
RESEARCH ARTICLE

Measuring Compounds in Exhaled Air to
Detect Alzheimer's Disease and Parkinson’s
Disease
Jan-Philipp Bach1☯, Maike Gold2☯, David Mengel2☯, Akira Hattesohl3, Dirk Lubbe4,
Severin Schmid3, Björn Tackenberg2, Jürgen Rieke2, Sasidhar Maddula5, Jörg
Ingo Baumbach5, Christoph Nell3, Tobias Boeselt3, Joan Michelis6,7, Judith Alferink7,8,
Michael Heneka6,9, Wolfgang Oertel2, Frank Jessen7,9, Sabina Janciauskiene10,
Claus Vogelmeier3, Richard Dodel2*, Andreas Rembert Koczulla3

1 Department of Neurology, RWTH Aachen, 52074 Aachen, Germany, 2 Department of Neurology,
Philipps-University Marburg, 35043 Marburg, Germany, 3 Department of Internal Medicine, Division of
Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany, 4 Department of Psychology,
Division of Methodology and Statistics of the University of Giessen, 35394 Giessen, Germany, 5 Faculty of
Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany, 6 Clinical Neuroscience Unit,
Department of Neurology, University of Bonn, 53105 Bonn, Germany, 7 Department of Psychiatry, University
of Bonn, 53105 Bonn, Germany, 8 Department of Psychiatry, University of Münster, 48149 Münster,
Germany, 9 German Centre for Neurodegenerative Disease (DZNE), 53105 Bonn, Germany,
10 Department of Internal Medicine, University of Hannover, 30625 Hannover, Germany

☯ These authors contributed equally to this work.
* dodel@med.uni-marburg.de

Abstract

Background

Alzheimer’s disease (AD) is diagnosed based upon medical history, neuropsychiatric exam-

ination, cerebrospinal fluid analysis, extensive laboratory analyses and cerebral imaging.

Diagnosis is time consuming and labour intensive. Parkinson’s disease (PD) is mainly diag-

nosed on clinical grounds.

Objective

The primary aim of this study was to differentiate patients suffering from AD, PD and healthy

controls by investigating exhaled air with the electronic nose technique. After demonstrating

a difference between the three groups the secondary aim was the identification of specific

substances responsible for the difference(s) using ion mobility spectroscopy. Thirdly we

analysed whether amyloid beta (Aβ) in exhaled breath was causative for the observed dif-

ferences between patients suffering from AD and healthy controls.

Methods

We employed novel pulmonary diagnostic tools (electronic nose device/ion-mobility spec-

trometry) for the identification of patients with neurodegenerative diseases. Specifically, we

analysed breath pattern differences in exhaled air of patients with AD, those with PD and

healthy controls using the electronic nose device (eNose). Using ion mobility spectrometry
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(IMS), we identified the compounds responsible for the observed differences in breath pat-

terns. We applied ELISA technique to measure Aβ in exhaled breath condensates.

Results

The eNose was able to differentiate between AD, PD and HC correctly. Using IMS, we

identified markers that could be used to differentiate healthy controls from patients with AD

and PD with an accuracy of 94%. In addition, patients suffering from PD were identified with

sensitivity and specificity of 100%. Altogether, 3 AD patients out of 53 participants were mis-

classified. Although we found Aβ in exhaled breath condensate from both AD and healthy

controls, no significant differences between groups were detected.

Conclusion

These data may open a new field in the diagnosis of neurodegenerative disease such as

Alzheimer’s disease and Parkinson’s disease. Further research is required to evaluate the

significance of these pulmonary findings with respect to the pathophysiology of neurode-

generative disorders.

Introduction
Alzheimer’s disease (AD) is characterised by the presence of amyloid plaques and neurofibril-
lary tangles. Plaques mainly comprise extracellular deposits of amyloid-beta (Aβ) [1], including
both fibrils and non-fibrillary forms of the peptide [2]. Diagnosing Alzheimer´s disease (AD)
based on clinical evidence is difficult. Therefore, surrogate markers have been extensively
investigated [3]. Measurements of amyloid beta (Aβ), tau protein and phosphorylated tau pro-
tein in cerebrospinal fluid (CSF) have become established fluid biomarkers for making a diag-
nosis of AD [4, 5]; however, a classification function is required, the method is considerably
invasive and the specificity is rather low (sensitivity: 91%; specificity: 64%) [6, 7]. Similarly,
magnetic resonance imaging is able to visualise hippocampal and entorhinal atrophy, which is
usually progressive throughout the course of the disease [8]. Overall, the diagnosis of AD
requires an extensive work up, is time expensive, invasive and usually requires memory clinics.
Therefore, identifying an easy to use technique as a screening tool to identify patients with
cognitive deficits is useful. Recently, two non-invasive and easily applied technologies have
been developed and increasingly used to detect lung disorders and other diseases [9, 10].
Their discriminative ability is derived from specific pattern recognition. Exhaled breath (EB)
and exhaled breath condensate (EBC) has been analysed to obtain surrogate information on
pulmonary inflammatory processes. EB contains a mixture of volatile organic compounds
(VOCs). These compounds can be detected using an electronic nose (eNose), which contains
chemical sensors and was originally developed to detect explosives, food contaminations and
other compounds. In addition, an eNose enables instant recognition of complex VOC mixtures
via composite nanosensor arrays in combination with learning algorithms [10–14]. Each sen-
sor within the instrument reacts differently to a particular VOC mixture, thereby producing a
unique pattern. Data analysis follows a heuristic approach, enabling distinctions among
“smell-prints” from various sources based on pattern recognition algorithms. The advantages
of this technique include its sensitive discrimination performance, its short response time and
the reversible behaviour of its sensors [11]. Ion-mobility spectrometry (IMS) [15] has also been
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employed in this context. This apparatus enables identification of the ions potentially represen-
tative of the differences between disorders. Interestingly, a recent publication by Tisch and
colleagues [16] reported the application of another method, a nanomaterial based sensors to
differentiate patients with Parkinson’s disease (PD), those with AD and healthy controls (HC).

