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Abstract 

The development of automatic solutions for the detection of physiological events of interest is booming. Improvements in the 
collection and storage of large amounts of healthcare data allow access to these data faster and more efficiently. This fact means 
that the development of artificial intelligence models for the detection and monitoring of a large number of pathologies is becoming 
increasingly common in the medical field. In particular, developing deep learning models for detecting obstructive apnea  (OSA) 
events is at the forefront. Numerous scientific studies focus on the architecture of the models and the results that these models can 
provide in terms of OSA classification and Apnea-Hypopnea-Index (AHI) calculation. However, little focus is put on other aspects 
of great relevance that are crucial for the training and performance of the models. Among these aspects can be found the set of 
physiological signals used and the preprocessing tasks prior to model training. This paper covers the essential requirements that 
must be considered before training the deep learning model for obstructive sleep apnea detection, in addition to covering solutions 
that currently exist in the scientific literature by analyzing the preprocessing tasks prior to training. 
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1. Introduction 

Artificial intelligence and data management are becoming part of every aspect of people's lives. It is becoming 
increasingly common to find intelligent algorithms that have been trained with data collected daily in everyday tasks. 
One of the fields where artificial intelligence can provide the most significant benefits is the field of medicine. The 
detection of physiological events of interest can be crucial for the diagnosis and monitoring of various diseases. 
Numerous solutions already exist today that use artificial intelligence to diagnose diseases [1]–[5]. 

One of the fields where the development of artificial intelligence models plays a significant role is sleep medicine. 
The problems derived from sleep can cause other pathologies and alter other physical conditions, putting people's 
health at risk, besides generating tiredness during the day in people who suffer from it. One of the common sleep 
disorders is obstructive sleep apnea. Polysomnography is the gold standard for detecting obstructive sleep apnea. 
However, despite its accuracy, it has numerous disadvantages that are widely known, such as the long waiting lists of 
patients to be monitored in sleep laboratories during the night to check whether they suffer from apnea or not [6]. This 
also implies an economic and personal cost since polysomnography tests require on-site personnel during the test and 
clinicians for the subsequent analysis of the results. 

Because of the above, for some time now, ways have been developed to detect sleep apnea more quickly and in a 
less invasive way. One of these solutions is the use of portable devices that can be taken home by patients and the 
sleep test performed there [7], [8]. This would lead to the decongestion of waiting lists in sleep laboratories and provide 
the patient with greater comfort. 

In general, new sleep apnea detection techniques involve intelligent or automatic algorithms that automatically 
recognize apnea events. The best-known and most widely used are machine learning models. Specifically, deep 
learning models allow us to avoid the feature-extracting process and thus avoid the high level of expertise required in 
this medical field [9]. Deep learning models can be trained with a large amount of data and provide results close to 
those of expert clinicians. 

Although numerous solutions use deep learning to detect apnea events, there still needs to be a standard on the 
ideal methodology to develop these models for these classification tasks. One of the most commonly used models is 
convolutional neural networks (CNNs) or recurrent neural networks (RNNs) [10], [11]. However, the choice of model 
architecture is one of many things that need to be addressed when it comes to developing deep-learning models for 
apnea event detection. Many other factors can influence model development and performance. One such factor is the 
biomedical datasets to be used for sleep apnea detection. Deciding between the ideal number of signals and the ideal 
combination is a complex task. The features of the signals are also relevant, such as the signals' sampling rate, whether 
the whole signal is used to feed the algorithm, or whether the signal is divided into windows of a specific duration for 
training the algorithm [12]. 

As can be seen, there are several factors to be taken into account prior to training the model. There is no unanimity 
among the existing solutions in the scientific literature on the best selection of this set of factors. Usually, the well-
known trial-and-error method is used. This can be problematic since the development of deep learning models should 
have an engineering approach and avoid this type of method as much as possible.  

According to the literature, some solutions base the models' development on the selected architecture [13], [14]. 
However, the classification of apnea events is complex and involves the selection of several relevant factors, such as 
the type of classification to be performed by the model. Most models are based on binary classification, where a 
distinction is made between apneas and non-apneas without distinguishing between hypopneas. On the other hand, 
some models also base their modus operandi on the classification of different events. In this case, it would be apnea, 
non-apnea and hypopneas[15], [16]. 

