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Abstract 
Platforms feature increasingly complex architec-

tures with regard to interconnecting with other digital 

platforms as well as with a variety of devices and ser-

vices. This development also impacts the structure of 

digital platform ecosystems and forces providers of 

these services, devices, and services to incorporate this 

complexity in their decision-making. To contribute to 

the existing body of knowledge on measuring ecosystem 

complexity, the present research proposes two key arte-

facts based on ecosystem intelligence: On the one hand, 

complementarity graphs represent ecosystems with an 

ecosystem's functional modules as vertices and comple-

mentarities as edges. The nodes carry information about 

the category membership of the module. On the other 

hand, a process is suggested that can collect important 

information for ecosystem intelligence using proxies 

and web scraping. Our approach allows replacing data, 

which today is largely unavailable due to competitive 

reasons. We demonstrated the use of the artefacts in cat-

egory-oriented complementarity maps that aggregate 

the information from complementarity graphs and sup-

port decision-making. They show which combination of 

module categories creates strong and weak complemen-

tarities. The paper evaluates complementarity maps and 

the data collection process by creating category-ori-

ented complementarity graphs on the Alexa skill ecosys-

tem and concludes with a call to pursue more research 

based on functional ecosystem intelligence. 

 

Keywords: Ecosystems, Digital Platforms, Assistant 

Platforms, Complementarities, Ecosystem Intelligence, 
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1. Introduction  

Ecosystems have emerged as a concept underlying 

most of today's successful businesses (Cusumanο et al., 

2020). It is a rather challenging form of organization 

since it foresees the interaction of multiple elements 

from independent users and providers. Ecosystems are 

closely related to digital platforms, which initially fea-

tured a clear purpose: while the early platforms were ei-

ther transaction (Gawer & Cusumano, 2014) or innova-

tion platforms (Gawer & Cusumano, 2014) many of to-

day's platforms follow a hybrid approach (Cusumanο et 

al., 2020) (that combines treats from innovation and 

transaction platforms. In parallel, more and more of 

these platforms are digital platforms that consist of a 

software core functionality accessible via an interface 

and enables the creation of modules (de Reuver et al., 

2018). Among the digital platforms in this regard are the 

app stores with their underlying operating systems from 

Google (Google. Inc, 2011) and Apple (Roma & 

Ragaglia, 2016).  

The variety of resources, which means products, 

services, etc., provided by platforms drives platform 

complexity (Alt, 2021). Initially, many platforms were 

limited to one resource. For example, Uber offered only 

transport from A to B. Today, more and more platforms 

provide different resources, such as services and prod-

ucts. For example, Airbnb offers apartments but also 

services connected with these apartments, such as cook-

ing events. The platforms' variety of resources enabled 

by a composite architecture encapsulates resources as 

modules and provides mechanisms for their composi-

tion. Examples of digital platforms with a composite ar-

chitecture are assistant platforms, such as Amazon 

Alexa or Google Assistant (Schmidt et al., 2021). They 

use a composite platform architecture and combine it 

with a declarative voice-based interface that eases ac-

cess to a broad variety of devices and services.   

Ecosystem intelligence has been applied to under-

stand the dynamics and mechanisms in ecosystems. To-

day, ecosystem intelligence approaches depict the struc-

ture and relationships between the actor groups of the 

ecosystem as undirected, simple graphs (Basole et al., 

2012). They are based on the theory of network effects 

(e.g. Katz & Shapiro, 1994) and postulate that an in-

crease in users of a product or service increases its value. 

The present research aims to enhance existing ecosys-

tem intelligence approaches for complexity measure-
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ment to improve the understanding of these digital plat-

form ecosystems for researchers and decision-makers 

alike. Research suggests that value creation in compo-

site and assistant ecosystems should be measured from 

a module perspective to capture broader value creation 

details. We see our thesis supported, by the fact, that a 

more complete perspective on ecosystems has been in-

troduced on a theoretical level by Jacobides et al. 

(2018), which current ecosystem intelligence ap-

proaches have not adopted. In particular, this endeavor 

promises to identify value-creating relationships within 

ecosystems from a module perspective.  

Two artefacts are suggested to provide intelligence 

on complex ecosystems of composite and assistant plat-

forms: A proper representation of the ecosystems and a 

procedure to collect the data, which leads to a first re-

search question: 
RQ1: How can we improve the representation of 

ecosystems? 