The primary aim of the current study was the evaluation of the eNose to differentiate
patients with AD, those with PD and controls. The secondary aim was to identify the com-
pounds responsible for the observed differences between AD, PD and HC using IMS. Further-
more, we analyzed whether the observed differences between patients suffering from AD and
HC can be attributed to Aβ in exhaled breath.

Materials and Methods

Study participants
We included patients with an established diagnosis of AD and age-matched controls (HC)
from two university hospitals in Marburg and Bonn. All of the patients were recruited from
the dementia outpatient centres in these two clinics and had previously received a diagnosis of
AD. The initial diagnosis of AD was made according to the DSM-IV criteria. However, for
the purpose of this study, we also confirmed that the diagnosis remained valid, if the NIND-
S-ADRDA criteria were applied instead [5]. All of the patients routinely underwent an exten-
sive neuropsychiatric examination [17], cerebral imaging and extensive laboratory screening.
In addition, CSF data were considered if available. HCs were also recruited in both centres.
Only individuals with no known history of chronic inflammatory disease, tumours or pulmo-
nary disorders were included. From HC a detailed history was taken and cognitive testing was
performed using the MMSE. In addition, to test specificity, we included a group of patients
suffering from PD. These patients were recruited at the Parkinson Centre of Excellence at the
University in Marburg in an outpatient setting. The diagnosis of PD was made based on clinical
findings according to the Queens Square Brain Bank Criteria [18]. A movement disorder spe-
cialist evaluated all patients. and in most of the patients a FP-CIT SPECT was present to addi-
tionally support the diagnosis. However, patients whose diagnosis was uncertain were
excluded.

The study was carried out in accordance with German law and international guidelines for
clinical studies. The study was approved by the local ethics committee (Marburg Ethics Com-
mittee AZ 107/08; 139/11 and Bonn Ethics Committee AZ 311/11), and written informed con-
sent was obtained from each subject before enrolment in the study.

Electronic nose
For VOC sampling, the Cyranose 320 (C-320) eNose (Smiths Detection Group Ltd., Watford,
UK) was used. This instrument is a hand-held device capable of generating so-called smell-
prints by analysing mixtures of VOCs as described previously [19]. The participants breathed
standardised medicinal air (Aer medicinalis Linde, Linde Gas Therapeutics GmbH, Unters-
chleißheim, Germany) and then exhaled for ten seconds at a flow rate of 100–200 ml/s into a
collection bag [20]. All of the measurements were performed in triplicate.

Ion mobility spectrometry
We used a BioScout IMS (B&S Analytik, Dortmund, Germany) coupled to a multi-capillary
column (MCC/IMS) and a SpiroScout spirometer (Ganhorn Medizin Electronic, Niederlauer,
Germany) as the sample inlet unit, as described previously [15]. All of the subjects were asked
to exhale through a mouthpiece connected to a Teflon tube. The VOC peaks were characterised
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using the software Visual Now 2.2 (B&S Analytik, Dortmund, Germany), which is described
elsewhere [15, 21]. All of the detected peaks were characterised according to the drift time (cor-
responding 1/K0-value), retention time and concentration (represented by the peak height). A
preliminary relationship between the peak position and the identity of the analyte was obtained
using the database BSIMSDB 1.4 (B&S Analytik, Dortmund, Germany).

Lung tissue protein lysates
For animal studies, we used four heterozygous adult female transgenic CRND8 mice expressing
mutant APP Swedish (K670N,M671L) and mutant APP Indiana (V707F) under the control of
a hamster prion promoter on a hybrid Hybrid C3H/He-C57BL/6 background. Four gender-
matched non transgenic wild-type mice served as control population. Mice were housed on a
12 h light-dark schedule (lights on 07:00–19:00). They had free access to tap water, were fed ad
libitum and kept under standard conditions. Animal procedures were approved by the office of
the federal state authority of Hessen and the Institutional Animal Care and Use Committee of
the University of Marburg (AZ V54-19c20-15(1) MR20/15—Nr. 6/2008) as well as by the insti-
tutional animal welfare officer (AZ AK-4-2014-DODEL). All experiments were carried out in
accordance with EU Directive 1020/63/EU for the protection of animals used for scientific pur-
poses. Lung tissue samples were washed extensively in ice-cold phosphate-buffered saline
(PBS), minced using a scalpel and dissolved for thirty minutes in radio immunoprecipitation
assay (RIPA) buffer containing a protease-inhibiting cocktail (Roche, Germany). The protein
concentration of the lysates was determined using a bicinchoninic acid (BCA) assay kit (Pierce,
Rockford, IL).

Exhaled breath condensate
EBC samples were collected during ten minutes of tidal breathing through a single-use dispos-
able RTube device (Respiratory Research Inc., Austin, TX, USA). Immediately after collection,
the EBC was transferred into low-bind polyethylene tubes (Eppendorf AG, Hamburg, Ger-
many) and stored at -80°C.