The development of deep learning models for apnea event detection is associated with numerous prerequisites that 
need attention prior to model training. In this paper, we emphasize these requirements and cover various proposals in 
the literature to make a comparison between the different solutions and evaluate the selection of these factors. 
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2. Methods 

This section presents the methodology used for the study of the prerequisites that are necessary for the 
development of deep learning models for OSA detection. First, the main requirements the authors consider 
necessary to address before training are identified. These requirements are: 

• Database selection 
• Set of signals definition 
• Sampling rate 
• Preprocessing 

o Filtering 
o Artefact Removal 
o Normalization 
o Dataset balancing 

• Classification approach 
o Patient-based 
o Window-based 

 
Based on these prerequisites, a search is done in the scientific literature on the development of deep learning models 
that address these issues. In order to search for relevant studies that fit our scope of study, searches in different 
databases such as PubMed, ScienceDirect and IEEE were performed. Since the authors of this work intend to analyse 
and expose recent solutions to address the preprocessing stage before model training as accurately as possible, the 
selected scientific papers are not older than 2017. The publications were included based on the information they 
contain in relation to the requirements outlined above. 

After the scientific review, the main characteristics of the works found and selected will be presented for further 
analysis and assessment. It should be noted that the main objective of this work is not based on the model selection 
but on the selection of all the requirements listed above.  

The results obtained by the selected scientific papers will also be presented and analyzed. However, good results 
in model performance are not the only relevant outcome. Other aspects of interest, such as the explainability of the 
model, should also be addressed. However, this aspect is outside the scope of this work. 

One of the main aspects studied in this manuscript is the preprocessing or not of the signals since it is relevant to 
study whether a model can perform well by simply using the raw signals. Details of the implementation of signal pre-
processing are also important and are part of the analysis. 

3. Results 

This section presents the results of the performed scientific literature search. After reviewing the scientific papers, 
thirteen publications were selected after considering that they met our requirements established in section 2. The data 
are presented in Tables 1 and 2. Table 1 shows the databases used by the scientific papers, the set of signals used, the 
sampling rate used for training the models (not the sampling rate during signal acquisition) and all the processing tasks 
prior to the training of the models. 

Table 2 shows the architectures of the deep learning models used for the classification of apnea events. The results 
obtained based on the metrics used by the authors of the scientific papers are also presented. As a general rule, 
accuracy, sensitivity, and specificity are the most used to demonstrate the goodness of the model in the classification 
tasks. 
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Table 1. Main prerequisites prior to the training of the models by the solutions proposed after the review of the literature. 

 
Publication 

 
Database Set of signals Sampling 

Rate (Hz) Preprocessing 

Chang H. et al. 
2020 [17] 

PhysioNet Apnea-
ECG Database 

35 subjects 
Single lead ECG 100 - Band-pass filtering (0.5 Hz to 15 Hz) 

- Standardization 

Dey D. et al. 2017 
[16] 

PhysioNet Apnea-
ECG Database 

35 subjects 
Single lead ECG 100 - 

Drzazga J. et al. 
2021 [15] 

SHHS-1 PhysioNet 
Sleep 

Oronasal airflow 
(thermocouple) 

Thoracic respiratory effort 
(RIP band) 

Abdominal respiratory effort 
(RIP band) 

- 

- Offset removal by subtracting mean value of the 
signal from each sample 

- Signals are scaled to even out differences 
between patients 

- Filtering with 1.25 Hz low-pass filter; phase 
alignment. 

Haidar R. et al. 
2018 [18] MESA Nasal airflow 

Thoracic and Abdominal 32 -Data normalization 

Kristiansen S. et 
al. 2021[7] 

A3 Study 
(over 7400 hours 

from 579 patients) 

Nasal cannula 
SpO2 

RIP chest 
RIP abdomen 

1 

- Artefacts removal 
- Data partioned into non-overlapping 60-seconds 

periods 
- Dataset balancing 

Kwon H. et al. 
2022[19] 

Proprietary dataset 
36 recordings 

Impulse-radio ultra-
wideband (IR-UWB) radar 

20 fps 
(radar) 

- Set windows of 20 seconds duration 
- Downsizing images to 80 x 300 pixels; 

Zhang J. et al. 
2021 [20] 

Physionet Apnea-
ECG dataset 
35 subjects 

Single lead ECG 100 - Chebyshev type-II band-pass filter (5-11 Hz) 
- Set windows of 10 seconds duration 

Pathinarupothi R. 
et al. 2017 [21] 

Physionet apnoea-
ECG dataset 
35 subjects 

SpO2 
IHR 100 - Set windows of 60 seconds duration 

Urtnasan E. et al. 
2018 [22] 

