβ42/Aβ40 ratio) in AD by means of SIMOA
revealed the range of normal and pathological plasma concentrations for each marker
and the correlations of their plasma levels with the corresponding CSF levels ([69] and
references therein). No correlation was obtained between CSF levels of Aβ42 and t-tau
protein and their plasma levels. A positive correlation was determined between the levels
of both p-tau181 and NfL in plasma and CSF; p-tau181 in plasma also correlated with t-tau
and the t-tau/Aβ42 ratio in CSF. Inversely, plasma Aβ42/Aβ40 ratio correlated negatively
with CSF t-tau, CSF p-tau181, and CSF t-tau/Aβ42 ratio.

Recent data demonstrated that neurodegeneration of any etiology is reflected in
CSF and plasma levels of t-tau, p-tau231, and p-tau217, which were suggested as the most
promising blood biomarkers, reaching abnormal levels at early cerebral Aβ changes [84,86–88].
Importantly, plasma p-tau231 combined with the Aβ42/40 plasma ratio manifested the
largest change in patients’ cohorts with low Aβ levels [88].

2.2. Fluid Biomarkers in Parkinson’s Disease

Although there are some contradictory results, α-syn protein is considered the most
promising biomarker for PD; abnormal CSF and plasma levels of oligomeric α-syn (o-α-
syn) were reported to correlate with brain abnormalities in PD patients [89–91]. Besides
toxic α-syn homoaggregates, pathological heteroaggregates of α-syn and the classical
AD biomarkers, Aβ and tau proteins (α-syn/Aβ/tau) are also related to the occurrence
of PD [12,92–96]. A recent study of variously sized α-syn aggregates separated from a
heterogeneous mixture by density centrifugation proved that the cytotoxic properties
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correlated with the aggregate size, with the small non-fibrillar aggregates being more toxic
than the large ones [97]. Importantly, soluble aggregates extracted from post-mortem PD
brains had a similar size and structure as the smaller, more toxic aggregates separated from
a mixture of α-syn aggregates [97].

Combination of the ratio o-α-syn/total α-syn (t-α-syn) and the age of patients, CSF
t-α-syn and Aβ42, t-tau and p-tau, and β-glucocerebrosidase activity can differentiate
PD patients from healthy subjects [98,99], while CSF p-α-syn/t-α-syn, CSF Aβ42, p-tau,
and, in particular, CSF NfL levels are associated with cognitive performance in early-stage
PD patients. A greater diagnostic accuracy was reached by combining oligomeric t-α-syn
and Aβ42/tau ratios [99]. Plasma levels of α-syn, Aβ-40, and t-tau are also recognized as
predictive markers for cognitive decline [61,100,101]. Several inherited, familial mutations
have been found to correlate with elevated PD risk and to perturb the α-syn structure [102].
The levels of t-α-syn, proteinase K-resistant (PKres) α-syn, phosphoserine 129 α-syn and
oxidized α-syn were suggested as complex biomarkers for PD [103].

2.3. Fluid Biomarkers in Amyotrophic Lateral Sclerosis

There are still no clinically validated, reliable, and specific markers for ALS [104].
Combining clinical trials, MRI analysis applying pattern-recognition algorithms, and ma-
chine learning is expected to provide an earlier diagnosis of ALS and a prediction of the
disease course [105]. Recently, biomarkers in CSF have been identified, including the levels
of TDP-43 protein [106,107], chemokines [108], and NfL [109,110]. The ALS-linked genetic
mutations encoding TDP-43 and copper-zinc superoxide dismutase 1 (SOD1) proteins have
demonstrated distinct metabolic phenotypes. TDP-43 leads to a decrease in carnitine and
an increase in pyruvate and fatty acids [111,112], and SOD1 leads to a drop in arginine,
lysine, ornithine, serine, threonine, and pyroglutamic acid [113] in ALS patients with these
mutations. TDP-43 [114] and SOD1 [115] are some of the proteins implicated in both famil-
ial and sporadic ALS, although it is still unclear whether they are a cause of the pathology
or a symptom. As discussed in [107,116], TDP-43 protein forms toxic aggregates in the
cytoplasm of motor neurons, which are detected in the majority (97%) of ALS patients;
however, its role as a biomarker is still a matter of debate [107].

A large number of studies reported elevated levels of inflammatory markers—cytokines,
TNFα, IL-1β, IL-6, IL-8, TNF receptor 1, and vascular endothelial growth factor (VEGF)—in
ALS serum and plasma; however, the inflammatory markers show no specificity for ALS
diagnosis and progression ([116,117] and references therein). Also, C-reactive protein (CRP),
an inflammation marker, is elevated in the serum of preclinical ALS patients and correlates
with the rapid progression of the disease [118].

The cytoskeletal protein NfL and its phosphorylated form, pNfH, are increasingly
recognized as the most promising diagnostic biomarkers for ALS [110,119,120], which are
correlated to rapid progression and a worse prognosis of the disease [121,122]. Accumu-
lation of aberrant NfL was detected in ALS patients with familial and sporadic forms of
the pathology [123]. Higher levels of both CSF and plasma NfL were detected in the early
stages of ALS and were found to correlate with shorter survival [124,125]. Plasma NfL
can differentiate and mimic ALS phenotypes [126]. It should be noted that the NfL level
in CSF is also elevated in AD [127] and PD [128], as discussed above, as well as in other
neurological disorders. Multivariate analysis of CSF proteins has shown that NfL and t-tau
proteins were correlated with ALS progression, and plasma NfL was correlated with the
ALS diagnostic grade [129]. A negative correlation between CSF NfL and TDP-43 was
revealed by mutual biomarker analysis [129].

Furthermore, human serum albumin and creatinine were suggested as independent
markers in ALS and also as indicators of the disease’s severity [130]. Albumin in ALS
patients was reported to correlate with inflammatory markers and creatinine with a marker
of muscle mass [63]. Increasing levels of CRP and glucose were detected during the very
fast progression of ALS [130].
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Additionally, Colletti et al. [131] found that Aβ42 may be involved in the pathogenesis
of ALS and that the Aβ42/Aβ40 ratio may serve as a prognostic biomarker.

