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Abstract: The hard template method for the preparation of monodisperse mesoporous silica mi-
crospheres (MPSMs) has been established in recent years. In this process, in situ-generated silica
nanoparticles (SNPs) enter the porous organic template and control the size and pore parameters
of the final MPSMs. Here, the sizes of the deposited SNPs are determined by the hydrolysis and
condensation rates of different alkoxysilanes in a base catalyzed sol–gel process. Thus, tetramethyl
orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) and tetrabutyl
orthosilicate (TBOS) were sol–gel processed in the presence of amino-functionalized poly (glycidyl
methacrylate-co-ethylene glycol dimethacrylate) (p(GMA-co-EDMA)) templates. The size of the final
MPSMs covers a broad range of 0.5–7.3 µm and a median pore size distribution from 4.0 to 24.9 nm.
Moreover, the specific surface area can be adjusted between 271 and 637 m2 g−1. Also, the properties
and morphology of the MPSMs differ according to the SNPs. Furthermore, the combination of differ-
ent alkoxysilanes allows the individual design of the morphology and pore parameters of the silica
particles. Selected MPSMs were packed into columns and successfully applied as stationary phases
in high-performance liquid chromatography (HPLC) in the separation of various water-soluble
vitamins.

Keywords: mesoporous silica microspheres (MPSMs); hard template method; high-performance
liquid chromatography (HPLC)

1. Introduction

The introduction of high-performance liquid chromatography (HPLC) has enabled a
rapid chemical analysis and separation process for substances and end products. The wide
range of applications extends from small molecules [1–3] to pharmaceuticals [4,5], food
and environmental analysis [6–8], long-chain polymers [9,10] and biomolecules [11–13].
The most common material in HPLC columns are spherical silica particles because of their
mechanical robustness. Moreover, silica particles possess reactive groups on their surface,
by which a variety of functionalizations allow a fine tuning of the particle features [14–16].
Characteristics such as particle size, dispersity, pore structure and surface functionalization
influence their chromatographic properties such as selectivity, analysis time, plate number
and back pressure. Due to their high specific surface area, fully porous silica particles in
the µm range have proven successful in HPLC [17–19].

Probably the best-known representation of spherical silica networks is the silica ma-
terial obtained from the Stoeber process [20]. Non-porous spherical silica particles in the
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range of 10 to 500 nm can be formed by ammonia-catalyzed hydrolysis and the condensa-
tion of molecular alkoxysilanes. With semi-batch processes and the addition of electrolytes,
the particle size can be increased into the µm range [21–24].

The hydrolysis rates of the alkoxysilanes are crucial for the size of the siloxane net-
work. The hydrolysis rates are controlled by different parameters like the temperature;
the chain length and branching of the alkoxysilane; NH3 and H2O concentrations; and the
chain length and branching of the alcohol, which is used as a solvent [20,25–29]. Under
basic conditions, an increase in the chain length of the alkyl groups of the alkoxysilane
leads to a decrease in the rate of hydrolysis. The increasing steric hindrance and inductive
effects of the alkyl groups increase the electron density at the silicon atom and make a
nucleophilic attack more difficult. In addition, the decreasing polarity of the alkoxysilanes
can lead to phase separation, depending on the solvent applied [29–32]. The NH3 and H2O
concentrations influence the equilibrium reactions of hydrolysis and condensation. While
under basic conditions the condensation of hydrolyzed alkoxysilanes is extremely fast,
higher concentrations of H2O affect the hydrolysis positively but the condensation nega-
tively [28,29,31,33,34]. Overall, the Stoeber process provides non-porous silica nanoparticles
with narrow size distributions. However, the preparation of monodisperse silica particles
in the micrometer range is challenging, and the obtained particles remain nonporous.

The preparation of mesoporous silica microspheres (MPSMs) with narrow size distri-
butions remains challenging [35–40]. Recently, for the synthesis of MPSMs, a promising pro-
tocol has been developed that employs functionalized porous poly (glycidyl methacrylate-
co-ethylene glycol dimethacrylate) polymer particles (p(GMA-co-EDMA)) as hard templates
in the presence of the basic hydrolysis and condensation of TEOS [35]. p(GMA-co-EDMA)
functionalized with trimethylamine, (3-amino propyl) triethoxysilane or tetra ethylene
pentamine (TEPA) provides excellent environments to deposit silica nanoparticles (SNPs) in
the pores of the template, where they form a silica network [36–38]. The best matches of the
templates are achieved if the rate of the growth of the SNPs and their rate of diffusion into
the template pores are well balanced. Moreover, the particle and pore properties correlate
with the size of the SNPs, which depends on the sol–gel conditions (see above) and the
template [39,40].