Another challenge to ecosystem intelligence is the 

lack of publicly available data. Although digital plat-

forms have abundant data, hardly any data on categories 

and the like are publicly available for competitive rea-

sons. These data may be seen as a competitive ad-

vantage for platform providers, who use this data for de-

cisions on products, categories, campaigns, product 

bundles, and the like. To allow non-platform providers 

access to such information, procedures are needed on 

how to collect the data for ecosystem intelligence in an 

indirect way, which motivates a second research ques-

tion: 

RQ2: How can we collect data on the ecosystem in-

directly? 

To answer both research questions, this paper pro-

ceeds as follows: We present the research background 

in section two and explain the methodological approach 

in section three, which is based on the design science 

research approach from Johannesson and Perjons 

(2021). Section four describes intelligence challenges in 

complex ecosystems and derives requirements from 

them. We develop two artefacts in section five to meet 

these requirements and demonstrate their use in section 

6. In the seventh section, we demonstrate the creation of 

category-oriented complementarity maps on the Alexa 

assistant platform. The eighth section discusses our 

findings and concludes the paper. 

2. Research Background 

2.1. Ecosystems 

Ecosystems represent a loose form of coordination 

among participants without hierarchical governance 

mechanisms such as those used within companies (Jaco-

bides et al., 2020). They emerge around platforms 

driven by network effects (e.g. Katz & Shapiro, 1994) – 

that describe an increase in the value of membership for 

one participant if other participants join the ecosystem - 

and complementarities (Jacobides et al., 2018).  

Non-generic complementarities (Jacobides et al., 

2018) incentivize ecosystem participants to accept coor-

dinating structures. They allow for stronger coordina-

tion than in purely market-based environments. There-

fore, modularity is a key element of ecosystems, since 

the definition of interfaces fosters the coupling of mod-

ules and thus offsets complementarities without know-

ing details about the internal realization of the individual 

modules (Jacobides et al., 2018). Non-generic comple-

mentarities are divided into four categories (Jacobides 

et al., 2018): Unique and supermodular complementari-

ties, which may both appear in production and in con-

sumption. 

Unique complementarities refer to one module. 

They emerge in production if products are produced 

more efficiently, better, faster, etc., through coordina-

tion within the ecosystem. In production, a unique com-

plementarity improves a module's quality and efficiency 

by using the ecosystem's coordination mechanisms, par-

ticularly its interface definitions. In consumption, 

unique complementarities reveal if the collaborative 

consumption of products ("joint consumption") yields 

advantages to isolated consumption. They manifest 

through increasing the value of a module if it is used 

with other modules of the platform. 

Supermodular complementarities describe the im-

pact of one module on another module. Supermodular 

complementarities occur in production and consump-

tion (Jacobides et al., 2018). Supermodular complemen-

tarities in production are present if the increase in the 

production of one module increases the quality of an-

other module. However, other authors also identified 

negative effects (Srinivasan, 2021). Supermodular com-

plementarities in consumption refer to the increased use 

of a product or service that leads to increases in the value 

of other products or services. The consumption of one 

module, together with other modules, positively impacts 

other modules. 

2.2. Ecosystem intelligence 

Ecosystem intelligence is a data-driven approach to 

improve the understanding of existing ecosystems. It de-

notes the structured analysis of ecosystem-related data 

to support decision-making (Basole, 2020). A review of 

ecosystem intelligence and modeling as approaches to 

empirical research on ecosystems are given in (Järvi & 

Kortelainen, 2017) and (Jussila et al., 2014). Ecosystem 

data contains many entities, relationships, activities, and 

issues (Basole, 2020) relevant to the present research. 

Nevertheless, only a few approaches use web mining as 
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one technique within data science to scrape data from 

enterprise websites (e.g. (Kinne & Axenbeck, 2020).  

An existing approach that applies network analysis 

for ecosystem intelligence is presented by (Basole et al., 

2015), which is based on analyzing the network effects 

and relationships between actors. While this is helpful, 

more data beyond actors is available in ecosystems. In 

addition, ecosystems have differentiated network effects 

between product and service segments (Basole & Park, 

2019). Scholten (2013) introduces a visual notation to 

depict and manage network effects. A graph-oriented 

approach is also suggested to depict complementarities 

in supply chain relationships (Benali & Burlat, 2012). 