Standard full-night 
PSG data 

82 subjects 
Single lead ECG 200 - Band-pass filtering (5 Hz to 11 Hz) 

- Set windows of 10 seconds duration 

Nikkonen S. et al. 
2021 [23] 

In-lab PSG 
887 subjects 

SpO2 
Thermistor 

Airflow 
Nasal pressure-airflow 

Thorax respiratory effort 

4 
- Lowpass filtered (2Hz cutoff frecuency) 

- Downsampling 
- Set windows of 30 seconds duration 

Zhang H. et al. 
2022 [24] 

Physionet dataset 
994 recordings 

SHHS-1 
1000 recordings 

Multichannel (12) 200 - 

Van Steenkiste T. 
et al. 2019 [25] SHHS-1 

Abdores 
Thorres 

ECG Derived Respiration 
(EDR) 

5 

- Fourth-order low-pass zero-phase-shift   
Butterworth filter witha cut-off frequency of 0.7 

Hz. 
- Motion artifacts removed by subtracting a 

moving average filtered signal with a width of 4 
seconds from the original signal. 

- Downsampling 
- Set windows of 30 seconds duration 

Urtnasan E. et al 
2020 [26] 

SMC 
Sleep Apnea 

Dataset 
Single lead ECG 200 - Set windows of 30 seconds duration 

 
 



	 Ángel Serrano Alarcón  et al. / Procedia Computer Science 225 (2023) 3805–3812� 3809
 Serrano et al./ Procedia Computer Science 00 (2023) 000–000   

    As can be seen in Table 1, there is diversity in the databases used. The most used databases are the PhysioNet 
Apnea-ECG Database and SHHS-1, used in 4 and 3 scientific publications, respectively. Another dataset that is also 
commonly used is MESA, which has been used by [18]. Usually, the most significant difference in these databases is 
the number of patients. PhysioNet Apnea-ECG Database consists of only 35 patients, while other databases used by 
[23] consist of 887 patients. This fact may not seem remarkable, but a more significant number of patients implies 
greater variability between the signals used and allows a more significant data set to train, validate and test the model. 
   Regarding the set of signals, a significant disparity can also be seen between the solutions analyzed. Only in the case 
of those papers that use a single lead ECG is there a certain similarity between the proposed methodologies. The rest 
of the solutions use different combinations of signals, being [24] the one that used the most significant number of 
signals with a total of 12. The number of physiological signals used has different readings. On the one hand, the fewer 
signals used, the greater the comfort for the patient can be achieved and the faster the training of the deep learning 
models can be performed. However, it must be borne in mind that a reduced number of signals is only sometimes a 
good indication as it can lead to a decrease in the quality of the outcome. Since, for example, for the detection of 
hypopneas according to the established rules, it is necessary to have SpO2, and some solutions do not use it or an 
alternative to it. Another critical factor that affects the set of signals used is the sampling rate. Here we have to 
distinguish between the sampling rate used for signal acquisition and the sampling rate used for model training. In this 
work, we focus on the sampling rate used to develop the models and the one chosen after the processing tasks. 
Therefore, Table 1 shows the sampling rate of the signals that feed the deep-learning models. Generally, when it comes 
to ECGs, a 100 Hz or 200 Hz sampling rate is mainly used. Considering the table as a whole, the disparity between 
the sampling rate used can be observed since there are solutions that use 1Hz [7] and other solutions that use signals 
at 200 Hz [22,24,26]. 

Regarding the preprocessing task, it is observed that most of the tasks are based on the elimination of artefacts, 
noise or the standardization of the signal. Most of the exposed solutions are based on the classification by events or 
windows. The signal is divided into windows of a specific duration where the apnea events are found. The duration of 
the windows is also highly controversial, and, as seen in Table 1, their duration ranges from 10 seconds to 60 seconds, 
passing through 30 seconds. The duration of the windows implies one of the most crucial aspects when it comes to the 
classification of freediving events. This is due to the fact that a concise window may not include the entire apnea event 
and therefore lose information. The same happens if the window is very long since windows of a duration greater than 
60 can include more than one apnea event and lead to an underestimation of the total number of events, since counting 
the windows as apnea events, despite being able to find more than one event in the window, these events would be 
counted as one. This would significantly affect the AHI calculation, being of of the significant outputs. 

