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Abstract 

Smart factories, driven by the integration of automation and digital technologies, have revolutionized 
industrial production by enhancing efficiency, productivity, and flexibility. However, the optimization and 
continuous improvement of these complex systems present numerous challenges, especially when real-world 
data collection is time-consuming, expensive, or limited. In this paper, we propose a novel method for semi-
automated improvement of smart factories using synthetic data and cause-effect-relations, while 
incorporating the aspect of self-organization. The method leverages the power of synthetic data generation 
techniques to create representative datasets that mimic the behaviour of real-world manufacturing systems. 
These synthetic datasets serve together with the cause-and-effect relationships as a valuable resource for 
factory optimization, as they enable extensive experimentation and analysis without the constraints of limited 
or costly real-world data. Furthermore, the method embraces the concept of self-organization within smart 
factories. By allowing the system to adapt and optimize itself based on feedback from the synthetic data, 
cause-effect-relationships, the factory can dynamically reconfigure and adjust its processes. To facilitate the 
improvement process, the method integrates the synthetic data with advanced analytics and machine learning 
algorithms as well as and the cause-and-effect relationships. This synergy between human expertise and 
technological advancements represents a compelling path towards a truly optimized smart factory of the 
future. 
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1. Introduction

Globalized customer markets require companies to adapt to small production batch sizes and rapidly 
changing demands. Short innovation, technology, and product life cycles, as well as the need for cost-
effective customized products, call for reconfigurable process paths [1], [2]. Smart, self-organized factories 
offer the potential to achieve flexible and adaptive production processes to solve arising problems in factory 
environments dealing with dynamic and rapidly changing boundary conditions and increasing complexity 
[3]. Self-organized factories are capable to perform a target-oriented (re-)structuring of the factory system 
to adapt to changing conditions without the need for a higher (hierarchical) decision-making level [4], [5]. 
To carry out these adaptations, autonomously acting system elements in the subsystems (like semi-
autonomous working groups in assembly or autonomously mobile workstations) are necessary, which allow 
a targeted-oriented self-adjustment to enable an adaptation of the subsystem [6], [7]. The concepts of self-
organization and autonomous control are closely linked to each other [5]. Self-organization deals with the 
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autonomous emergence of ordered structures in dynamic, complex systems. It refers to the way in which 
order emerges from within a system and a system designs processual and systemic structures by itself [5], 
[8]. Autonomous control describes, in particular, processes of decentralized decision-making in heterarchical 
structures on the execution level [9], [10].  

In a smart factory, interconnected manufacturing processes use data processing for early improvements. The 
continuous improvement process (CIP) includes problem analysis, solution generation, implementation, and 
checking, leading to new standards [11]. The philosophy behind CIP is proactive, using employee expertise 
to prevent problems and achieve significant improvements through continuous small changes over time. The 
analysis of product, process and factory data of including historical data combining with cause-effect 
relationships enables the identification of measures to achieve or even exceed defined production target 
dimensions by a semi-automatic improvement process using the self-organization capabilities. 

2. Analysis of the state of science

To set the theoretical base the state of science in the fields of continuous improvement of smart factories, 
synthetic data generation, data analytics and cause-and-effect relationship analysis is examined. 

2.1 Continuous improvement of smart factories 

The continuous improvement process (CIP) involves small improvements in small steps and is one of the 
tools of lean management [12], [13]. In contrast to innovation, which is a top-down approach, CIP involves 
the employees [12]. In traditional CIP, digital tools assist processes, with improvement measures drawn from 
human expertise, promoting cross-functional collaboration among employees from various departments. 

In the last decade a number of advanced digital technologies known as Industrie 4.0 were developed, which 
offer new approaches to managing complexity and improving productivity [14]. Integrating digital 
technologies in Industrie 4.0 with established lean management principles like CIP can optimize processes 
by enhancing transparency, networking, and automation, offering companies substantial potential. A study 
by BearingPoint [15] shows that the successful use of Lean Management 4.0 varies greatly depending on the 
industry. In a study of 50 manufacturing companies, 72% of decision-makers acknowledged the potential of 
lean management and digitalization for optimizing business processes. However, most companies are still 
in the early stages of implementing digital technologies within lean management methods [15]. There is also 
a trend towards developing tools that autonomously perform data analysis without human assistance [16]. 
Existing approaches (I) use especially human-based knowledge and experience for a manual or semi-
automated transfer to new problems or (II) require large amounts of real data for an automated process using 
advanced analytics or machine learning to identify patterns [17], [18]. 