Digital forensic approaches for investigating the Ama-

zon Alexa ecosystem are presented (Chung et al., 2017). 

A challenge of ecosystem intelligence is to make 

more comprehensive data available for analysis. Using 

this data, customer-oriented metrics to assess ecosystem 

health may be created (Pidun et al., 2021). Existing eco-

system intelligence approaches rely on third-party data 

sources if this data is unavailable. Basole (2020), for ex-

ample, evaluated annual reports and other documents to 

create a data basis. This indirect approach has also been 

applied to a qualitative investigation of the Artificial In-

telligence ecosystem (Jacobides et al., 2021). 

3. Methodology  

This paper applies a five-step research method 

based on the framework of Johannesson and Perjons 

(2021). It implements the activities of the framework, as 

shown in Table 1. 
Activity Implementation 

Problem  

explication 

Ecosystem representation,  
unavailability of data 

Define  

requirements 

Representation of  
complex ecosystems, data collection 
process 

Design and  
develop artefact 

Complementarity graph design, 
proxy-based data collection 

Demonstrate 
artefacts 

Category-oriented  
complementarity maps 

Evaluate artefact Alexa ecosystem 

Table 1. Research Methodology  

We start by explicating the problem that existing 

ecosystem intelligence approaches increasingly have 

difficulty capturing modern ecosystems on the level of 

detail and the speed of change. Following (Baldwin & 

Clark, 2000), we consider a system as complex if it can-

not be designed or understood by a single person in all 

its details. The underlying platforms drive the complex-

ity of ecosystems. Their complexity has significantly in-

creased due to the rise of hybrid and composite plat-

forms. Therefore, ecosystems have also increased in 

complexity and are difficult to capture with existing in-

telligent approaches. 

To improve ecosystem intelligence, we need two 

new artefacts. First, an ecosystem representation should 

capture more details than the prevailing network effects-

based approaches. The developed artefact shall capture 

the externalities that emerge in ecosystems based on ad-

vanced platforms, such as composite platforms. Second, 

a process artefact must be created to collect and process 

the data necessary to depict complex ecosystems. It 

must cope with the lack of publicly available data be-

cause, due to platform completion, not all data on plat-

forms are publicly available. 

We then create two artefacts. We conceptualize 

complementarity graphs by analyzing externalities and 

especially complementarities of ecosystems. The mod-

ules are mapped to the nodes of the graphs, and the com-

plementarities are mapped to different edge types. The 

data collection process itself is based on proxies. Prox-

ies substitute non-accessible variables that allow deter-

mining complementarities, although the original data 

are unavailable to the public. 

We introduce category-oriented complementarity maps 

in section six to demonstrate the use of our artefacts. 

They are materialized aggregations of queries on the 

complementarity graphs. To evaluate our findings, we 

create category-oriented complementary maps for the 

ecosystem of the Alexa platform in section seven.  

4. Problem Explication and Requirements 

Based on the two research questions formulated in 

the first chapter, two problem areas, as well as important 

requirements, are described. 

4.1. Ecosystem representation 

Existing ecosystem approaches assume that a sim-

ple, undirected graph can describe ecosystems (Bat-

tistella et al., 2013) and Basole (2016). Actors are rep-

resented as vertices, and the relationships, such as net-

work effects, are represented as an undirected edge be-

tween the actors, which fails to differentiate edges into 

types and the like. Ecosystem actors may learn about 

other actors they relate to, but they do lack further infor-

mation on the type and strength of the relationships.  

However, ecosystems' complexity and their de-

scription have grown in three dimensions. First, there 

are more differentiated theories on the externalities driv-

ing the emergence of ecosystems. For example, the 

complementarities framework of Jacobides et al. (2018) 

differentiates four types of externalities. Second, more 

and more composite platforms integrate multiple ser-

vices and products from different categories and are no 

longer just one category, as with monolithic platforms. 
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Thus, the modules of composite platforms, such as as-

sistant platforms, are differentiated by categories. Third, 

ecosystems are no longer based on just one type of plat-

form, such as innovation or transaction platforms, but 

contain both traits and thus are called hybrid platforms 

(Cusumanο et al., 2020).  