If we look at Table 2, CNN models predominate over RNN. The results are generally very good for OSA event 
classification tasks, with accuracies ranging from 80% to 100% in most cases. When looking at the results, it is 
essential to differentiate between different metrics since one of the main problems when it comes to binary 
classification occurs here: balanced datasets. If we look exclusively at accuracy, a good result may not be 
representative if the dataset is unbalanced. In this case, numerous metrics, such as sensitivity and specificity, are 
displayed in all the proposed solutions, which give a much more accurate representation of the model's performance. 
The balancing of the dataset is something that must be covered prior to training the models. There are also techniques 
to reduce their influence in the event that it is not possible to use a balanced dataset. 

Based on the results, it could be stated that all the models presented in Tables 1 and 2 generate good results, 
regardless of the signals used, sampling rate or preprocessing. 
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Table 2.Models and results obtained from scientific papers after reviewing the literature. CNN: convolutional neural network. LSTM: Long 
Short-Term Memory. 

Publication Model Metrics – OSA Detection 

Chang H. et al. 2020 [17] 1D-CNN 

Per-minute apnea detection: 
Sen: 81.1% 
Spe: 92% 

Acc: 87.9% 
AUC: 0.94 

Per-recording classification: 
Sen: 95.7% 
Spe: 100% 
Acc: 97.1% 
Corr.: 0.865 

Dey D. et al. 2017 [16] CNN 
Sen: 97.8% 
Spe: 99.2% 
Acc:  98.9% 

Drzazga J. et al. 2021 [15] LSTM 
 

Acc. for 3 classes:  
No event, hypopnea, apnea  

86.42% 
58.28% 
69.50% 

Haidar R. et al. 2018 [18] CNN Acc: 83.5% 

Kristiansen S. et al. 2021 [7] Bi-directional LSTM With Attention 
(BIWALSTM) 

Acc: 89.4% 
Cohen’s kappa: 0.79 

Kwon H. et al. 2022 [19] Hybrid CNN-LSTM 

Apnoe + hypopnoe and not apnea: 
Cohen’s kappa: 0.728 

Sen: 78.1% 
Spe: 95.6% 
Acc: 93% 

AHI Pearson's coefficient: 0.97 

Zhang J. et al. 2021 [20] 1D-CNN Sen: 96.1 % 
Spe: 96.2 % 

Pathinarupothi R. et al. 2017 [21] LSTM-RNN 

Acc: 92.1 % 
Precision: 99.5% 

Recall: 84.7% 
AUC: 0.98 

Urtnasan E. et al. 2018 [22]  CNN 
Acc: 96% 
Sen: 96% 
Spe: 96% 

Nikkonen S. et al. 2021 [23] LSTM Cohen’s kappa: 0.728 

Zhang H. et al. 2022 [24]  U-NET 

Acc: 94% 
F1: 63% 
Sen: 55% 
Spe: 98% 

Van Steenkiste T. et al. 2019 [25] LSTM 

Abdores 
Acc: 77.2 % 
Sen: 62.3% 
Spe: 80.3% 

Precision: 39.9 
Thorres 

Acc: 75 % 
Sen: 67.8% 
Spe: 76.5% 

Precision: 37.7 
Abdores 

Acc: 60.1  % 
Sen: 52.1% 
Spe: 61.8% 

Precision: 22.1 

Urtnasan E. et al 2020 [26] CNN Acc: 99% 
F1: 98% 



	 Ángel Serrano Alarcón  et al. / Procedia Computer Science 225 (2023) 3805–3812� 3811

 Serrano et al./ Procedia Computer Science 00 (2023) 000–000   

 

4. Conclusions and outlook 

A literature review has been carried out to study those requirements that are essential prior to training deep learning 
models for OSA detection. The database used, the set of signals, the sampling rate or the processing tasks are as crucial 
in the development of the models as the selection of the architecture. However, there is still no standard methodology 
for this stage of development.  

Several solutions use different signal sets or models and obtain promising results in terms of apnea event 
classification. However, there is no evidence of why some methodologies work better than others. Numerous scientific 
papers that have developed automated OSA event detection solutions have been presented in this paper. 

It is important to note that not everything is based on the models' performance, but other aspects are also relevant, 
such as providing a tool that is useful for doctors so that they can clearly study the models' decisions.  

In conclusion, although there are scientific papers that agree on the set of signals to be used or the model used, there 
are usually variations in the preprocessing tasks or in the database used, which can significantly affect the performance 
of the model. This fact should be studied in the future with a broader literature review. Aspects such as AHI calculation 
and model explainability should also be addressed. 
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