2.2 Synthetic data generation 

Synthetic data is used when real data is challenging to access, lacks detail or scale, or is incomplete [19]. 
The three primary categories of synthetic data include dummy data, rule-based generated synthetic data, and 
synthetic data generated using artificial intelligence [20]. 

Dummy data, often made with a mock data generator, is randomly generated and lacks the characteristics, 
relationships, and statistical patterns of the original data, making it unrepresentative of the actual data [20]. 
Rule-based generated synthetic data, on the other hand, is produced by defining specific rules for data 
generation, which can be achieved using simulation tools [20], [21]. Within the realm of data farming, 
simulation methods are utilized to generate and analyse synthetic data to gain targeted insights [22], [23]. 
Rule-based synthetic data generation relies on precisely defining all features, relationships, and statistical 
patterns, with the quality of the generated data depending on the accuracy of the predefined rules, making it 
valuable when real data is unavailable [20]. Using artificial intelligence algorithms, synthetic data can be 
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generated by training an AI model with real data to learn its features, relationships, and statistical patterns, 
and then the model creates entirely new data points that mimic the characteristics of the original dataset [20]. 

2.3 Data analytics 

Data analytics is the scientific process of mathematically and logically transforming historical data into 
insights to explain the past and to achieve better future decision-making [24], [25]. With increasing maturity 
of analytical skills, descriptive (What happened?), diagnostic (Why did it happen?), predictive (What will 
happen (with which probability)?) and prescriptive analytics (How can we make it happen?) are 
distinguished, which all build on each other [24], [25], [26]. The starting point for analysis is set by the 
descriptive analytics by analysing what has happened based on statistics and instruments such as tables and 
charts organizing, summarizing and visualizing data [24], [27]. After descriptive analytics, diagnostic 
analytics is used to uncover patterns, root causes, and connections among attributes. It employs data-driven 
machine-learning algorithms like k-means clustering [24]. Diagnostic analytics analyses attribute 
correlations and interactions, such as process errors' influences and root causes of process time delays. In 
the predictive analytics step, methods and models are utilized to forecast errors and disruptions based on 
identified patterns within the dataset [24], [25]. In the final step of prescriptive analytics, simulation and 
optimization approaches are employed to positively impact the future by making targeted decisions, such as 
optimizing assembly processes to prevent errors like incorrectly mounted or forgotten components.  

2.4 Cause-and-effect relationships (CER) 

This work utilizes cause-and-effect relationships to identify interrelationships in a product lifecycle and 
improve production semi-automatically. These relationships indicate connections between variables, where 
changes in one variable cause changes in others, and genuine connections, rather than just close links, must 
be ensured during the identification process [24]. One process that builds on cause-and-effect relationships 
is quality problem-solving (QPS), which is used in the manufacturing industry. This process consists of 
problem definition, problem analysis, cause identification, solution generation and selection, and solution 
implementation and testing [28]. The data that exists in a QPS system includes the problem, the causes, 
different types of solutions and a solution evaluation. If the problems and causes are represented graphically, 
the result is a bipartite graph [29]. 

3. Research Method

The procedure of this work is based on Österle’s Design Science Research [30] with a focus on a practice- 
oriented research approach. The work begins with an analysis phase using mixed literature analysis, 
including snowballing, to establish theoretical foundations, analyse and evaluate literature aspects, and 
identify CER in a product lifecycle along with relevant data types. In the draft phase, the method is created 
based on the part solutions, generating synthetical data, CERs, data streams and fundamentals from literature 
as well as research already carried out. The verification was done against the requirements based on use 
case 1 for the suitability of the synthetically generated data. The validation to prove the achievement of the 
goal for application of the developed method was partly done by the use case 2 for a smart product and 
production. 