Western blotting
To detect the AβPP cleavage products C83 andC99 in mice lung tissue, samples were boiled in
SDS loading buffer, separated on a NuPage Novex 4–12% Bis-Tris gel (Invitrogen, Camarillo,
CA) and then blotted onto a nitrocellulose membrane. Following incubation with a C-terminal
AβPP antibody (Sigma Aldrich, Taufkirchen, Germany) and secondary antibody (Vector labs,
Burlingame, CA, USA), the membranes were exposed to an autoradiographic film.

MSD ELISA Aβ40 and Aβ42
EBC samples from patients with AD and HC, as well as mouse lung tissue samples were ana-
lysed for the presence of Aβ40 and Aβ42 using the MSD 96-well MULTI-SPOT Human (6E10)
Aβ Triplex Assay (Meso Scale Discovery, Gaithersburg, MD) according to the manufacturer’s
instructions. The assay was conducted in triplicate, and the Aβ concentrations were calculated
with respect to a standard curve.

Data analysis
Linear discriminant analysis (LDA) [22] was used to distinguish among the groups. The first
experiment involved distinguishing patients with AD from controls. The output of the 32 sen-
sors of the Cyranose C-320 was factorised using principal component analysis (PCA). To
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discriminate between groups, we used a combination of the raw values of the C-320 and PCA
scores. To identify the variables with the highest predictive value, predictors identified in the
LDAmodels were selected stepwise using the Akaike information criterion. To confirm the
validity and stability of the LDA models, we applied two distinct cross-validation strategies.
First, a leave-one-out cross-validation (LOOCV) was performed using the data acquired at
Marburg and Bonn, separately. For this analysis, both the PCA scores and the LDAmodels
were computed separately within each set of training data and then applied to predict the test
data. We then fitted models for the data from one site (Bonn, Marburg) to make predictions
for the other site.

In a second approach, patients with PD, AD and HC were distinguished using the eNose.
The repeated measurements were evaluated according to median values, as they turned out to
be more heterogeneous than expected, and normalised to a range from 0 to 1. As a variance-
dependent distance measure for multidimensional data, the Mahalanobis distance (MD)(MD
(x, y) = ((x—y)TC-1(x—y))1/2, with x = (x1, . . ., xn), y = (y1, . . ., yn) and C

-1 as the inverse covari-
ance matrix of the n-dimensional data) between groups was used. An MD value greater than
1.96 was considered significant, as it corresponds to a p-value of< 0.05, whereas a MD value
greater than 2.58 indicated a p-value of< 0.01. A k-fold cross-validation (in which k equals the
product of the group sizes) using one data point of each group as test data in each run was per-
formed to calculate the cross-validation value (CVV) for the experiments.

For IMS analysis, we used the software VisualNow (B&S Analytik GmbH, Dortmund, Ger-
many) to separate between two classes. The best threshold value to separate each analyte sepa-
rately will be calculated and the classifications obtained are considered. Finally, the sensitivity,
specificity, positive and negative predictive value and the accuracy ((true positive + true nega-
tive)/(true positive + false positive + true negative + false negative)) are calculated. As result,
the separation power of each peak can be obtained. Decision tree learning uses a decision tree
as a predictive model which shows maps of observations about an item to find conclusions
about the item's target value. Here, all peaks were considered and the shortest way to separate
two or more classes is calculated. Class in our examples is equivalent to AD, HC, PD. It is one
of the most predictive modelling approaches used in statistics, data mining and machine learn-
ing. Tree models where the target variable can take a finite set of values are called classification
trees. In these tree structures, leaves represent class labels and branches represent conjunctions
of features that lead to those class labels. As for boxplots, also decision trees can be used to sep-
arate classes and to calculate sensitivity and specificity values as described above. Only the vari-
ables (peaks, analytes) used in the tree are taken into account. Therefore, using decision trees
the separation power of all analytes selected is considered in contrast to box-plots looking for
the separation power of each peak separately.

ELISA data were compared using a t-est. Mean values and standard error of the mean are
presented in all cases.

Results
We performed eNose assays on 18 patients with AD and 19 HC recruited from the Department
of Neurology, University of Marburg. The clinical data for both study populations are
described in Table 1.

Our first aim was to test whether patients with AD and HC could be differentiated accord-
ing to differences in their breathing patterns using the eNose. We also trained the machine
using the “training setting”. The observed pattern was later used to differentiate patients and
HC using this technique alone in a different location and on different patients to evaluate the
accuracy of the machine.
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We found that a combination of the raw values from the 1st sensor and the 22nd principal
component showed the best performance in terms of differentiating between patients with AD
and HCs. Following statistical analysis, we optimised an LDA model [19] through the stepwise
selection of a combination of predictors. Using LOOCV, we found a significant relationship
between the predicted and actual group affiliations (χ2 = 8.17, degrees of freedom (df) = 1,
p = 0.004) with a sensitivity of 50.0% (95%-CI: 36.8–63.2) and a specificity of 77.2% (95%-CI:
64.2–87.3) (Table 2).

Considering that it is possible to detect changes in breath patterns using the eNose, we
tested whether it would be possible to distinguish patients with AD from those with another
neurodegenerative disorder (PD), as well as either from HC. The result is shown in Fig 1. The
linear discriminant analysis is able to separate the three groups: patients with AD, patients with
PD and age-matched controls, as shown in the canonical plot (Fig 1). The LDA provides excel-
lent performance and reveals significant differences between AD and PD (p< 0.0001), AD and
HC (p< 0.0001), and PD and HC (p< 0.0001) with respect to distinctions between groups.
The MD between AD and PD is 2.08 (p = 0.04); that between AD and HC is 2.10 (p = 0.04);
and that between PD and HC is 1.95, which is at the borderline of significance (p = 0.05). From

Table 1. Clinical characteristics of patients with Alzheimer’s disease and healthy controls.