Plasma and CSF levels of lipids associated with ALS pathological pathways have been
found to correlate with disease progression [132,133]. Increased incidence of ALS was
related to serum low-density and high-density lipoprotein cholesterol (LDLC and HDLC),
apolipoprotein B, and other lipids [134,135]. Cholesterol and LDL/HDL levels were also
associated with ALS development [136].

3. Platelets and Red Blood Cells in Alzheimer’s Disease, Parkinson’s Disease, and
Amyotrophic Lateral Sclerosis

How platelets (PLTs) and red blood cells (erythrocytes, RBCs) are affected in NDDs
and what their role is in the development of these diseases is not fully understood and
remains to be studied and elucidated. Changes in the number and function of both types of
blood cells have been observed in various NDDs, including AD, PD, and ALS. However,
these changes are not specific to any particular neurodegenerative disease and may also
occur in other diseases. In this review, we seek to summarize the advances in the attempt to
explore specific changes in the morphological and mechanical properties of PLTs and RBCs,
as well as AFM as medical diagnostic tools to detect NNDs and differentiate between them.

3.1. Platelets

PLTs are small, anucleate multifunctional cells with a primary role in hemostasis and
thrombosis [137], but they are also involved in inflammatory processes that contribute
to different pathologies, like cardiovascular disease and cancer, and are risk factors for
neurodegenerative diseases and their progression [138–141]. Various neurodegenerative
pathological conditions, including PD, AD, and ALS, were linked to platelet dysfunc-
tion [142], activation, and aggregation [143–145]. Furthermore, oxidative and physiological
stress induce structural and functional alterations and PLT activation in AD, ALS, and
PD [52,143–146]. The PLT cytoskeleton is a dynamic, complex protein network that plays a
key role in platelet function [147]. Upon activation, the PLT cytoskeleton and hence the cell
membrane morphology undergoes significant reorganization [140,148–151].

In AD, a reduced PLT count was found, which was associated with a deterioration of
cognitive functions [146,152–154], while PD patients had an increased number of PLTs [141].

Furthermore, the expression of some proteins connected to the pathogenesis of AD,
such as the transmembrane amyloid precursor protein (APP) [155,156] and tau protein [157],
was enhanced; likewise, reactive oxygen species accumulation, which was associated with
PLT dysfunction [146]. The increased level of APP [158] and production of Aβ peptides
in AD stimulated PLT activation and aggregation [159–161], and in turn, PLT activation
might induce changes in cell membrane fluidity [162]. Changes in PLT activation and
aggregation state, membrane ultrastructural modifications, mitochondrial abnormalities,
and dysfunction have also been found in ALS [52,143,146,163,164], and PD [144] patients.

Besides, overexpression of platelet α-syn in PD was also associated with mitochon-
drial dysfunction and oxidative stress. [159,165–167]. Furthermore, PLT serotonin levels
were found to be lower in patients with ALS and to positively correlate with patients’
survival [168]. Likewise, the serotonin level was diminished in AD PLTs, while the AD
plasma serotonin level was increased [169]. Evidence was provided for direct interaction
between PLTs and specific glycolipid structures present in the lipid raft domains of neuronal
cells [170,171].

Similar to neurons, which contain intercellular storage compartments for neurotrans-
mitters, neuropeptides, and neurohormones [172], PLTs have the ability to store and release
neurotransmitters, intercellular signaling molecules, and other bioactive molecules in α-
and dense granules, which is essential for maintaining brain function and intercellular
communication [173]. The α-granules store proteins such as fibrinogen, coagulation and
growth factors, adhesive molecules, cytokines, and chemokines [174], while dense granules
are a storage pool for small molecules such as ADP, ATP, polyphosphate, serotonin, and cal-
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cium [175]. The α- and dense-platelet granules resemble the large dense-core and the small
dense-core synaptic vesicles of neurons, respectively [175]. Intercellular communication can
also be conducted by the release of extracellular vesicles, exosomes, and microparticles that
contain bioactive molecules and microRNAs [176]. The exocytosis in PLTs and neurons is
activated by an increase in the internal calcium concentration [141], leading to the activation
of the secretory machinery.

An increased extracellular concentration of glutamate, one of the major excitatory
neurotransmitters, and a decline in glutamate uptake have been reported to mediate
glutamate excitotoxicity in AD and PD, which is likely related to the abnormal aggregation
of amyloid peptides (Aβ and α-syn) [177,178]. The ALS glutamate excitotoxicity was
attributed to an atypical increase in glutamine synthetase in platelets [179,180].

Moreover, when the blood-brain barrier is compromised, PLTs can communicate with
neuronal cells and, once activated, release bioactive molecules and neurotransmitters, thus
playing a pro-inflammatory role [181,182]. Inhibition of platelet activation and aggregation
is used for the development of anti-platelet therapy to reduce and treat cardiovascular
disease and is also expected to be applied to the treatment of neurodegenerative disor-
ders ([141] and references therein). On the other hand, the therapeutic potential of healthy
platelets (platelet lysate and platelet-rich plasma) is also a challenge.

3.2. Red Blood Cells

Human RBCs are deprived not only of the nucleus but also of all subcellular organelles,
including mitochondria [183]. Nevertheless, all tissues depend on the functioning of RBCs,
especially neurons, which use 20% of the total oxygen consumed. In structural terms,
the red blood cell is maintained by a membrane cytoskeleton with a 2D six-fold structure
consisting of a dense network of spectrin tetramers linked to the phospholipid bilayer
by “binding complexes” and ankyrins [184–188]. The binding complexes contain the
Band 3 protein, located in the lipid bilayer as a dimer or tetramer, bound to ankyrin,
thereby making links to the cytoskeleton via the spectrin network [189]. Glycophorins and
Band 3 proteins are associated with the cytoskeleton and have an important role in the
maintenance of RBCs’ shape and mechanical properties [190]. Band 3 protein also plays a
major role in cell metabolism and in the exchange of oxygen between hemoglobin (Hb) and
tissues [186,189,191]. The unbound parts of the membrane cytoskeleton are flexible and
allow a dynamic change of the RBC’s shape and significant deformation without damage
during the passage of the cells into the bloodstream [192]. A change in a single component
of the membrane cytoskeleton can lead to a modification of the whole structure, which
would impair the cells’ function and the oxygen transport mechanism.