4.2. Platform competition and data access 

Data on the ecosystem of platforms are available to 

the platform operator and the module vendors. The plat-

form operator knows the usage of the modules, usage 

patterns, etc. However, it is not in the interest of the plat-

form operator to share information because this would 

give competitors important insights. The module ven-

dors receive information on their modules' quality, effi-

ciency, interaction, and usage patterns, which helps im-

prove them. For example, the Alexa dashboard provides 

such information to module vendors (Alexa Developer 

Documentation, 2021). However, as same as the plat-

form operators the module vendors do not disclose these 

data due to competitive reasons. 

4.3. Requirements  

The above presentation has identified two prob-

lems: The representation of ecosystems and data collec-

tion. For both issues, concrete requirements will now be 

developed. To reflect the increased complexity of eco-

systems, a refined representation is to be created that co-

vers as many complexity dimensions as possible. For a 

better representation along the first complexity dimen-

sion, the differentiation by types of externalities is re-

quired, which sheds light on different types of external-

ities. The second complexity dimension, the transition 

from monolithic to composite ecosystems, requires a 

differentiation of the categories according to the catego-

ries of modules. This paper will not address the third di-

mension of complexity and is the subject of future re-

search.  

To cope with the competition-induced data unavail-

ability, it is necessary to replace the data needed for eco-

system intelligence. It is not to be expected that the op-

erators of platforms and the providers of modules will 

move away from the secrecy of certain data sets.  

5. Approach for Complex Ecosystems 

Two artefacts are suggested to address the require-

ments above. First, complementarity graphs represent 

externalities of ecosystems and the categories of mod-

ules. Second, a data collection process aims to tap data 

unavailable to non-platform providers due to platform 

competition.  

5.1. Complementarity graphs  

Complementarity graphs use the modules as verti-

ces and the complementarities as edges (see Figure 1) to 

address the first dimension of complexity as described 

in section 4.1. They complement the existing network 

graphs (Basole et al., 2016) that depict actors as nodes 

and network effects as edges. Complementarity graphs 

are multi-edged graphs because multiple complementa-

rities may exist between the vertices. 

A complementarity graph represents ecosystems as 

a collection of vertices that represent modules. Between 

them, one or multiple edges exist that represent comple-

mentarities. To differentiate the complementarities de-

picted as edges, the complementarity framework of 

Jacobides et al. (2018) posits that complementarities can 

be unique or supermodular and either emerge in produc-

tion or consumption. 

Complementarity graphs have four types of edges 

representing unique complementarities in production 

and consumption and supermodular complementarities 

in production and consumption. The edges are directed 

because complementarities are directed: The comple-

mentarities between module X and module Y can differ 

from those between module Y and module X.  

 
Figure 1. Network and Complementarity Graphs  

To address the second dimension of complexity, 

heterogeneity, we augment the vertices by category in-

formation. The vertices then carry the information on 

the module's category. This category-oriented differen-

tiation of modules enables the creation of category-spe-

cific subgraphs and their comparison. It allows the 

strength of complementarities between different catego-

ries to be determined.  

5.2. Ecosystem intelligence data collection 

We create a data collection process as an artefact by 

combining proxies with web scraping data collection, as 

shown in Figure 2. Proxies substitute the non-accessible 

data. The use of proxies is an approach that has been 

successfully used in several research areas. For exam-

ple, the ranking of products is used as a proxy for market 

share (Brynjolfsson & Smith, 2000). Similarly, Garg 

and Telang (2013) use proxies to estimate app demand. 

Complementarities In production In consumption

Supermodular

Unique

Actor Alpha Actor Beta

Module X
category a

Module Y
category b

Network Graph Complementarity Graph
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Web scraping yields a number of advantages (Landers 

et al., 2016) for data collection: The collected data are 

behavioral, and the collection of large datasets is possi-

ble with minimal effort. Furthermore, web scraping 

eliminates the risk of research contamination, the time 

to conduct a research study is dramatically reduced, and 

there is a low threshold.  

The data collection process contains the following 

tasks. We start by the identification of variables needed 

for ecosystem intelligence. Then we check the accessi-

bility of the variables in the ecosystem. To substitute 

non-ecosystem variables, we reengineer the available 

data sources of the ecosystem. Based on it, we define 

proxies for the non-accessible variables. Finally, we de-

fine web scraping procedures for collecting the accessi-

ble variables and the data for proxy creation.  

 
Figure 2,  Ecosystem Data Collection Pipeline  

First, we identify the variables for ecosystem intel-

ligence by analyzing all four types of complementari-

ties, as shown in Table 2. All these variables are not ac-

cessible and have to be substituted by proxies. 