Marburg Bonn

ADa PDb HCc p-value AD HC p-value

Female / male 9 / 9 5/11 11 / 8 n.si 13 / 8 8 / 8 n.s. i

Age [years] 71(10.2) 64 (11.3) 60 (12.8) n.si 72 (7.4) 67 (8.8) n.s. i

Age at onset [years] 69 (10.3) 51.8 (18.6) n/ad 70 (7.1) n/a

Disease duration [months] 18 (17.6) 7.9(5.2) n/a 18 (18.4) n/a

MMSEe score 22 (3.7) 28 (3.2) n/a 19 (4.8) 29 (0.9)

Smoking current / former 1 / 7 3 / 4 0.28 1 / 1 2 / 1 0.28

Drug treatment

Donepezil 8 0 0 10 0

Galantamine 1 0 0 6 0

Rivastigmine 2 0 0 4 0

Memantine 5 0 0 1 0

Cerebrospinal fluid taken 5 0 0 17 0

Tau [pg/ml] 261.00 (105.594) n/a n/a 694.30 (390.808) n/a

pTauf [pg/ml] 47.00 (13.589) n/a n/a 109.38 (44.336) n/a

Ratio Aβ42
g/Aβ40

h 0.06 (0.028) n/a n/a 0.07 (0.027) n/a

All values are arithmetic means with standard deviations in parentheses, except for sex, smoker status, drug treatment, and cerebrospinal fluid taken.

Abbreviations
a AD Alzheimer’s disease
b PD Parkinson’s disease
c HC healthy control
d n/a not applicable
e MMSE mini-mental state examination.
f pTau hyperphosphorylated tau protein
g Aβ42 amyloid-beta 1–42
h Aβ40 amyloid-beta 1–40
i n.s. not significant.

doi:10.1371/journal.pone.0132227.t001
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these results, we concluded that making a specific assessment of neurodegenerative disease is
possible.

To validate the results of the training set, we included a second independent cross-sectional
group of patients with AD and HC in line with best practice guidelines for biomarker develop-
ment [23]. For this validation, 21 AD patients and 16 HC were recruited from the Department
of Psychiatry, University Hospital Bonn (Table 1). In the second study population, HC could
be significantly discriminated from AD patients in an LOOCV (χ2 = 14.78, df = 1, p< 0.001)
with a sensitivity of 69.8% (95%-CI: 57.0–80.8) and a specificity of 68.7% (95%-CI: 53.7–81.3)
(Table 2).

To confirm that the predictions of the LDA models remained valid beyond their respective
sites (Bonn or Marburg), we used the LDA models from the prior analyses from each site and
applied it to discriminate participants from the other site. The LDA model fitted with data
fromMarburg was able to significantly discriminate groups from Bonn (χ2 = 5.00, df = 1,
p = 0.025) with a sensitivity of 76.2% (95%-CI: 63.8–86.0) and a specificity of 45.8% (95%-CI:
31.4–60.8). The LDAmodel fitted with data from Bonn, however, was not able to detect AD
patients fromMarburg above a chance level (χ2 = 0.20, df = 1, p = 0.658) with a sensitivity of
56.6% (95%-CI: 43.2–69.4) and specificity of 49.1% (95%-CI: 35.6–62.7) (Table 3).

To further characterise differences between the three groups, we supplemented our diagnos-
tic approach by applying IMS on exhaled air samples. This task was performed on AD patients,
PD patients as well as healthy controls. A typical IMS chromatogram for the positive ions of
analytes is shown in S1 Fig To discriminate between patients with AD, PD and HC, the optimal
thresholds for each analyte were identified. The optimal threshold is the peak intensity that
allows the maximum number of samples to be classified correctly. The analysis using IMS
detected significant differences in five organic compounds with high specificity and sensitivity.
S1 Table shows two of the peaks that were deemed suitable for differentiating between AD
patients and HC (S1 Table). Because a range of sensitivity and specificity values was obtained
using IMS, we considered an analysis that relied on data mining (calculated using Rapid Miner
Version 5.1, Rapid-I, Dortmund, Germany). Decision tree learning is a method commonly
used to perform data mining. The aim is to create a model that predicts the value of a target
variable based on several input variables. Using a decision tree with four compounds, the
method exhibited a considerably high accuracy of 94% (95%-CI 88–100). Only three patients
were misclassified of a total of 53 participants (Fig 2). In addition, the decision tree shows a
sensitivity and specificity of 100% for PD. Within the three false classifications, one AD patient
was declared as HC and two HC were incorrectly identified as AD. All other patients were

Table 2. LDAa classifications for the leave-one-out cross-validations.

Marburg Bonn

estimated/ true ADb HCc Sum estimated/true AD HC Sum

AD 30 13 43 AD 44 15 59

HC 30 44 74 HC 19 33 52

Sum 60 57 117 Sum 63 48 111

Table 2 shows cross tables of the estimated vs. true AD and HC participants from the two sites (Marburg and Bonn). Estimations were drawn from the

outcome of a leave-one-out cross-validation of the LDA model.