4. Development of the method for semi-automated improvement of smart factories

The continuous improvement process (CIP) involves small improvements in small steps and is based on a 
bottom-up approach. The idea of developing this innovative method to enrich the CIP is based exactly on 
this principle, using operational data (bottom) and constantly processing it to make new improvements for 
the whole (top) factory system. The enrichment of the CIP (see Fig. 1) with AI in the PLAN segment of 
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"problem/potential analysis" uncovers hidden relationships between variables, enabling early detection of 
problems or opportunities. If detailed data is unavailable, synthetic data generation methods may be used. 
CER are then established through diagnostic analytics to analyse the production system [27]. 

Figure 1: Enriched Continuous Improvement Process 

The semi-automated measure generation through cause-and-effect relationships can contribute to increasing 
the efficiency of the CIP through digitalization. The partial solutions described below have been combined 
into a comprehensive method for semi-automated improvements. Smart factories, powered by data and AI, 
revolutionize industrial processes, boosting productivity and efficiency. To optimize them, a deeper 
understanding of cause-effect relationships is essential to spot potential improvements. Therefore, we 
propose a novel method that uses synthetic data and cause-effect relationships to create a production model 
for semi-automated improvements in smart factories (see Fig. 1).  

The comprehensive method consists of: (P1) Utilizing Cause-Effect Relationships: Analysing critical factors 
in the smart factory environment; (P2) Implementation and Data Stream Integration: Testing improvement 
strategies in the real factory using continuous data streams; (P3) Development of a Context-Based 
Production Model: Building a comprehensive simulation model considering cause-effect-Relationships and 
the data streams; (P4) Monitoring of System Behaviour: Regularly observing and evaluating the production 
system against target dimensions for continuous improvement; (P5) Analytic and Generation of Synthetic 
Data: Using synthetic data to expand the data pool and conduct experiments safely; (P6) Semi-Automated 
Improvement Strategies: Employing AI algorithms to identify potential improvement strategies; (D1) 
Human Expert Collaboration: Factory personnel collaborate with AI to validate improvement strategies and 
(D2) Self-Organization: Enabling factories to autonomously adjust their structures and processes for optimal 
efficiency and adaptability. 

4.1 Synthetic data generation 

Synthetic data generation involves creating artificial data that resembles real-world data while excluding 
personally identifiable information or sensitive content. The main goal is to expand the dataset while 
retaining the statistical properties and patterns of the original data through methods like simulation studies. 
Following VDI 3633 seven steps have to be considered to perform a simulation study [31]. The procedure 
involves task definition, systems analysis, model formalization, implementation, simulation experiments, 
and result analysis. In this research the cause-effect-diagrams as well as the data streams will be used to 
formalize the model of the respective production system. Parallelly the phases of data collection and data 
preparation have to be considered.  According to VDI 3633 [31], the mapping accuracy of the model should 
not be as detailed as possible, but as detailed as required to meet the specific objective.  

For generating synthetical data a first minimal system model based structurally and process-wise on a real 
work system for the assembly of a product at Werk150, such as the MIMB box (see use cases 1 and 2), was 
designed and implemented [32], [33]. The major steps of the simulation study, including preparation, model 
implementation, and synthetic data generation as well as the results are described in chapter 5.1.  
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4.2 Cause-and-effect relationships 

4.2.1 Development procedure of cause-and-effect relationships in general 

The process for identifying and analysing problems and causes using Cause-and-Effect Diagrams (CED) and 
Detailed Cause-and-Effect Diagrams (DCED) are shortly described [29]. The first step involves identifying 
problems and causes through brainstorming and personal experience. Then, these problems and causes are 
clustered to prepare for the CED. The CED is created by categorizing main cause branches and identifying 
all possible causes. Causes are classified and analysed to understand their impact on the problem. The two-
way relationship between problem class and cause class is determined based on predefined correlations and 
clustering. The DCED (Detailed Cause-Effect-Diagram) differs from the ACED (Abstract Cause-Effect-
Diagram) as it only clusters problems [29]. The generation of a DCED is shown in Fig. 2. This process can 
be used to identify interrelationships in a product lifecycle, investigate potential problems and causes, and 
develop solutions. By understanding these interrelationships, processes can be derived to improve 
information flow and implement effective solutions, leading to problem elimination and prevention. 