RBCs may be thought of as biochemical machines that can be structured, aged, and
removed from the bloodstream (along their 100-day lifespan) when their function is im-
paired. Cellular aging is accompanied by a strong reduction in cell volume and Hb content,
but the mechanisms of these events are not elucidated [192–194].

The unique biconcave shape and the reversible deformations, critical for the function
of RBCs, are maintained by the lipid bilayer plasma membrane [186,187]. Importantly, the
remarkable ability of RBCs to deform is critical for their primary function, oxygen transport
through the bloodstream, and can change significantly under different pathophysiological
conditions, which might be useful for the differential diagnosis of various diseases [195].
Along the aging process, RBCs undergo morphological transformations from the well-
known smooth and biconcave forms at rest and under normal physiological conditions to
different atypical morphological types [196–200].

The mature RBCs are involved in interactions with other cells in the peripheral blood,
like endothelial cells, platelets, macrophages, and bacteria [183], which are mediated by
proteins such as fibrinogen or immunoglobulins. Furthermore, RBCs release extracellular
vesicles, endosome-derived exosomes, and microvesicles—membranous extracellular struc-
tures containing biomarkers and microRNAs but not DNA, suggesting their involvement in
cell-cell interactions, thrombosis, systemic inflammation, or cell adhesion [188,201]. During
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their lifespan, RBCs also shed hemoglobin-containing vesicles in the circulation, an event
supposed to control the changes in the cells’ physical features during their maturation [202].

Decreased RBC counts have been shown to occur in AD patients and may be associated
with an increased risk of dementia and cognitive impairment [203]. The degree of reduction
in the levels of RBCs, Hb, and hematocrit compared to healthy individuals depends on the
disease stage and is more significant in late-stage than in early-stage PD [204]. The severely
reduced Hb concentration is thought to be related to disease duration and peripheral iron
metabolism.

Like in peripheral fluids and PLTs, significant amounts of Aβ are detected in RBCs,
suggesting that plasma Aβ peptides can interact with RBCs [165]. Besides, the concentra-
tions of Aβ42 and Aβ40 were described to increase with age and to be significantly higher
in RBCs from older than from young healthy individuals [26]. The higher Aβ level induces
oxidative injury and impairs RBC capacity [26,205,206].

Recent studies have shown that RBCs from patients with AD are linked to amyloid
peptides [20], suggesting a pathogenic role for RBC-amyloid peptide complexes. The
binding interaction between RBCs and Aβ in the blood stream leads to oxidative stress and
the generation of reactive oxygen radicals in erythrocytes [207], thus disrupting their oxygen
delivery capacity and facilitating disease development. The Aβ-erythrocyte complex
induces changes in the cells’ morphology and their adhesion to the endothelium, thereby
affecting endothelial viability and functionality [208].

Although there are some contradictory results on the total α-syn levels in RBCs [89],
as well as α-syn in plasma/sera [91], higher levels of o-α-syn were found in PD patients
compared to controls [209–211]. It is supposed that the source of α-syn might be intact
or lysed RBCs that entered the cerebrospinal fluid [165] or that α-syn is secreted by RBCs
in the form of extracellular vesicles that can cross the blood-brain barrier [212]. Recent
experimental evidence also demonstrated a higher level of p-tau in PD RBCs [209] and a
correlation of the RBCs’ t-tau protein concentrations with cognitive deficits in newly diag-
nosed patients [213]. In addition, the interaction of α-syn with Aβ42 and tau protein in PD
RBCs has also been reported [209]. The elevated level of α-syn-Aβ42 heteroaggregates was
particularly found to correlate with disease severity and motor deficits in PD patients [209].

Furthermore, as reported by Baldacci et al. [25], α-syn/Aβ andα-syn/tau heterodimers
in AD RBCs can differentiate between AD patients and healthy subjects, whereas RBC
α-syn concentrations alone cannot. The secretion of damaging molecules by RBCs is
thought to contribute to the development of ALS. Indeed, a correlation was found between
the progression of the disease and increased activity of acetylcholine esterase, increased
erythrocyte deformability, and reduced flow of nitric oxide from RBCs [214].

4. Atomic Force Microscopy: Morphometric and Nanomechanical Parameters in
Neurodegenerative Pathologies
4.1. Atomic Force Microscopy as a Diagnostic Tool

Atomic force microscopy (AFM) is a versatile tool to investigate the topography and
properties of surfaces, as well as the properties of single molecules and intermolecular
interaction forces. AFM generates high-resolution images of the surface of biomolecules,
membranes, cells, and tissues, and can also probe their mechanical, chemical, electro-
static, and biological properties [215]. The AFM basic principles, the modes of imaging
of biointerfaces, molecular and force spectroscopy, and the advantages and limitations of
AFM-related techniques have been reviewed in [215,216]. The main capability of AFM is
to detect the weak forces acting between a very sharp tip (called a probe) and the sample
under examination. The probe is attached to a flexible cantilever, which deforms as a result
of the forces of attraction and repulsion between the tip and the surface (Figure 1).
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This deformation is reflected onto the position of a laser beam on a position-sensitive
detector, thus producing a three-dimensional image (topography) of the sample surface
with nanometer resolution. In addition to imaging, due to the fact that AFM is able to
measure extremely weak forces in the range of intermolecular interactions, it has been
applied to assess the nanomechanical properties of objects by nanoindentation, a process
providing various parameters, such as the Young’s modulus (stiffness, Ea) (Figure 1), which
is widely used in cell biology.