Abbreviations
a LDA Linear discriminant analysis
b AD Alzheimer’s disease
c HC healthy control

doi:10.1371/journal.pone.0132227.t002
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diagnosed correctly. The first input variable included in the decision tree was 1-butanol (P17)
at a threshold of 0.016. All samples with values lower than 0.016 were correctly identified as
PD with no false predictions. For all samples with values equal to or greater than 0.016, a sec-
ond input variable to differentiate between HC and AD was required. The variable zP2 was

Fig 1. Linear discriminant analysis. In Fig 1, we tested whether differentiating among patients with two neurodegenerative disorders and healthy controls is
possible using the eNose. Linear discriminant analysis (LDA) was used to distinguish among groups. Repeated measurements were evaluated using median
values and normalised to a range of 0 to 1. LD = linear discriminant, ad = Alzheimer's disease, pd = Parkinson's disease, hc = healthy control.

doi:10.1371/journal.pone.0132227.g001

Table 3. LDA classifications for the cross-validation between Bonn and Marburg.

LDA: Bonn to Marburg LDA: Marburg to Bonn

estimated/ true AD HC Sum estimated/ true AD HC Sum

AD 34 29 63 AD 48 26 74

HC 26 28 54 HC 15 22 37

Sum 60 57 117 Sum 63 48 111

Table 3 shows cross tables of the estimated vs. true AD and HC participants. Estimates for the LDA were gathered from one site and applied to classify

the participants from the other site (LDA: Bonn to Marburg and LDA: Marburg to Bonn).

doi:10.1371/journal.pone.0132227.t003
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used for the second differentiation. Samples with values lower than 0.001 were, in six out of
seven cases, AD, whereas samples with values equal to or more than 0.001 were compared with
respect to the next analyte, 2-methylfuran (P47). In this study, all samples with values lower
than 0.036 were correctly identified as AD, whereas all samples with values equal to or greater
than 0.036 were compared with respect to the last input variable, an unidentified component
(P26). With values below or equal to 0.001, patients with AD were correctly identified. Values
greater than 0.001 were identified as healthy controls, with two false allocations. To summarise,
we found four substances suitable for differentiating patients with AD from patients with PD
as well as from HC. These substances are all organic compounds. It should be mentioned that

Fig 2. Decision tree of four variables measured using IMS. Exhaled breath from 21 AD, 16 PD patients
and 16 HC was analysed using IMS. A decision tree based on four compounds is shown in Fig 2. Samples
are grouped according to the means of the peak intensity of each compound, at which point, the maximum
number of samples are classified correctly. Relative numbers of classified HC are green, and numbers of
classified patients with AD are red. PD is marked in blue. Total numbers of classified samples are given for
each compound. P denotes the concentration of a compound. Using a decision tree with four characteristics,
the method shows a accuracy of 94% when differentiating patients with AD from HC. Considering PD/AD vs.
HC, sensitivity of 95% and specificity of 94%, positive predictive value of 97%, negative predictive value of
88% were calculated.

doi:10.1371/journal.pone.0132227.g002
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each analyte per se is not suitable for differentiating patients with AD and PD from HC; rather,
it is the combination and sequence of analytes that makes prediction feasible. Considering the
combination of neurodegenerative disorders (PD/AD) vs. HC, sensitivity of 95% (95%-CI 87–
100) and specificity of 94% (95%-CI 82–100) as well as a positive predictive value of 97% and a
negative predictive value of 88% were calculated.

In an additional set of experiments, we investigated whether the observed differences
between patients with AD and HC with respect to exhaled air can be attributed to spurious
detection of Aβ. We do not consider Aβ to be a volatile substance. However, with respect to the
pathogenesis of AD, we assumed that the observed difference may be due to changes in periph-
eral Aβmetabolism. In APP transgenic CRND8 mice Aβ concentration in lung tissue is
unchanged compared to wild-type mice (S2A Fig; p> 0.05). In line with this no differences in
APP cleavage products C83 and C99 can be observed between both groups of animals (S2B
Fig). Using MSD ELISA, we detected Aβ at markedly low concentrations in breath condensate
samples of patients with AD and HC, but failed to observe a significant difference between the
two groups. (S2C Fig). In summary, we found no evidence for changes in peripheral Aβmetab-
olism in lungs in an animal model of AD as well as in breath condensates of patients with AD
and HC.

Discussion
We provide evidence that a novel non-invasive diagnostic approach based on the analysis of
exhaled air can differentiate patients with Alzheimer’s disease (AD) from those suffering from
Parkinson’s disease (PD) and from healthy controls. Using an eNose, we were able to see differ-
ences in the breath patterns of AD patients and HC from two independent sites in Germany.
These results are in line with those of Tisch et al., who also described differences in breath pat-
terns between patients with AD, those with PD and HC [16]. Using the IMS technique, we
obtained a sensitivity of 95% and a specificity of 94% in terms of differentiation between neuro-
degenerative disorder and HC. It has been shown that evaluating the combination of CSF tau
protein, phosphorylated tau protein181 and Aβ42 achieves a sensitivity of 85% and a specificity
of 80% in the identification of AD [24]. Our sensitivity values using IMS (which offers the ben-
efit of being a non-invasive approach) are at least comparable to the aforementioned rates. The
inclusion of a decision tree comprising four substances detected using IMS provides even better
performance in terms of sensitivity and specificity. Interestingly, although Aβ was detectable at
low level in EBC and in lung tissue, we were unable to identify this peptide as a determining
factor during the IMS analyses. Furthermore, we could not observe altered levels of Aβ in EBC
of patients with AD compared to HC using ELISA technique. The same holds true for the ani-
mal model of AD. It is therefore most likely that differences in blood chemistry in response to
disease are responsible for the observed changes in exhaled breath. Tisch and colleagues pro-
posed a similar theory [16]. Of note, since the diagnostic accuracy for PD was 100%, it had to
be excluded that this peak was due to L-Dopamin or derivatives. P17 is 1-butanol, thus making
it less likely. However, in a second step, we analysed the exhaled breath condensate using gas
chromatography to check for dopamine concentrations (data not shown). L-dopa and dopa-
mine could not be measured, thus making a confounding effect unlikely.