Figure 2: Generation of a DCED [29] 

4.2.2 Definition of cause-and-effect relationships in process engineering and production 

Based on literature [28], [30], [31], [32], [33], [34], [35], [36] and the above-described method Schnabel 
[37] defined cause-effect relationships for the process engineering as well as for production, structured them
into classes, documented them into detailed cause-and-effect diagrams (see Fig. 3) for defined problem and
challenge classes [38]. Both will be used for the design of the context production model CPM.

Figure 3: Cause-and-effect-diagram for problem class "process engineering" and “production” [37] 

4.3 Data streams in process engineering and production 

To identify relevant data in the product lifecycle, particularly for process engineering and production, the 
procedure developed by Günther et al. [39] is employed. Process analyses are recommended to identify 
relevant influencing factors and problem sources. Cause-and-effect relationships are used to create an 
overview of data streams in the product lifecycle. Relevant data sources are selected and evaluated based on 
criteria, including relevance, reliability, availability, data stream characteristics, and customer data security. 
In the next step additionally required data sources are determined based on systems’ requirements [37]. The 
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relevant data type was assigned to the product life cycle phase and as input data required or as output 
generated. The integrated product engineering model (iPeM) [38] with the main phases pre-development, 
product engineering, process engineering, production, usage and end of life builds the basis. During process 
engineering, product data from previous phases and subsequent generations is utilized. This includes 
information on product properties, production capability factors, production processes, quality data, use 
phase data, and remanufacturing processes. In the production phase, data from product and process 
engineering is essential. To achieve continuous improvement, processes must be implemented based on data 
collected during series production, following the concept of self-organization. The data types developed are 
described and documented in Schnabel [37]. 

5. Validation

Validation is the process of checking whether the proposed solution meets the expected objectives. 
Verification (UC1) is to check if the requirements for the usage of the synthetically generated data are 
fulfilled. Here, the correctness of the overall result is validated [40]. To reuse the partial solution for future 
challenges, validation tests with use cases (see Fig. 4, UC2 and UC3) that interconnect on each other were 
built. 

Figure 4: Verification and Validation approach 

The chosen method for validation is experimentation where a specific assumption or conjecture is validated 
in a practice-oriented investigation. 

5.1 Use case 1: Synthetic data generation 

Use case 1 dealt with the investigation of the suitability of synthetically generated data of production and 
process data of a defined minimal system (see Fig. 5) with reduced structural complexity for a data-driven 
prediction of turbulence events and their effects on process and throughput times [33].  

Figure 5: Defined minimal system with turbulence events (T) [33] 

The minimal system model is based structurally and process-wise on an actual work system for the assembly 
of a product at two alternative workstations which are supplied with pre-picked component sets from the 
warehouse via automated guided vehicles (AGV). For the generation of the synthetic data set a rule-based 
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simulative approach has been applied, since no real data on production systems’ internal turbulences was 
available, but the effects of the turbulences on the production system was known. The simulation study to 
generate the synthetic data has been done following the procedure of VDI 3633 [31]. For the modelling of 
the defined minimal system, a multi-method simulation with agent-based modelling of the transport 
resources’ autonomous behaviour and event-oriented modelling of the turbulence scenarios with stochastic 
turbulence events has been applied using the simulation tool AnyLogic. Detailed information about the 
considered turbulences, turbulence attributes, and considered data, values and distributions as well as about 
the entire simulation study can be found in Schuhmacher [33]. For the investigation of suitable data-driven 
prediction methods the generated synthetic data has been divided into training data (60 %) for training the 
data-driven prediction models and test data (40 %) for determining the prediction accuracies. The considered 
models and methods of different types (Naïve Bayes, generalized linear model, logistic regression, fast large 
margin, deep learning, decision tree, random forest, gradient boosted trees) have been compared in terms of 
prediction accuracy for the respective turbulence, standard deviation and computation time. Based on this 
use case it has been shown and validated that a data-driven, probabilistic prediction can be achieved through 
a simulative generation of synthetic data. To transfer the identified potentials of the synthetic data generation 
to higher-level questions of the CIP despite the lack of real data, the developed "Enriched Continuous 
Improvement Process" (see Fig. 1) will be applied. By building up a simulation model (phase P3), monitoring 
the system behaviour (phase P4), generating and analysing the synthetic data (phase P5) a semi-automated 
identification of improvement strategies (phase P6) to reach the set targets should be achieved, incorporating 
expert knowledge of the employees (phase D1).     

