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Abstract: Cotton contamination by honeydew is considered one of the significant problems for
quality in textiles as it causes stickiness during manufacturing. Therefore, millions of dollars in
losses are attributed to honeydew contamination each year. This work presents the use of UV
hyperspectral imaging (225–300 nm) to characterize honeydew contamination on raw cotton samples.
As reference samples, cotton samples were soaked in solutions containing sugar and proteins at
different concentrations to mimic honeydew. Multivariate techniques such as a principal component
analysis (PCA) and partial least squares regression (PLS-R) were used to predict and classify the
amount of honeydew at each pixel of a hyperspectral image of raw cotton samples. The results show
that the PCA model was able to differentiate cotton samples based on their sugar concentrations.
The first two principal components (PCs) explain nearly 91.0% of the total variance. A PLS-R model
was built, showing a performance with a coefficient of determination for the validation (R2

cv) = 0.91
and root mean square error of cross-validation (RMSECV) = 0.036 g. This PLS-R model was able
to predict the honeydew content in grams on raw cotton samples for each pixel. In conclusion, UV
hyperspectral imaging, in combination with multivariate data analysis, shows high potential for
quality control in textiles.

Keywords: UV hyperspectral imaging; pushbroom; cotton; honeydew; sugar; principal component
analysis (PCA); partial least squares regression (PLS-R)

1. Introduction

Cotton is widely regarded as an essential natural material in various textile products,
from fabrics to clothing [1,2]. It is considered one of the most imported and exported
materials worldwide [3]. Therefore, an assessment of the cotton quality is needed. Cot-
ton contamination is one of the most significant problems for quality [1,4–10]. The most
relevant impurities in raw cotton arise from insects producing honeydew. Honeydew
is sugar-rich, excreted by whiteflies and aphids, and causes stickiness during manufac-
turing [11]. Therefore, it can cause problems during processing, and the final product
shows low quality. Modern techniques and methods have appeared due to the increasing
demand for higher processing and quality control. These include off-line methods such
as thermogravimetric analysis and single-point spectroscopy. However, these techniques
are slow and time-consuming [12–18]. In contrast, in- and on-line methods, such as hyper-
spectral imaging, are non-destructive and rapid, enabling real-time data acquisition and
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analysis [3]. Hyperspectral imaging is a type of spectroscopic imaging that allows for the
collection and analysis of massive amounts of data spanning a wide wavelength range. It
involves both spectral and spatial information at high resolutions. Hyperspectral imaging
generates large amounts of data, requiring multivariate data analysis techniques such
as principal component analysis (PCA) and partial least squares regression (PLS-R) [19].
PCA can identify and visualize groups within data clusters, while PLS-R is used to build
quantitative models and generate data clusters. It is also helpful for evaluating the ro-
bustness of these models, making it a powerful tool for data analysis. Combining these
two techniques is often required to analyze and interpret the results of high-resolution
hyperspectral imaging effectively [3,5,20–23]. In a previous study, we developed a method
using UV imaging to predict the quantity of honeydew on cotton samples. The approach
involved using a xenon-arc lamp to quantify the amount of honeydew in the UV-A and
UV-B ranges. However, it could not accurately detect the honeydew in the UV-C range
due to the lamp’s intensity limitations [19]. In this study, we overcome this limitation
by using a deuterium lamp as a light source. Mechanically cleaned cotton was soaked
with in a sugar- and protein-containing solution at different concentrations that are typical
for honeydew. Chemometric models such as PCA and PLS-R were established using UV
hyperspectral images. The cotton samples were categorized by sugar concentration using
PCA, while PLS-R was used to correlate UV spectra with sugar concentration. The PLS-R
model accurately predicted the amount of honeydew in grams on the raw cotton samples.

2. Materials and Methods
2.1. Chemicals and Preparation of Solutions and Samples

The sugar and protein solutions applied to the cotton samples were formulated to
mimic natural honeydew [24–26]. First, 0.2 g of each macronutrient (glucose, fructose, su-
crose, melezitose, trehalose, and protein) was weighed and dissolved in 10 mL of deionized
water. A sixfold serial dilution was prepared in 50 mL volumetric flasks by mixing 25 mL
of the previous solution with 25 mL of deionized water for 2 min at each dilution step
(Table 1).

Table 1. The sugar solution concentration and the weighted average sugar on cotton samples.