To the best of our knowledge, little is known about the role of these four volatile substances
in neurodegenerative disorders. Interestingly, a prior study reported an association of organic
solvents with the development of PD [25]. The authors analysed a group of 99 pairs of twins
who were discordant for PD. For trichloroethylene exposure, they found a significantly
increased risk of PD. For two other solvents (perchloroethylene and carbon tetrachloride), the
association was strong but not significant. The authors also analysed xylol, which was not
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associated with an increased risk of PD. Interestingly, there is also a rodent model of PD in
which the hallmarks of the disease are induced by exposure to trichloroethylene. In a recent
publication by Tisch, AD and PD were identified from VOCs in exhaled breath using gas chro-
matography-mass spectroscopy [16]. They also detected 24 organic components that could be
used to distinguish patients from healthy controls. The compounds were present in both
patients with AD and HC and increased in AD. Our approach was different; we also describe
several VOCs that are reduced in patients with AD compared with HC. In addition, Tisch and
colleagues did not report detecting any of our components using IMS. However, it was possible
to differentiate patients with AD, PD and HC using a decision tree and four of these substances.
Thus, it appears likely that these four substances are specifically involved in disease processes.
The roles of these organic substances remain unclear, and it cannot be anticipated whether
there is one or more correlations among disease progression, medication, disease development
and these substances. It has been hypothesised that oxidative stress leads to cell wall break
down and liberation of phospholipids, which in turn can give rise to volatile organic compo-
nents [16]. Therefore, further research is necessary to investigate the possible roles of these sub-
stances in the development of AD and PD.

Despite careful planning, there are some limitations of this study, including the sample size
of the groups and the age difference between the two groups. The sample size is a limitation,
but the present study was a pilot study in order to see whether it was possible to view differ-
ences between these disorders. A larger study is currently planned in order to validate these
results in a larger sample size. In this study, correlation of the patterns with alterations in CSF
and neuroimaging are considered. In addition, all of the patients in the second study popula-
tion were taking anti-dementia drugs. It is therefore theoretically possible that all of the organic
compounds that we detected are part of the pharmacokinetics of these drugs. However, this
possibility is highly unlikely given the structural relationships and known pharmacokinetics of
the respective drugs. In addition, the concentration of the measured items was in some cases
reduced in the patients and increased in healthy controls, further arguing against this
possibility.

In summary, both VOC sampling using the eNose and IMS were successfully able to charac-
terise patients with AD, PD and HC. This diagnostic approach offers a number of advantages
in comparison with currently available fluid biomarkers: it can distinguish with high efficacy
between AD, PD and HC, it avoids invasive and potentially harmful procedures. Following val-
idation of this approach within a larger patient sample, it may be used as a screening tool with
a hand-held device in an ambulatory setting prior to further sophisticated evaluation. In addi-
tion, it may be suited for assisting in diagnosis in remote areas, where imaging technics or spe-
cialists are scarce.

Supporting Information
S1 Fig. IMS-Chromatogram with peak positions (black and blue crosses).—x-axis: drift
time (1/K0).—y-axis: retention time through the multi-capillary column.—color: yellow highest
intensity, red: middle.
(DOCX)

S2 Fig. Aβ concentrations do not differ significantly in exhaled breath condensate between
patients with AD and age-matched HC as well as in lung tissue of APP transgenic mice
compared to wild-type mice. (a) Mice lung lysates of APP transgenic CRND8 mice (n = 4) as
well as wild-type mice (n = 4) were analysed using a MSD Human (6E10) Aβ Triplex Assay; all
values are displayed in pg Aβ/mg total protein. (b) For investigation of APP processing, AβPP
cleavage products C83 and C99 were analysed by Western blotting. (c) EBC samples were
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analysed using an MSD Human (6E10) Aβ Triplex Assay. 16 HC and 21 patients with AD were
tested. Values are given in pg/ml EBC. Error bars represent the standard deviation of the mean.
(PDF)

S1 Table. Example of two organic compounds measured with IMS. Two organic solvents are
shown, that can be used to differentiate between AD and HC.
(DOCX)

Acknowledgments
We thank all of the patients, caregivers and volunteers for their participation in this study. In
addition, we would like to thank Prof. Hans Klafki (MD) and Prof. Jens Wiltfang (MD) at the
Department of Psychiatry, University of Essen, Germany for providing access to the MSDmea-
surement facility. Furthermore, we would like to thank Candan Depboylu (MD), Heidi Pape
(MD) and Barbara Leinweber (MD) for kindly recruiting patients and Stephan Röskam (PhD)
for providing mice tissue for this study. Finally, we would like to thank Anette Hehenkamp
(MTA) for providing CSF data. JPB, RK and ARD had full access to all data in this study and
take responsibility for the integrity of the data and the accuracy of the data analysis. W.H. Oer-
tel is Hertie Senior Research Professor, supported by the charitable Hertie foundation, Frank-
furt/Main, Germany.