Due to its excellent visualization and measurement capabilities, combined with un-
precedented precision and spatial resolution, AFM has proven to be a valuable tool for
studying biological samples like proteins, cells, bacteria, and viruses ([217] and references
therein). This information is important to deepen our understanding of protein functions
and disease mechanisms [218]. Recently, a comprehensive review summarized data on the
application of AFM in membrane biophysics, especially in the study of model membranes,
lipid-protein interactions, and the formation of Aβ42 fibrils ([219] and references therein).
AFM can also be used to image individual proteins and analyze their structural charac-
teristics. Another distinctive aspect of AFM that qualifies it as a potential diagnostic tool
is the fact that it requires minimal sample manipulation and allows examination of one
object in its native environment. It has been established as a valuable platform to study
the morphological and mechanical characteristics of living biological objects, for example,
for the identification and visualization of orthopoxviruses and orthopoxvirus particles in
clinical suspensions [220–222].

In medicine, AFM has various applications; one of them is the study of the mechanical
properties of cells, tissues, and organs. By using AFM, scientists can determine the elasticity,
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adhesion, stiffness, and other mechanical parameters of biological samples. This can help
characterize disease states and study the effect of drugs at the cellular level [221,222]. AFM
capabilities have been exploited to distinguish between cancerous and normal cells in both
morphological [223] and nanomechanical signatures [224,225]. AFM imaging demonstrated
94% diagnostic accuracy in the detection of specific features on the surface of bladder cancer
cells found in patients’ urine [226].

In addition, AFM can be combined with other imaging techniques, such as opti-
cal microscopy, to provide a more comprehensive characterization of biological samples.
This combination allows both morphological and mechanical information to be obtained,
providing a more complete picture of the object under investigation [222].

Overall, the application of AFM in medicine helped to increase the understanding of
biological systems and gain new insights into diseases and their treatment options.

4.2. AFM Studies of Platelets and Red Blood Cells in Healthy and Pathological Conditions

3D images of RBCs obtained using AFM were first reported in 1990 [227,228]. Later
on, the technique was applied to compare the overall morphological and surface details of
normal and pathological RBCs in smears fixed in glutaraldehyde [229].

In the blood of a healthy person, the majority of RBCs are characterized by a typical
biconcave shape and a regular ultrastructure, and only a very small fraction are cells with
irregular morphology [197,230,231]. Important insights into the surface roughness param-
eter (Rrms) of RBCs as a measure of the cell-membrane skeleton integrity and functional
status have been given by Girasole’s research group [196,232,233]. The authors found
that Rrms is independent of cell shape and has a constant value over the entire surface
of a single cell and within a particular sample, whether healthy or pathological. While
Kamruzzahan et al. [234] proposed imaging the cells with a gentler tapping mode AFM,
Girasole et al. [233] reported that the tapping mode provided undervalued average surface
roughness and suggested using contact mode for the investigation of the RBC membrane
skeleton and its modifications.

AFM revealed significant differences between healthy and a variety of pathological
cells [234–236]. For example, AFM images revealed characteristic circular-shaped holes on
the surface of RBCs from systemic lupus erythematosus patients [234]. RBC morphological
parameters (width, length, length to width ratio, valley, peak, valley-to-peak, and surface
fluctuation) have been shown to distinguish multiple myeloma (MM) and Waldenström
macroglobulinemia from healthy cells and to be useful to follow the effect of disease treat-
ment [237,238]. RBCs from MM patients were extremely deformed and had a macrocytic
and canthocytic shape compared with the biconcave healthy shape [237]. Dramatic deforma-
tions of the shape and membrane surface of RBCs have been associated with iron deficiency
anemia and thalassemia; moreover, the AFM parameters made it possible to distinguish
iron deficiency anemia and thalassemia [230]. Increased numbers of abnormally shaped
red cells and acanthocytes were detected in subjects with Panthothenate kinase-associated
neurodegeneration (PKAN), a hereditary neurodegenerative disorder [239]. The morpho-
logical abnormalities indicated perturbed cytoskeleton and lipid bilayer organization and
altered microparticle formation [239]. Nanomechanical, spectroscopic, and lipidomic stud-
ies revealed a decreased rigidity in the interfacial region of the RBC membranes of obese
subjects related to a changed lipid composition: an increase in the cholesterol/phospholipid
mole ratio of someω-6 fatty acids and a decrease in sphingomyelin contents as compared
to healthy subjects [240]. Exploring AFM, relationships have been established between
cytoskeleton destruction, disturbance of the membrane nanostructure, and the morphology
of RBCs caused by many physical and biochemical factors [241].

It became evident that various disease conditions are associated with changes in
the PLT’s mean size and, correspondingly, in the PLT’s volume, which is also related to
the PLT’s function. A multitude of medical conditions are associated with high platelet
volume, including cancer, diabetes, cardiovascular disease, preeclampsia, Crohn’s disease,
hyperthyroidism, immune thrombocytopenia, myeloproliferative disease, vitamin B12,
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vitamin D, or folate deficiency, macrothrombocytopenia (giant platelet disorders), etc. [242].
For example, it is well documented that in patients with immune thrombocytopenia, the
PLT count is decreased, as is the PLT life span, but the existing PLTs become larger in size
in order to compensate for the reduced count [243]. The PLT diameter in such patients was
found to be 1.6 times higher than the mean PLT diameter in healthy individuals [243]. A
clear example of how platelet size can serve as a prognostic marker is that patients with
cardiovascular disease and increased platelet volume show a higher risk of thromboembolic
complications and a fatal outcome [244]. Analysis of a large pool of data for the mean
volume of PLTs from healthy individuals and patients with acute myocardial infarction
showed ca. 8% consistent increase in the volume [244]. On the other hand, there are medical
conditions associated with a decrease in PLT volume, such as tuberculosis, ulcerative colitis,
systemic lupus erythematosus (SLE) in adults, and different neoplastic diseases [242].

Therefore, changes in the PLT’s size can be an important marker for disease state and
may also be used to monitor disease progression or response to treatment. However, it is
important to note that changes in PLT size are not specific and must be considered along
with other clinical factors to make a diagnosis for a certain disease.