  Variables Proxies Web Scraping 

U
n

iq
u

e Produc-
tion Specialization Number of  

categories Categories 

Consump-
tion Value creation Average  

module rating Module rating 

Su
p

er
m

o
d

u
la

r 

Produc-
tion 

Increase of  
production 

Chronological pro-
gression of the num-

ber of modules 
Module IDs 

Quality, effi-
ciency, etc. of 

another product 
or service 

Improvement of the 
rating and reviews of 

other modules 

Module rating 
and reviews 

Consump-
tion 

Increase of con-
sumption 

Increase in count of 
reviews of  

co-activated modules 
Co-activations 

Value of another 
product or ser-

vice 

Improvement of the 
rating and reviews of 

other modules 

Module rating 
and reviews 

Table 2. Variables and Proxies 

We use the re-engineered data model of assistant 

platforms (Schmidt, Alt, et al., 2022), which recognizes 

modules as a key element for assistant platform ecosys-

tems. To organize the available modules, they are stored 

in a module registry (see Figure 3), which is an estab-

lished solution in service- or component-oriented archi-

tectures. 

  
Figure 3. Meta-Data in the Module Registry 

The metadata in the module registry supports the 

matching of modules (often referred to as orchestration) 

on the platform. It also contains information on the pub-

lisher and the reviews are identified by a unique ID and 

connected to the module description via the ID of the 

modules. In addition, the reviews contain a unique iden-

tification of the reviewer, and co-activations deliver in-

formation about modules that are activated together fre-

quently. Metadata also allows users to retrieve suitable 

products and service providers more quickly. For exam-

ple, co-activations offer users hints to other modules that 

are of possible interest to them. They intensify the mo-

tivation to use the platform and increase exit barriers and 

switching costs. Analyzing the metadata in the module 

registry serves to identify the data relevant to creating 

proxies. First, the publisher information allows identify-

ing modules from the same publisher. This is interesting 

for proxies that describe complementarities in produc-

tion. The publishers also describe the functionality of 

their modules with the help of categories that the plat-

form operator has standardized. They are supposed to 

support the users in the search for modules by enabling 

a quick narrowing down of the functionality of the mod-

ules. The categorization in turn supports the identifica-

tion of sets of functionally similar modules. 

A second source of information for creating proxies 

are co-activations, which the platform operator for each 

module lists. They reflect the number of modules that 

are activated together and may point users to other mod-

ules that may be useful to them. The third group of in-

formation stems from users who provide ratings and re-

views. Such evaluations based on social mechanisms are 

valuable since modules feature high specificity, low 

fungibility, and long-tail characteristics (Schmidt, 

Kirchner, et al., 2022). These reviews also provide in-

sights into which modules are used together. To enable 

the definition of proxies, we create web scraping proce-

dures for collecting categories, module ratings and re-

views, module ids, and co-activations. 

6. Category-Oriented Complementarity 

Maps 

Complementarity maps are materialized aggrega-

tions of complementarity graphs that demonstrate the 

use of the artefacts. They are a visualization of comple-

mentarity relationships differentiated by the categories 

involved. Complementarity maps aggregate the infor-

mation about the different complementarities in four 

fields, as shown in Figure 4 Two for the representation 

of unique complementarities in production (blue) and 

consumption (yellow) as well as another two for the rep-

resentation of supermodular complementarities in pro-

duction (green) and consumption (red). We will also use 

the color scheme in section 7. 

Identification 
of variables

Check 
accessibility

Reengineering 
of ecosystem 
data sources

Proxy-
definition

Web scraping 
procedures

Module 
Metadata

Category / 
Sub-

Category

Publisher 1

1..n

1..n

1..n

Review / 
Rating

Reviewer
1

0..n

1

1..n

Co-Activation
1 1..n
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Category-oriented complementarity maps are two-

dimensional representations of complementarities dif-

ferentiated by their category of functionality, as shown 

in Figure 4. They have two dimensions representing the 

categories of the ecosystem. Each intersection of two 

categories depicts the complementarities between two 

categories. We use the crossing of category "a" and cat-

egory "b" as example. There, the means of the strength 

of the complementarities are depicted according to the 

legend. The two top cells give the means of the super-

modular complementarities in production and consump-

tion; the lower cells give the means of the unique com-

plementarities. 