Author Contributions
Conceived and designed the experiments: JPB ARKMG DM RD SS. Performed the experi-
ments: MG AH JPB ARK DM FJ JM JIB SM JAMH RD JR TB CN. Contributed reagents/mate-
rials/analysis tools: BT. Wrote the paper: MG AH JPB ARK DM FJ JM JIB SM JAMH RD SJ
DL CVWHO BT JR.

References
1. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cere-

bral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of
plaque cores and blood vessels. The EMBO journal. 1985; 4(11):2757–63. PMID: 4065091.

2. Cummings JL. Alzheimer's disease. N Engl J Med. 2004; 351(1):56–67. PMID: 15229308.

3. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of
dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzhei-
mer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement.
2011; 7(3):263–9. PMID: 21514250. doi: 10.1016/j.jalz.2011.03.005

4. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer's Disease
Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2012; 8
(1 Suppl):S1–68. Epub 2011/11/04. doi: 10.1016/j.jalz.2011.09.172 PMID: 22047634; PubMed Central
PMCID: PMC3329969.

5. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research cri-
teria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol.
2007; 6(8):734–46. Epub 2007/07/10. doi: 10.1016/s1474-4422(07)70178-3 PMID: 17616482.

6. Hoglund K, Hansson O, Buchhave P, Zetterberg H, Lewczuk P, Londos E, et al. Prediction of Alzhei-
mer's disease using a cerebrospinal fluid pattern of C-terminally truncated beta-amyloid peptides. Neu-
rodegener Dis. 2008; 5(5):268–76. PMID: 18309230. doi: 10.1159/000119457

7. Holtzman DM. CSF biomarkers for Alzheimer's disease: current utility and potential future use. Neuro-
biol Aging. 2011; 32 Suppl 1:S4–9. Epub 2011/12/07. doi: 10.1016/j.neurobiolaging.2011.09.003
PMID: 22078172; PubMed Central PMCID: PMC3233690.

8. de Leon MJ, Mosconi L, Blennow K, DeSanti S, Zinkowski R, Mehta PD, et al. Imaging and CSF studies
in the preclinical diagnosis of Alzheimer's disease. Annals of the New York Academy of Sciences.
2007; 1097:114–45. Epub 2007/04/07. doi: 10.1196/annals.1379.012 PMID: 17413016.

9. Dragonieri S, Annema JT, Schot R, van der Schee MP, Spanevello A, Carratu P, et al. An electronic
nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung cancer

Diagnosing Neurodegenerative Disorders in Breath

PLOS ONE | DOI:10.1371/journal.pone.0132227 July 13, 2015 12 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132227.s003
http://www.ncbi.nlm.nih.gov/pubmed/4065091
http://www.ncbi.nlm.nih.gov/pubmed/15229308
http://www.ncbi.nlm.nih.gov/pubmed/21514250
http://dx.doi.org/10.1016/j.jalz.2011.03.005
http://dx.doi.org/10.1016/j.jalz.2011.09.172
http://www.ncbi.nlm.nih.gov/pubmed/22047634
http://dx.doi.org/10.1016/s1474-4422(07)70178-3
http://www.ncbi.nlm.nih.gov/pubmed/17616482
http://www.ncbi.nlm.nih.gov/pubmed/18309230
http://dx.doi.org/10.1159/000119457
http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.003
http://www.ncbi.nlm.nih.gov/pubmed/22078172
http://dx.doi.org/10.1196/annals.1379.012
http://www.ncbi.nlm.nih.gov/pubmed/17413016


(Amsterdam, Netherlands). 2009; 64(2):166–70. Epub 2008/10/07. doi: 10.1016/j.lungcan.2008.08.
008 PMID: 18834643.

10. Peng G, HakimM, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, et al. Detection of lung, breast, colo-
rectal, and prostate cancers from exhaled breath using a single array of nanosensors. British journal of
cancer. 2010; 103(4):542–51. Epub 2010/07/22. doi: 10.1038/sj.bjc.6605810 PMID: 20648015;
PubMed Central PMCID: PMC2939793.

11. Lewis NS. Comparisons between mammalian and artificial olfaction based on arrays of carbon black-
polymer composite vapor detectors. Accounts of chemical research. 2004; 37(9):663–72. Epub 2004/
09/24. doi: 10.1021/ar030120m PMID: 15379582.

12. Peng G, Tisch U, Adams O, HakimM, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled
breath using gold nanoparticles. Nature nanotechnology. 2009; 4(10):669–73. Epub 2009/10/08. doi:
10.1038/nnano.2009.235 PMID: 19809459.

13. Thaler ER, Hanson CW. Medical applications of electronic nose technology. Expert review of medical
devices. 2005; 2(5):559–66. Epub 2005/11/19. doi: 10.1586/17434440.2.5.559 PMID: 16293067.

14. Peng G, Tisch U, Haick H. Detection of nonpolar molecules by means of carrier scattering in random
networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano letters. 2009; 9
(4):1362–8. Epub 2009/03/27. doi: 10.1021/nl8030218 PMID: 19320442.

15. Baumbach JI. Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of
human breath. Journal of breath research. 2009; 3(3):034001. Epub 2009/09/01. doi: 10.1088/1752-
7155/3/3/034001 PMID: 21383463.

16. Tisch U, Schlesinger I, Ionescu R, Nassar M, Axelrod N, Robertman D, et al. Detection of Alzheimer's
and Parkinson's disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lon-
don, England). 2013; 8(1):43–56. Epub 2012/10/17. doi: 10.2217/nnm.12.105 PMID: 23067372.