4.3. Morphometric and Nanomechanical Parameters of Red Blood Cells and Platelets in
Neurodegenerative Disorders

Studies of the morphometric and mechanical parameters of PLTs and RBCs in NDDs
are scarce so far. Ultrastructural modifications in ALS PLTs and platelets’ mitochondria,
pseudopodia formation, and platelet activation have been revealed by transmission electron
microscopy [245]. Our investigations revealed a considerable shrinking of about 64.7% of
the PLT volume for patients with ALS and about 53.7% and 31.6% for those suffering from
PD and AD, respectively (Table 1, Figure 2A).
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Table 1. Platelet volume (mean values and SD) for healthy individuals and patients with NDDs
determined from the AFM images analyzed using Gwyddion-2.57 and IgorPro 6.37 software, and
NDDs values given in percentage of the value of healthy platelets.

Condition Mean PLTs Volume,
µm3

% of Healthy PLTs
Volume

% of Shrinkage Relative
to Healthy PLTs Volume

Healthy 3.20 ± 1.28 - -
PD 1.48 ± 0.34 46.3 55.7%

ALS 1.13 ± 0.34 35.3 64.7%
AD 2.19 ± 0.55 68.4 31.6%

In contrast to the shrinkage of the mean PLT volume, the same NDD pathologies are
related to the expansion of the mean volume of RBCs (Figure 2A), also known as macrocy-
tosis. Macrocytosis may indicate various medical conditions, including vitamin B12 and
folate deficiencies, liver disease, and hypothyroidism [246,247]. A research investigation
covering 82 patients with multiple sclerosis (MS) showed that the majority of them had
mean RBC volumes higher than those of healthy individuals at the early stage of the disease,
and 27% of the MS patients had even abnormally high mean RBC volumes [248].

Our data revealed that the average RBC volume is doubled for ALS patients, and ca.
1.4–1.5 times higher for PD and AD patients, respectively, compared to healthy controls
(Figure 2A). This corresponds well to studies that reported enlarged mean RBC volume in
other NDDs, and its relation to the development of NDDs and vitamin B12 deficiency ([247]
and references therein).

It is to be noted that normal, mature RBCs are characterized by the easily recognizable
biconcave discoid shape (ca. 73%), although the presence of small amounts of abnormal-
shaped cells (crenated (ca. 21%), spiculated (ca. 6%), and occasionally single spherocite) is
not uncommon (Figure 3) [231]. The elevation of the relative proportion of such abnormal-
shaped RBCs (poikilocytosis), i.e., the transformation of RBC morphology from normal
poikilocytosis to spheroechinocytes, is regarded as a sign of pathological conditions like
anemia, hereditary spherocytosis, hereditary elliptocytosis, McLeod syndrome, thalassemia,
etc. [241,249]. In vitro studies showed that the decrease in the level of oxygen, i.e., in
conditions of hypoxemia/anoxemia, was associated with changes in RBC morphology
from discocytes to echinocytes, microspherocytes, and the appearance of ghosts [250].
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20–30 µm (given on each image). Images were detected in tapping mode in air with a frequency of
16 kHz and a spring constant of 0.06 N/m using standard silicon nitride (Si3N4) probe tips with a
radius <10 nm.

Our study on the relative share of biconcave, crenated, spiculated, and spherical RBCs
in NDDs showed that although the biconcave remained the most abundant shape in ALS
and AD, the ratio biconcave:crenated was 2:1, as opposed to the healthy RBSs, where this
ratio was 3.2:1 [231]. Most dramatic and specific was the PD pathology characterized
by prevailing crenated-shaped RBCs (about 60%) and only about 35% normal-shaped
biconcave cells [231]. The morphology of RBCs was found to be significantly affected in AD
and PD by high ferritin levels [251]. Pretorius et al. [252] have shown that inflammatory
signaling can induce damage to the morphology of RBCs (cell shrinkage and membrane
blebbing) and apoptosis (eryptosis) in PD patients.

RBC aging is a complex process of particular scientific and clinical importance. It is a
unidirectional physiological event that includes a number of physicochemical changes that
regulate their turnover. Detailed knowledge on the transformation of RBC morphology
and also on the role of structural and functional proteins in the development of specific
morphological intermediate states along the RBCs’ aging path has been gained by exploring
AFM [197]. The four most typical cell shapes observed along the aging path are bicon-
cave, crenate, spiculed (echinocytes), and spherocytic [197,231]. Along the course of cell
aging, the proportion of discocytes and crenate-shaped cells is reduced at the expense of
an increasing proportion of the other two morphological types (spicules and spherocytes)
(Figure 3A,B). The reduction is much stronger and much faster in NDD RBCs than in
healthy conditions (as seen for ALS in Figure 3C,D). Importantly, the age-induced transfor-
mation of RBC morphology followed different pathways in PD, ALS, and AD compared
to normal healthy states; for example, the spiculated and spherocytic shapes were the
main fractions for PD, ALS, and AD cells at day 20 along the aging process, while the
biconcave shape was still the highest fraction in the healthy cells [231]. Furthermore, the
contribution of spherocytes to the morphology of PD, ALS, and AD RBCs increased much
faster already at an early stage of aging when no spherocytes were present in the healthy
cells [231]. The cross-relationship between proteins, such as spectrin, band 4.1 or 4.2, and
the cytoplasmic domains of band 3 protein, all involved in the cytoskeleton structure and
membrane anchoring, was probed by calorimetry and revealed the stabilizing role of Band
3 cytoplasmic domain on Hb, suggesting that the aging-related morphological changes of
RBCs depend mostly on cytoskeleton alterations [197]. We established that NDDs can be
differentiated from the normal healthy state based on the variation in the thermodynamic
parameters of the unfolding of major RBC proteins [253].

Not only the abundance but also the volume of these abnormally-shaped RBCs un-
dergoes a change in the development of NDDs (Figure 4). The volume of biconcave cells
was higher in all NDDs compared to healthy cells; the crenated and spiculated cells were
enlarged in PD and ALS, while the spherical ones were relatively unchanged in health and
pathological conditions.