Sample Type Sugar Concentration/wt % msugar/mcotton

A 4 0.4249

B 2 0.2413

C 1 0.1194

D 0.5 0.0609

E 0.25 0.02313

F 0.125 0.0126

G 0.0625 0.0143

CLN - -

In total, 24 mechanically cleaned cotton samples were prepared with a weight of
0.3 g ± 1 mg of each sample. The samples were dried in a vacuum oven (Vacutherm VT
6130 M, Thermo Fisher Scientific Inc., Waltham, MA, USA) at 30 ◦C and 50 mbar for 8 h to
remove absorbed humidity. Then, 4 mL of the aforementioned solution was used to soak
three samples per concentration. The samples were dried again in a desiccator at room
temperature for one month.

Raw cotton samples were collected by ICA Bremen GmbH (Bremen, Germany) to
test the model’s predictive power. The samples were chosen according to their honeydew
content in the levels light, strong, and very strong [19]. The sample types were named
from A to F, and there was one mechanically cleaned (CLN) sample. Of the samples, A
had the highest concentration of sugar and protein solution (4 wt %), and G had the lowest
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concentration (0.0625 wt %) (Table 1). The average ratios of sugar mass to dried cotton
mass (msugar/mcotton) remaining on the samples were calculated after drying the samples
for one month (Table 1). The term macronutrients is omitted when describing the solution
and replaced with the short term “sugar” for the sample nomenclature.

2.2. UV Hyperspectral Imaging Setup and Data Processing

Compared to our previous studies [19–21], the illumination of the hyperspectral
imaging setup was modified; for the present study, a deuterium lamp (SL 3, StellarNet
Inc., 24 V, 65.04 W, Tampa, FL, USA) was used, providing a higher illumination strength
in the UV-C region compared to the xenon-arc lamp (e.g., an intensity difference for the
deuterium lamp of around 230 higher than the xenon-arc lamp). Thus, the PTFE tunnel
covering the convey belt for increasing the illumination strength was no longer necessary.

A multivariate data analysis was carried out using “Aspen UnscramblerTM, version
10.5.1” (Aspen Technology Inc., Bedford, MA, USA). The PCA model was calculated with
mean centering, cross-validation, and the NIPALS algorithm. A PLS-R model for the
sugar concentrations was processed with mean centering, a category variable with eight
segmented cross-validations, and the kernel algorithm.

3. Results and Discussion

The averaged absorbance spectra in terms of reflectance after a linear baseline correc-
tion are shown in Figure 1a. The spectra show an almost linear decrease in the reflectivity
for all sugar concentrations. In the range of 275 nm and 295 nm are broad bands showing
clear dependences on the sugar concentration. These bands can be assigned to protein, cel-
lulose, and lignin. A much weaker band between 230–255 nm corresponds to the presence
of pectin and DNA [27–30].
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PC1, high sugar concentrations are separated from low concentrations, while on PC2, the 
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Figure 1. (a) Averaged spectra recorded via UV hyperspectral imaging of raw cotton samples
with sugar solutions in different concentrations: A (4 wt %), B (2 wt %), C (1 wt %), D (0.5 wt %),
E (0.25 wt %), F (0.125 wt %), G (0.0625 wt %), and CLN (mechanically cleaned). PCA sugar model
for the cotton samples with (b) scores on the first principal component (PC1) and second principal
component (PC2) and (c) corresponding loadings (PC1—black dashes; PC42—short red dashes).

Figure 1b,c present the cotton samples’ PCA model at each sample pixel with different
sugar concentrations. Figure 1b shows the scores plot for the first (79.0%) and second
(12.0%) principal components (PCs). These PCs explain nearly 91.0% of the total variance.

The PCA scores enable us to distinguish different sugar concentrations on cotton. On
PC1, high sugar concentrations are separated from low concentrations, while on PC2, the
mechanically cleaned sample (CLN) shows a distinct separation from the samples with
high sugar concentrations. Moreover, different sugar concentrations on cotton can clearly
be distinguished via the PC2. An overlap naturally results from the preparation method
chosen, which results in a certain inhomogeneity. With decreasing concentration, the degree
of overlap between samples increases together with the variance within the samples. Each
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cluster shows an overlap with the two nearest sugar concentrations (higher and lower).
Figure 1c shows the loadings plots for PC1 and PC2. The most significant differences
between those loadings are found between 250 and 280 nm in the spectral region. The
maximum influence on PC1 occurs at 250 nm, and the minimum occurs at 283 nm. Most of
PC1 describes a clear dependence on the concentrations of sugar on the cotton samples.
PC2 has a maximum at 249 nm and a minimum at 282 nm. These bands represent the
chromophores, pectin, and DNA in the cotton fibers [2,27].