17. Barth S, Schonknecht P, Pantel J, Schroder J. [Mild cognitive impairment and Alzheimer's disease: an
investigation of the CERAD-NP test battery]. Fortschritte der Neurologie-Psychiatrie. 2005; 73
(10):568–76. Epub 2005/10/12. doi: 10.1055/s-2004-830249 PMID: 16217697.

18. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's dis-
ease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992; 55(3):181–4.
Epub 1992/03/01. PMID: 1564476; PubMed Central PMCID: PMCPmc1014720.

19. Hattesohl AD, Jorres RA, Dressel H, Schmid S, Vogelmeier C, Greulich T, et al. Discrimination between
COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology
(Carlton, Vic). 2011; 16(8):1258–64. Epub 2011/09/03. doi: 10.1111/j.1440-1843.2011.02047.x PMID:
21883674.

20. Huttmann EM, Greulich T, Hattesohl A, Schmid S, Noeske S, Herr C, et al. Comparison of two devices
and two breathing patterns for exhaled breath condensate sampling. PloS one. 2011; 6(11):e27467.
Epub 2011/11/17. doi: 10.1371/journal.pone.0027467 PMID: 22087323; PubMed Central PMCID:
PMC3210176.

21. Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI. Ion mobility spectrometry for the
detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot
study. Thorax. 2009; 64(9):744–8. Epub 2009/01/23. doi: 10.1136/thx.2008.099465 PMID: 19158121.

22. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, et al. Exhaled breath
profiling enables discrimination of chronic obstructive pulmonary disease and asthma. American journal
of respiratory and critical care medicine. 2009; 180(11):1076–82. Epub 2009/08/29. doi: 10.1164/rccm.
200906-0939OC PMID: 19713445.

23. Wiltfang J, Lewczuk P, Riederer P, Grunblatt E, Hock C, Scheltens P, et al. Consensus paper of the
WFSBP Task Force on Biological Markers of Dementia: the role of CSF and blood analysis in the early
and differential diagnosis of dementia. The world journal of biological psychiatry: the official journal of
the World Federation of Societies of Biological Psychiatry. 2005; 6(2):69–84. Epub 2005/09/15. PMID:
16156480.

24. Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, et al. Update on
the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects. Alzheimers Dement.
2010; 6(3):230–8. Epub 2010/05/11. doi: 10.1016/j.jalz.2010.03.008 PMID: 20451871; PubMed Central
PMCID: PMC2867838.

25. Goldman SM, Quinlan PJ, Ross GW, Marras C, Meng C, Bhudhikanok GS, et al. Solvent exposures
and Parkinson disease risk in twins. Ann Neurol. 2012; 71(6):776–84. Epub 2011/11/16. doi: 10.1002/
ana.22629 PMID: 22083847; PubMed Central PMCID: PMC3366287.

Diagnosing Neurodegenerative Disorders in Breath

PLOS ONE | DOI:10.1371/journal.pone.0132227 July 13, 2015 13 / 13

http://dx.doi.org/10.1016/j.lungcan.2008.08.008
http://dx.doi.org/10.1016/j.lungcan.2008.08.008
http://www.ncbi.nlm.nih.gov/pubmed/18834643
http://dx.doi.org/10.1038/sj.bjc.6605810
http://www.ncbi.nlm.nih.gov/pubmed/20648015
http://dx.doi.org/10.1021/ar030120m
http://www.ncbi.nlm.nih.gov/pubmed/15379582
http://dx.doi.org/10.1038/nnano.2009.235
http://www.ncbi.nlm.nih.gov/pubmed/19809459
http://dx.doi.org/10.1586/17434440.2.5.559
http://www.ncbi.nlm.nih.gov/pubmed/16293067
http://dx.doi.org/10.1021/nl8030218
http://www.ncbi.nlm.nih.gov/pubmed/19320442
http://dx.doi.org/10.1088/1752-7155/3/3/034001
http://dx.doi.org/10.1088/1752-7155/3/3/034001
http://www.ncbi.nlm.nih.gov/pubmed/21383463
http://dx.doi.org/10.2217/nnm.12.105
http://www.ncbi.nlm.nih.gov/pubmed/23067372
http://dx.doi.org/10.1055/s-2004-830249
http://www.ncbi.nlm.nih.gov/pubmed/16217697
http://www.ncbi.nlm.nih.gov/pubmed/1564476
http://dx.doi.org/10.1111/j.1440-1843.2011.02047.x
http://www.ncbi.nlm.nih.gov/pubmed/21883674
http://dx.doi.org/10.1371/journal.pone.0027467
http://www.ncbi.nlm.nih.gov/pubmed/22087323
http://dx.doi.org/10.1136/thx.2008.099465
http://www.ncbi.nlm.nih.gov/pubmed/19158121
http://dx.doi.org/10.1164/rccm.200906-0939OC
http://dx.doi.org/10.1164/rccm.200906-0939OC
http://www.ncbi.nlm.nih.gov/pubmed/19713445
http://www.ncbi.nlm.nih.gov/pubmed/16156480
http://dx.doi.org/10.1016/j.jalz.2010.03.008
http://www.ncbi.nlm.nih.gov/pubmed/20451871
http://dx.doi.org/10.1002/ana.22629
http://dx.doi.org/10.1002/ana.22629
http://www.ncbi.nlm.nih.gov/pubmed/22083847