Although the volume of RBCs is clearly increased in NDD pathologies, their spreading
area is slightly decreased (Figure 2A,B). This decrease correlates very well with the cell
membrane stiffening (see the increase in RBCs’ Young’s modulus in Figure 2D). Shrinkage
of the spreading area is more significant in PLTs than in RBCs and also correlates perfectly
with the increase in Young’s modulus (Figure 2D). The ALS disorder triggers the highest
contraction of the spreading area, corresponding to the greatest stiffening of the PLT cell
membrane. The reason lies in the inherent ability of PLTs to activate and change their
spreading area. The process and degree of PLT activation are formally divided into four
stages [150]. While the adhered PLTs from healthy individuals appear in a resting or poorly
activated state, in PD they are in an activation stage II or III, in ALS they are in the most
advanced stages III and IV (Figure 5, [254]), and finally in AD the PLTs exhibit an activation
state II [254].
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Figure 5. Representative AFM images of platelets from a healthy subject and from a patient with
ALS were detected in contact mode using silicon nitride probes with a spring constant of 0.06 N/m, a
resonant frequency of 16 kHz, a conical shape, and a nominal tip radius of 8 nm.

Along with the cell shape, spreading area, and volume, membrane roughness and
stiffness were also found useful for differentiation between healthy persons and patients
with acute myocardial infarction [255], type 2 diabetes mellitus (emorheological and atomic
force microscopy studies on the experimental clot formations in patients with type 2 dia-
betes mellitus), hypertension [256], transient ischemic attacks [257], and inherited throm-
bophilia [258]. We also reported that the PLT membranes in NDDs were significantly stiffer
than the control PLTs (Figure 2D, [254]). The greatest membrane rigidification was observed
in ALS PLTs and corresponded well with their highest activation and aggregation stages
among all NDDs (Figures 2D and 5). It was intriguing to observe that the development of
Young’s modulus in PD, ALS, and AD followed a similar trend for both PLTs and RBCs
(Figure 2D).

The membrane roughness of RBCs was drastically affected and that of PLTs to a much
smaller extent, demonstrating lower values in the studied NDDs than in healthy cells
(Figure 2C). The decrease in Rrms, accompanying the membrane smoothening, was much
more pronounced for PD than for ALS and AD RBCs, demonstrating considerably modified
cytoskeletal integrity.

A relatively strong negative correlative association between Rrms and Ea of RBCs and
PLTs was found for healthy and pathological cells (Figure 6); the correlation coefficient r of
the parameter pair Ea/Rrms and a narrow 95% confidence interval (CI) are given in Table 2.
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Figure 6. Scatter plots of the stiffness (Ea), determined by fitting the force-distance curves applying
Hertz’s model, vs. the surface roughness (Rrms, root mean square roughness) derived from the
AFM images and force distance curves of RBCs (pink spheres) and PLTs (violet stars) from healthy
individuals (A) and patients with PD (B), ALS (C), and AD (D).

Table 2. Pearson’s correlation coefficient (r) for the pair of nanomechanical (stiffness (Ea)) and
morphological (surface roughness (Rrms)) parameters of RBCs and PLTs derived from healthy and
NDD subjects. Confidential interval (CI), lower and upper limits.

RBCs PLTs

Subject
Ea/Rrms CI Ea/Rrms CI

r Lower Limit Upper Limit r Lower Limit Upper Limit

Healthy −0.78 −0.935 −0.373 −0.75 −0.8794 −0.5175
PD −0.67 −0.875 −0.261 −0.78 −0.8887 −0.5882

ALS −0.69 −0.879 −0.313 −0.84 −0.9248 −0.6757
AD −0.85 −0.972 −0.562 −0.93 −0.9769 −0.7978

The strongest Ea/Rrms correlation was determined for both RBCs and PLTs in AD,
which was supplemented with the narrowest CI for RBCs. The r values were lower for
PD and ALS cells than for AD cells, and the narrowest CI was obtained for PD PLTs. The
coefficient of determination (r2), a measure of the strength of correlation, had values > 0.5
and fell in the range of 0.6–0.86. The r2 values showed good results for healthy subjects, PD,
and ALS, and very good results for the AD pair of parameters. The correlation coefficients
prove that the strength of the relation between the Ea/Rrms pair changes in the same order
for the studied disorders (AD (0.72) > ALS (0.48) > PD (0.45) for RBCs and AD (0.86) > ALS
(0.7) ≥ PD (0.6) for PLTs).
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The Ea/Rrms correlation had the same trend along RBCs’ aging, i.e., a higher correlation
coefficient r for AD and a lower correlation coefficient r for PD and ALS compared to healthy
cells. A difference was observed for CI, which was wider for 30-day-aged cells than for
fresh cells.

Recent experimental evidence suggests that morphological anomalies, including shape
alteration and cell swelling, the development of micro-vesicles, proto-spicules, or spicules,
a decrease in roughness, and a faster weakening of the membrane-skeleton stability, are
associated with the interaction of RBCs with Aβ [259,260]. All of these abnormalities were
found to accompany the progression of RBC aging and were accelerated by Aβ [259,260].
Besides, clustering of proteins or lipids on the membrane as a consequence of the interaction
of Aβwith cells was observed in the AFM images.

Importantly, previous findings on metabolic RBC disturbances related to AD [261]
have been supported by the observed enhancement of the Aβ-dependent effects on RBCs’
morphology by glucose depletion through affecting cytoskeletal integrity [159,260].

Our pilot study on the interaction of PLTs with Aβ has shown similar changes in
the morphology (decrease in the area, height, and Rrms), nanomechanics (increase in Ea),
aggregation, and activation states of PLTs (unpublished data) as observed for PLTs from
patients with AD [254]. The AFM studies of Dinarelli et al. [259,260] and our results suggest
that the altered morphological and nanomechanical signatures of RBCs and PLTs in AD
could be attributed at least in part to the cells’ interaction with Aβ.