5.2 Use case 2: Using CER for semi-automated improvement of a smart product 

The use case 2 was carried out in the smart factory Werk150, the factory of the ESB Business School on the 
Campus of the Reutlingen university as part of a comprehensive research project [37]. The Werk150 is a 
research and education environment with innovative industrial digital engineering and physical 
manufacturing infrastructure, a so called “Industry 4.0 Factory”. Werk150 is a research environment where 
the latest production and logistics technologies are developed and represent a state-of-the-art CPS production 
system. To develop and test technologies a city scooter and a modular, intelligent mobility box is 
manufactured [32]. To define the limitations of the use case 2 the system to be investigated is described 
according to [41]. In this validation, the system to be examined is a product, which is developed with the 
i2PLM see [37]. The input variables that can be changed are in the engineering phase the construction of the 
product depending on use phase data. In the production phase, the 3D printing parameters can be adjusted 
based on the product quality data. The input variables which are non-changeable are the material of the 
product and the production process, with its work steps.  

Figure 6: Smart lunchbox       Figure 7: Temperature curve comparison of smart lunchbox 
  Variant 1 and 2 

The modular intelligent mobility box (MIMB) by Werk150 is a smart product (see Fig.6), with sensors for 
data storage and analysis. It connects to a network for data transmission and includes a 3D-printed top and 
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bottom, a temperature and humidity sensor, data gateway, and velcro. The lunchbox's use case is to keep 
chilled food fresh during the commute, maintaining the temperature below 15 °C for one hour after removal 
from the refrigerator, with the sensor monitoring the internal temperature. The procedure for the experiment 
is based on the processes of the i²PLM and is shown in Fig. 8. In Variant 1 the lunchbox is already developed, 
and the process engineering has already been carried out. This is followed by the production of the lunchbox 
in Werk150 where data is generated on the quality characteristic. The product is used by experiment 
participants in the use phase where temperature data is generated while carrying out the use cases. These 
data are converted into a temperature curve which flows into a cause- and effect-relationship (CER) and 
triggers product and production changes for the subsequent generation (Variant 2). Variant 2 is a customized 
lunchbox. The changes in the product engineering of Variant 2 are mainly incorporated by changing the wall 
thickness, as this significantly influences the temperature curve on the product side. In process engineering, 
new requirements result in changes of 3D printing properties. Subsequently, the product is engineered, 
produced, and used and the same data types are recorded to validate product improvements. 

Figure 8: Schematic diagram of the experiment procedure 

The results from production quality control are that Variant 2 is in contrast to Variant 1 leak-proof, and in 
addition, the surface is smoother, and the rework effort of the 3D printing is reduced. In the use phase, 
temperature curves are generated by 36 users and shown in the diagram in Fig. 7. The average temperature 
curve of Variant 1 is shown with a dotted line and Variant 2 with a solid line. Variant 2 meets the required 
temperature after one hour with 13.2 °C and improved by 6.5 °C compared to Variant 1. Improvements 
occurred in the product properties, as well as in the production time and quality. Use case 2 proofed that 
using the CER combined with the data streams the semi-automatic provision of the improvement potentials 
work in this use case quite well and will be the basis for the use case 3 for the validation of the comprehensive 
methods as presented in this paper. 

6. Conclusion and outlook

The developed novel method for semi-automated improvement of smart factories using synthetic data and 
cause-effect relationships presents a promising approach to enhancing production efficiency and 
productivity. Both use cases have separately proven that the objective can be achieved. By leveraging the 
power of artificial intelligence, synthetic data, and cause-effect insights, factories can achieve intelligent 
decision-making and drive continuous improvements in their operations. The next steps for use case 3 (see 
Fig. 4) will involve the combined and integrated use of cause-and-effect-relationships and synthetically 
generated data for the semi-automated improvement of smart factories on the example of the complete 
production system of Werk150 to prove the path towards a truly optimized factory of the future. This will 
lead to deeper insights on the potentials and limitations of using synthetic data and cause-effect relationships 
for the semi-automated improvement of smart factories.   
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