 
Figure 4. Complementarity Maps 

The unique complementarities refer to the value 

created by the start category (here, category a). The su-

permodular complementarities refer to the value created 

by the target category (here, category b).  

The unique complementarities in production (blue) 

represent the mean value created by a module of cate-

gory "a" if it is co-deployed with a module of category 

"b". Using this information, the module provider can se-

lect the categories his module works best with.  

The unique complementarities in consumption (yellow) 

depict the mean value created by a module of category 

"a" if it is used together with a module of category "b". 

This information enables the module provider to detect 

usage patterns of his module. In particular, he learns 

about beneficial combinations with other module cate-

gories. The supermodular complementarities in produc-

tion (green) express the mean value created by a module 

of category "b" by an increase of production of a module 

of category "a". The information on supermodular com-

plementarities is helpful to module providers that pro-

vide modules in both of categories "a" and "b". The su-

permodular complementarities in consumption (red) 

represent the value created by a module of category "b" 

because it is used together with a module of category 

"a". The knowledge of supermodular complementarities 

is helpful to module providers that provide or consider 

providing modules of both categories. 

The platform provider can drive platform growth 

and value creation by incentivizing module categories 

with strong complementarities, ideally with a high turn-

out. Similarly, the platform provider can use the infor-

mation on weak complementarities to start targeted ini-

tiatives for strengthening complementarities. Another 

important feature of category-oriented complementarity 

maps is their ability to predict the complementarities of 

a yet-to-be-designed module from its category.  

7. Category-oriented Complementarity 

Maps on the Alexa Ecosystems 

To evaluate the use of category-oriented comple-

mentarity maps, we use them to depict the complemen-

tarities of the Alexa ecosystem. This ecosystem is highly 

heterogeneous due to its 22 categories of functionality. 

Amazon Alexa is the assistant platform with the largest 

market share, closely followed by Google Assistant 

(Vailshery, 2021). Figures have shown a strong increase 

in Alexa skills in all important markets (Amazon Alexa, 

2021) and a growth in the number of devices accessible 

via Alexa. In 2020, over 100,000 different types of de-

vices were connected to the Alexa ecosystem worldwide 

(Infographic, 2020). The ecosystem notion also applies 

since assistant platforms associate devices outside their 

original platforms, such as TV sets and even microwave 

ovens, become access points (Chung et al., 2017). 

We collected raw data from the skill section of the 

Amazon website (Alexa Skills, 2021) during April and 

May 2021 using several web scraping tools (Gunawan 

et al., 2019). The scraping mechanisms provided two 

CSV (comma-separated value) files. The first CSV file 

contained the description of the skills, and the second 

file contained the reviews. The files are linked via the 

ASIN, the Amazon Standard Identification Number 

used globally for Amazon products. We reverse-engi-

neered the data model of the Alexa platform until we 

met data fields such as descriptions, details, and permis-

sions that contain semi- and unstructured text entries. 

For their interpretation, the documentation of the Alexa 

skills was used (Alexa Skills, 2021).  

For some data, we had to develop special proce-

dures. For example, a list of up to ten co-activated skills 

is given for each skill. The skills on this list are activated 

together with the respective skill. To avoid bias by the 

limit to ten skills, we collected the co-activations of all 

skills into a table with the ASIN of the skill as the pri-

mary key. We created an entry for each co-activated 

with the ASIN of the co-activated skill as the foreign 

key. Then the ASIN of the co-activated skill became the 

primary key, and the former primary key became a for-

eign key. Finally, we created a conceptual data model 

using the scraped data by applying normalization proce-

dures from relational database theory (Codd, 2001). The 

category
a

category
b

category
c

category
d

To

From

category
a

category
b

category
c

category
d

Pr
od

uc
ti

on

Co
ns

um
pt

io
n

Supermodular

Unique

Complementarity Map Category-oriented Complementarity Map
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analyses have been done in a Python Jupyter notebook 

(Project Jupyter, 2019) containing Pandas (Pandas - 

Python Data Analysis Library, 2021).  

We created category-oriented complementarity 

maps for both unique and supermodular complementa-

rities in the production and consumption of the Alexa 

ecosystem. The following category-oriented comple-

mentarity maps use the same color scheme as in Figure 

4. The strength of complementarities is depicted as a 

value between 1 and 5. A missing value indicates a lack 

of co-activations between the modules.  