The use of AFM and advanced AFM imaging would provide further insight into the
blood cells’ biophysical properties in other neurodegenerative disorders, the accumula-
tion of toxic proteinaceous aggregates, and the effect they exert on peripheral blood cell
properties.

4.4. Nanoscale Structural Features and Dynamics of Amyloidogenic Proteins

AFM and AFM-based techniques have been applied to characterize the aggregation of
amyloidogenic proteins—the transformation of misfolded monomers into stable oligomeric
intermediates and insoluble fibrils—and the kinetics of amyloid fibril formation.

In situ AFM assessed Aβ aggregation on solid surfaces and revealed the formation
of Aβ fibrils dependent on interactions at the hydrophobic substrates/aqueous solutions
interface [262]. This study showed a pronounced dependence of the size, shape, and kinet-
ics of Aβ aggregate formation on the physicochemical nature of the surface. Furthermore,
Aβ42 aggregation on lipid bilayer surfaces and transformation of Aβ42 monomers to mis-
folded, aggregation-prone conformations were revealed by time-lapse AFM imaging [263].
AFM combined with time-lapse AFM, high-speed AFM (HS-AFM), and nanoinfrared AFM
(nanoIR AFM) provided nanoscale structural details on the secondary structure of the Aβ
peptides, the kinetics of fibril formation, their interactions with model lipid membranes,
and their dependence on the membrane lipid composition [264]. Visualization of Aβ42 fib-
ril nucleation and fibril elongation were achieved by HS-AFM, as was the growth of straight
and spiral fibrils, and moreover, morphological switching between these two morphomers
was demonstrated [265]. Study of the oligomer dynamics by means of time-lapse HS-AFM
showed a dynamic equilibrium of heptamers with dimers and trimers, suggesting that the
higher order of peptide assembly can be blocked by targeting the two lower order types of
Aβ structures that have therapeutic significance [266]. A method was developed for the
study of amyloids at various stages of their assembly (low molecular weight oligomers,
protofibrils, and mature fibers) that allowed nanomechanical mapping of Aβ on a poly-
L-lysine (PLL) coated mica substrate using ultrasonic force microscopy (PLL-UFM) and
showed the presence of small Aβ42 oligomers even at late stages of fibril assembly [267].

AFM was the biophysical approach used to quantitatively characterize the α-syn aggre-
gation into β-sheet fibrillar structures and the aggregation intermediates on the path-way to
α-syn fibril formation [268], which were thought responsible for α-syn toxicity rather than
the fibrillar structures [269]. High-resolution AFM and single-molecule force spectroscopy
directly showed the formation of protofilaments from the assembly of unfolded monomeric
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α-syn and determined the smallest elementary unit in the hierarchical assembly of α-syn
amyloid fibrils [268]. Moreover, it has been demonstrated that the disease-associated muta-
tions of α-syn generate different amyloid fibril polymorphs compared to the wild type and
that a single point mutation can alter the distribution of fibrillar polymorphs in α-syn [270].
These findings indicate that different clinical phenotypes of familial PD could be associated
with aggregates with different structures and mechanisms of formation [270].

Recently, a combination of AFM with several other techniques (surface tension mea-
surements, FTIR spectroscopy, and aggregation assays) has been applied to study the
self-assembly of β-syn and the role of interfacial effects on the primary nucleation of β-
syn [271]. It has been proven that self-assembly of β-syn into amyloid aggregates can
occur by homogeneous primary nucleation with a preference for an antiparallel β-sheet
arrangement and without the need for an active surface [271].

Importantly, AFM-based comparison of α-syn and Aβ aggregation processes showed
significant differences between the two proteins at the early stage of aggregation—mainly
monomeric forms of α-syn and oligomeric species of Aβ, while at the late stage of aggrega-
tion fibrils and protofibrils were detected for both α-syn and Aβ [272].

4.5. AFM versus Other Imaging Techniques

As discussed above, AFM provides valuable information on the morphology, structure,
and molecular forces of biomolecules, cells, and tissues. Different AFM operational modes
(AFM imaging, AFM-force spectroscopy, nanoindentation) and a number of AFM-based
techniques developed in the last decades (HS-AFM [264,265,273,274], time-lapse AFM
imaging [275,276], nanoIR AFM [264,268,277–279], Tip-Enhanced Raman Spectroscopy
(TERS) AFM [280–282], ultrasonic force microscopy (UFM) [267], etc.) have shown a
number of important applications. AFM combined with analysis of the ultrastructure of
RBCs and PLTs, obtained by scanning electron microscopy (SEM) and transmission electron
microscopy (TEM), distinguished between diseased and healthy cells [245,283,284].

The main advantages of AFM—sub-nanometer scale resolution for imaging surfaces
in both air and in liquid/physiological conditions; recording single molecular events; no
sample pretreatments (use of contrast agents and nano-coating with gold or carbon in
SEM); probing the response of single cells experiencing deformation; determining the cell
adhesion properties; recognition of antigenic sites on the cell membrane surface using a
functionalized with antibody AFM probe—have proven the technique useful in various
applications.

However, conventional AFM has some disadvantages: a low speed of imaging acqui-
sition that hinders molecular dynamics observations [285] and leads to low-throughput
measurement, and a lack of information on the chemical features of the studied specimen.
When it comes to the analysis of large surfaces, AFM appears much slower than SEM. AFM
can only image a region with a maximum height of 10–20 µm and a maximum scanning
area of approximately 150 by 150 µm, which may be a serious factor limiting the clini-
cal prospects of this method. Randomly occurring tip-sample drifts remain a persistent
problem in AFM but may only be significant for observing objects with dimensions of
a few nanometers. Moreover, distortion of the images of soft samples due to strong tip-
sample interactions is a common event. Another artifact known as the “tip-deconvolution
effect” can cause an object to be artificially enlarged but can be removed through a process
called “deconvolution” using a simple equation and is again relevant for objects with
small nanometric dimensions. It should be noted, however, that most of the above-listed
AFM artifacts can be avoided by appropriate, in-depth training of AFM operators. Many
AFM drawbacks were already overcome by advanced AFM-based techniques. The low
speed of imaging acquisition was overcome by HS-AFM, which allowed fast recording of
biomolecular dynamics in real time [285,286] and characterization of amyloid peptide and
protein aggregation ([287] and refs. from Section 4.4). NanoIR AFM [277,278] and TERS
AFM [280,281] provided chemical and structural information in real-time.
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A novel construction of a parallel instrument combining many miniature AFMs that
operate in parallel has been developed for high-throughput sub-nanometer imaging [288].
This parallel AFM would allow simultaneous recordings of different properties of a large
number of cells and is an important step toward one of the most ambitious challenges—
clinical application of AFM. Alternatively, another strategy to increase the imaging through-
put is based on simultaneous multi-cantilever operation in parallel that explores an array of
active cantilevers with embedded piezoresistive sensors and thermomechanical actuators,
in contrast to the single passive cantilever used in conventional AFM [289].