PLS-R was utilized as a technique for quantitative spectroscopic analysis. A PLS-R
model was developed using a calibration sample set of 24 samples to establish a correlation
between the spectral information and the sugar content. The PLS-R model’s performance
was tested using cotton samples (Table 1) with different concentrations of sugar solutions.

The PLS-R model for the X- and Y-variables explained 91% of the variance. Three
PLS-R factors were sufficient to describe the correlation between the spectra and the
sugar content. In order to describe the efficiency of the PLS-R model, the coefficient of
determination (R2) and root mean square error (RMSE) were calculated. The RMSE and
R2 are two statistical measures used to evaluate how well a linear regression model fits
a dataset. The RMSE measures the accuracy of the model’s predictions, while the R2

measures how well the model’s predictor variables explain the variation in the response
variable [31]. The accuracies of the calibration and validation were evaluated using the R2

for the calibration R2
c = 0.9 and validation R2

cv = 0.91 models. The quality of the models
were evaluated according to values of the error of calibration, RMSEC = 0.03 g, and the
error of cross-validation, RMSECV = 0.036 g. High R2

c and R2
cv values are achieved with

extremely low RMSEC and RMSECV values.
Figure 2 presents the PLS-R model for cotton samples soaked with different concentra-

tions of sugar. For model building and understanding the PLS-R factor loadings, loading
weights for all three factors are displayed in the Supplementary Materials (Figure S1).
Figure 2a displays the correlations between the predicted and reference values, whereas the
regression coefficients for the three-factor model are illustrated in Figure 2b. the samples
F and G have similar ratios, 0.0324 and 0.0321 (msugar/mcotton); hence, they overlap in the
regression coefficient plot. Two negative bands at 235 nm and 282 nm and one positive
band at 250 nm can be assigned to protein and pectin absorbances [3,27].
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The PLS-R model was used to predict the honeydew content for each pixel of a
hyperspectral image. Three raw cotton samples of three grades of honeydew contamination
(light, strong, and very strong) were collected, and the resulting distribution maps are
shown in Figure 3. The distribution maps present a clear lateral classification of different
ratios of msugar/mcotton, and the predicted ratios decrease from the very strong samples
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to the light samples. The sugar content is highly correlated with the honeydew amount.
The analysis reveals a highly variable distribution of honeydew across all samples. Some
regions present minimal contamination, while others, including areas/pixels in the light
samples, exhibit up to 0.1 msugar/mcotton ratio, comparable to those found in the very strong
samples. The observed inhomogeneity in honeydew distribution suggests that our soaking
method for the sugar solution is a realistic approach, as it induces a comparable level of
variability. However, the inhomogeneity seems to be even higher in the raw samples, as
shown in Figure 3.
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Figure 3. Distribution maps of the sugar content predicted for each pixel of the UV hyperspectral
imaging data from the five-factor PLS-R model on the raw cotton samples contaminated with honey-
dew. Each rectangle represents a single cotton sample ((a) very strong, (b) strong, and (c) light). The
colored pixels (see the score value range) represent the sugar content, from low (blue) to high (red).

4. Conclusions

UV hyperspectral imaging (225–300 nm) was combined with multivariate data analysis
to successfully identify and quantify honeydew on raw cotton samples. Therefore, a
reference sample set based on cotton samples was prepared and imaged in UV.

The samples were soaked with solutions containing sugar and proteins at different
concentrations to mimic honeydew. A PCA model enabled the classification of the cotton
samples according to their sugar concentrations. The PLS-R model was able to predict
laterally resolved honeydew content pixel by pixel in grams on raw cotton samples. The
analysis reveals that the raw cotton samples have an inhomogeneous distribution of honey-
dew. Therefore, the chosen soaking method closely approximates the distribution patterns
observed in the raw samples. The results were obtained by analyzing samples labeled as
light, strong, and very strong contaminated with honeydew. This combination of hyper-
spectral imaging with multivariate data analysis represents a high potential technique for
detecting honeydew contamination in real-time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/textiles3030019/s1, Figure S1. X-loading weights and x-loadings
for factor 1 (a,b), factor 2 (c,d), and factor 3 (e,f), respectively.
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