7.1. Unique complementarities  

To measure unique complementarities in produc-

tion, we used the number of co-activations as a proxy. 

We put it in relation to the average rating of the module 

as a proxy for its quality. Our findings show that due to 

the Alexa ecosystems' heterogeneity, the unique com-

plementarities are distributed unevenly. We further in-

vestigated the unique complementarities in production 

by analyzing how the number of categories covered by 

the modules of a publisher influences the quality of the 

modules. We compared the co-reviews with the average 

rating depending on the category and got the following 

results (see Figure 5). 

 
Figure 5. Unique Complementarities in  

Consumption 

Unique complementarities in consumption describe 

assistant platforms that use them as a skill and increase 

their value to the users. We used co-reviews, reviews by 

the same user for different skills, as a proxy to measure 

the joint consumption of skills. The results also show 

that the unique complementarities in consumption are 

dependent on categories, as expected for a heterogene-

ous ecosystem. 

7.2. Supermodular complementarities 

Supermodular complementarities in production are 

present through the increase of skill quality, etc., with 

an increase in production of another skill. We used the 

number of co-activations as a proxy for production and 

investigated the impact of rating other skills as a proxy 

for quality.  

Supermodular complementarities in consumption 

manifest as the increase of value creation of one module 

through the increase of consumption of another module. 

As the consumption of modules is not directly observa-

ble, we use the number of reviews as a proxy for the 

consumption of a module. Therefore, we used the num-

ber of co-reviews as a proxy for the joint consumption 

of skills and the average rating for the value created by 

the connected skills. The results in Figure 6 again con-

firm the heterogeneity of the Alexa ecosystem by the 

highly variant distribution of complementarities.  

 
Figure 6. Supermodular Complementarities in  

Consumption 

8. Discussion and Conclusion 

Existing ecosystem intelligence approaches, such 

as those suggested by Basole (2020)  and Battistella et 

al. (2013) have proven valuable in understanding the 

complexity of ecosystems, which has also been recog-

nized as an important field in information systems re-

search (see interview in (Alt, 2022)). However, they are 

limited to ecosystems where the modules' functionality 

is abstracted into one category of functionality. In eco-

systems of composite platforms, they fail to differentiate 

relationships according to the category of the underlying 

functionality.  

With the diffusion of the platform model, a growing 

number of composite platforms enable the creation of 

modules integrating different categories of functional-

ity. For example, assistant platforms feature a composite 

architecture that enables the creation of modules that be-

long to different categories of functionality or may even 

mix them. The same applies for many other platforms 

such as the Google (Google. Inc, 2011) and the Apple 
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App Store (Roma & Ragaglia, 2016). We, therefore, ex-

pect that the findings from this research may be applied 

to a wide spectrum of ecosystems. 

8.1. Contribution 

This paper pursued two research questions to shed 

more light on highly complex ecosystems. The first ad-

dresses the fundamental representation of complemen-

tarities, which are recognized as key elements for eco-

systems in the extant literature. These complementari-

ties are particularly challenging in complex ecosystems, 

where multiple cross-effects among modules are possi-

ble. Complementarity and category-oriented augmented 

complementarity graphs depict ecosystems in greater 

detail and more precisely than existing ecosystem intel-

ligence approaches. In particular, complementarity 

graphs consider that actors may provide multiple mod-

ules of different functionality. They employ modules as 

vertices instead of actors, and they classify the relation-

ships between modules based on the complementarity 

framework of Jacobides et al. (2018). Multiple edges 

may represent different types of complementarities, and 

the edges are directed to show asymmetric relationships. 

By augmenting complementarity graphs with category 

information, it is possible to differentiate the depiction 

of an ecosystem in two dimensions. First, this allows the 

analysis of different types of complementarities. Sec-

ond, subgraphs may be drawn to differentiate the com-

plementarities according to the modules they are created 

from.  

Another important challenge of ecosystem intelli-

gence is obtaining the data for analysis. It has been ar-

gued that neither the platform operator nor the module 

vendors are often not interested in releasing data essen-

tial for the ecosystem. The suggested process for col-

lecting ecosystem data is conceptually based on creating 

proxies that replace data not released by the platform 

operator and module vendors. The process obtains the 

proxies by analyzing the data released by the platform 

operators to support platform matching, which is the 

meta-information about the modules. 