Furthermore, microfluidic constrictions with various geometries built to study cellu-
lar mechanics at a single cell level ([290–292] and references therein) provided valuable
information on RBC membrane disorders (deformability, membrane surface area, surface-
to-volume ratio). These constructions were able to discriminate changes in the surface area
from changes in the deformability of RBC membranes [291], adult cells from early-stage
cells [293], and disease cells from healthy ones [290]. Importantly, Faustino et al. [294,295]
using a microchannel implementing a hyperbolic constriction assessed the deformability
of pathological cells and succeeded in differentiating RBCs in contact with tumoral cells
from healthy RBCs [294] and healthy RBCs from cells derived from end-stage kidney
disease patients [295]. Measurements of the recovery time of discocyte shape have also
been performed in microfluidics [296–298]. A pilot study of the mechanical responses of
RBCs from a few patients with hereditary spherocytosis and sickle cell anemia, artificially
rigidified in a microfluidic constriction, proved the potential of this approach for diagnostic
applications [292]. The advantages of microfluidic systems in modeling neurodegenerative
diseases and their capability to integrate components into “new generation” small lab-on-a-
chip devices (brain-on-a-chip microfluidic culture platforms for AD and PD pathologies and
spinal-cord-on-a-chip methods for ALS) were discussed in the review of Osaki et al. [299].

Finally, it is expected that the use of AFM and advanced AFM imaging will provide
further insight into the blood cells’ biophysical properties in other neurodegenerative
disorders, the accumulation of toxic proteinaceous aggregates, and the effect they exert on
peripheral blood cell properties.

5. Conclusions

AFM is a promising instrument for identifying the development of neurodegenerative
pathologies and their differentiation. Both the nanotopographic imaging and the force-
distance curves provide valuable information on the morphological and nanomechanical
cell features that can be helpful in the diagnostics of NDDs. In particular, the morphology,
membrane surface roughness, and nanomechanics of PLTs and RBCs can be used to distin-
guish pathological cells from normal healthy cells, as well as ALS, PD, and AD from each
other. The strong correlations between morphological and mechanical measures of PLTs
and RBCs for each of the pathologies studied are striking.

Common hallmarks of PLTs and RBCs have been identified that provide a set of
biophysical markers for the diagnosis of the three pathologies: volume, height, spreading
area, membrane roughness, and Young’s modulus of the two types of blood cells; PLT level
of activation and granule development and release; aging patterns of RBC morphological
and mechanical parameters; and level of poikilocytosis. Among those biophysical markers,
the strongest decrease in surface roughness and prevailing crenate-shaped RBCs are specific
for PD. Modifications of membrane roughness can be used to reveal the mechanisms
underlying the development of specific pathologies.

Our findings strongly support the potential of AFM to discriminate neurodegenerative
disorder-based morphological and nanomechanical signatures of peripheral blood cells;
the next challenge is the validation of AFM application in medical diagnostics.
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erythrocytes studied by means of atomic force microscopy. J. Biochem. Biophys. Methods 2006, 66, 1–11. [CrossRef] [PubMed]

236. Ciasca, G.; Papi, M.; Di Claudio, S.; Chiarpotto, M.; Palmieri, V.; Maulucci, G.; Nocca, G.; Rossi, C.; De Spirito, M. Mapping
viscoelastic properties of healthy and pathological red blood cells at the nanoscale level. Nanoscale 2015, 7, 17030–17037. [CrossRef]
[PubMed]

237. Zhang, Y.; Zhang, W.; Wang, S.; Wang, C.; Xie, J.; Chen, X.; Xu, Y.; Mao, P. Detection of erythrocytes in patients with multiple
myeloma using atomic force microscopy. Scanning 2012, 34, 295–301. [CrossRef] [PubMed]

238. Liu, J.; Li, J. Detection of erythrocytes in patients with Waldenström macroglobulinemia using atomic force microscopy. Acta
Biochim. Biophys. Sin. 2014, 46, 420–425. [CrossRef]

239. Cluitmans, J.C.A.; Tomelleri, C.; Yapici, Z.; Dinkla, S.; Bovee-Geurts, P.; Chokkalingam, V.; De Franceschi, L.; Brock, R.;
Bosman, G.J. Abnormal Red Cell Structure and Function in Neuroacanthocytosis. PLoS ONE 2015, 10, e0125580. [CrossRef]

240. Sot, J.; García-Arribas, A.B.; Abad, B.; Arranz, S.; Portune, K.; Andrade, F.; Martín-Nieto, A.; Velasco, O.; Arana, E.; Tueros, I.; et al.
Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. Int. J. Mol. Sci. 2022, 23, 1920. [CrossRef]

241. Kozlova, E.; Sergunova, V.; Sherstyukova, E.; Gudkova, O.; Kozlov, A.; Inozemtsev, V.; Lyapunova, S.; Chernysh, A. Topological
Relationships Cytoskeleton-Membrane Nanosurface-Morphology as a Basic Mechanism of Total Disorders of RBC Structures. Int.
J. Mol. Sci. 2022, 23, 2045. [CrossRef]
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