We have shown how complementarity maps can be 

formed to demonstrate the application of the concepts 

we have developed. Category-oriented complementarity 

maps provide important information to platform opera-

tors and module vendors to answer questions such as: 

How strongly does a module benefit from being con-

sumed with others? Which categories of modules should 

we incentivize? In addition, category-oriented comple-

mentarity maps could also predict the strength of com-

plementarities for a module to be developed and address 

questions such as: How strong are the complementari-

ties to be expected by the yet to be designed module? 

The application of this approach in the Alexa ecosystem 

suggests that such insights may be obtained even in 

complex ecosystems. We expect that it also applies to 

other digital platform ecosystems.  

8.2. Research implications 

Information systems research has long relied on 

manual data collection when direct access to infor-

mation system properties via interfaces is impossible. 

Extensive studies of information systems are based on 

interviews with experts and surveys. In addition to in-

volving time and effort, this approach assumes that the 

experts are real experts and are free of bias. However, 

expert selection faces the paradox that one would have 

to be an expert to select experts. Large numbers of hu-

man participants could reduce the influence of individ-

ual bias, but this approach increases the risk that also 

non-experts are participating in the study. We intend to 

avoid the limitations of human intermediators and di-

rectly access data that reflects the properties and struc-

tures of information systems.  

The suggested approach has connections to meth-

odological research on using big data (e.g. (Rizk et al., 

2020) (Kar & Dwivedi, 2020)) or using web scraping 

for information systems research (Boegershausen et al., 

2021). In addition, it contributes to the further develop-

ment of computationally intensive theory building (Mi-

randa et al., 2022), which is part of the computational 

detection of scientific knowledge (Džeroski et al., 

2007). Our proxy-oriented and web scraping data col-

lection process provides the foundation for synchronic 

and diachronic studies, for example, the development of 

ratings. This includes the development of complexity 

metrics and the measurement of the complexity of eco-

systems. Finally, the combination of web scraping and 

ecosystem intelligence supports faster decision-making 

by replacing the manual steps and including more up-to-

date data. Such shorter turnaround times make the ap-

proach particularly interesting for dynamic information 

systems and may open new avenues for information sys-

tems research (Baskerville et al., 2020). 

8.3. Management implications 

Complementarity graphs and category-oriented 

complementarity maps offer more detailed insights for 

platform providers. They now see their ecosystem's 

complementarity hotspots and trouble spots in greater 

detail. Based on these insights, platform providers can 

create incentives to foster underperforming module cat-

egories and drive platform value by identifying the most 

value-creating complementarities.  

Category-oriented complementarity graphs and 

maps provide key information to platform and module 

providers. Platform providers may identify categories of 
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modules that provide strong complementarities and use 

this information to increase platform value by fostering 

those module categories. Module vendors can identify 

modules with strong complementarities and use this in-

formation to promote them. Module providers are ena-

bled to map their strategic positioning. They obtain in-

sight into competing modules and the potential for cre-

ating complementarities and thus support for their mod-

ules. Module providers use the information from com-

plementarity maps to identify functionalities that create 

the strongest complementarities. In the same way, they 

learn which functionalities deem attention due to their 

weak complementarities. 

8.4. Limitations and future research 

Although the presented approach promises ad-

vantages over traditional approaches in general ecosys-

tem intelligence and information systems research, we 

also see some limitations. For example, bias may occur 

in the ratings and reviews. Despite a sufficient number 

of ratings and reviews can reduce this risk, it cannot be 

excluded. Furthermore, the sample size may not reach 

this level for all modules. Another limitation is the rep-

resentation of the data that may obstruct insights. 

A key area of further research will be comparing 

and analyzing complementarity graphs and maps. First, 

comparing complementarity maps and graphs of differ-

ent ecosystems may yield important insights into the 

strengths and weaknesses of ecosystems. This is of par-

ticular relevance for ecosystems that feature higher lev-

els of complexity. Second, comparing the complemen-

tarities within an ecosystem may provide insights into 

correlations. Third, the analysis of category maps on 

correlations between categories of functionality may 

also provide critical insights. To support these tasks, we 

aim for a tool that automates the analyses and visualizes 

the data using a dashboard to identify relationships and 

depict all stakeholders' developments over time. Ulti-

mately, we expect to see methods that describe hetero-

geneity and complexity in ecosystems and explain and 

calculate these important properties. 
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