In this study, we focus on the sol–gel conditions during the formation of MPSMs
via the hard template method. Therefore, we investigated the influence of alkoxysilane
precursors, which differ in their rates of hydrolysis on the particle and pore properties of
MPSMs. For this, the sol–gel process of the precursors is carried out under basic conditions
in the presence of the tetraethylenepentaamine-functionalized p(GMA-co-EDMA) template
P@TEPA (Scheme 1). The size of the silica nanoparticles that accumulate in and on the tem-
plate depends on the hydrolysis rate of the precursors. The p(GMA-co-EDMA)/SiO2 hybrid
beads (HB) and the MPSMs are characterized for their particles and pore properties by scan-
ning electron microscopy, thermogravimetric analysis, and nitrogen adsorption/desorption
measurements. Finally, selected MPSMs are functionalized with trimethoxy (octadecyl)
silane and applied as stationary phases in the separation of different water-soluble vitamins.
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In the presence of the P@TEPA template, a basic sol–gel process was performed with 
the four different alkoxysilanes, TMOS (a), TEOS (b), TPOS (c) and TBOS (d), in 2-propa-
nol and H2O as solvents (Methods 1 and 2, Scheme 1). In Method 1, all reactants except 
the template are soluble in 2-propanol. Under these conditions silica nanoparticles (SNP) 
are formed in the continuous phase, which diffuse into the template and accumulate in 
the pores and on the surface [37–40]. The size of the SNPs depends on the hydrolysis and 
condensation rates of the precursors. With the fastest rate of hydrolysis, TMOS forms the 
largest SNPs, which accumulate in the pores (Figure S4, HB1a). Moreover, the hydrolysis 
and condensation rates of TMOS are so high that some of the SNPs become too large (~60 
nm) to enter the template network. These secondary particles remain in the continuous 
phase and are mostly removed from the reaction mixture during the purification process, 
while some of them are left at the template surface (Figure S4, HB1a). With TEOS as the 
precursor, particle formation is already four times slower than for TMOS [32], resulting in 
smaller SNPs that easily penetrate the porous network of the template and form HB1b 
(Figure S4). The longer alkoxy chains of the TPOS and TBOS alkoxides decrease their hy-
drolysis rates further. Thus, less silica species are available for condensation to build 
SNPs. The accumulation of SNPs in the template is now difficult, and SNPs are hardly 
observed on the surface of the hybrid particles (Figure S4, HB1c and HB1d). Overall, the 
size of the SNPs decreases with the rates of hydrolysis in the TMOS > TEOS > TPOS > 
TBOS series (Figure S4), and the incorporation of silica into the pores of the template is 
best achieved for TEOS. 

In Method 2, the sol–gel process is carried out in H2O, which reduces the differences 
of the kinetic effects of the hydrolysis and condensation of the four different alkoxysilanes 
(Method 2, Scheme 1). This should have an impact on the SNP formation and the incor-
poration of silica into the pores of the template. Ammonia as catalyst is added after 24 h 
of stirring to enable the nonpolar precursors to diffuse into the template network. Con-
densation does not start until NH3 is added. After another 24 h, the hybrid particles HB2a-
d are obtained (Figure S5 and Table 1). As a consequence of the reduced rate of the hy-
drolysis of TMOS, no secondary particles are observed. The particles HB2a grow by 0.7 
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TEOS = b, TPOS = c and TBOS = d).

2. Results and Discussion
2.1. Preparation and Characterization of MPSM1a-d and MPSM2a-d

Monodisperse tetraethylenepentamine (TEPA)-functionalized p(GMA-co-EDMA) served
as the template in the preparation of all MPSMs discussed here. The characteristic features
of this P@TEPA template are a diameter of 6.0 ± 0.5 µm, a median pore diameter of 14.4 nm
and a pore volume of 0.24 mL g−1 (Figures S2 and S3, Supporting Information).

In the presence of the P@TEPA template, a basic sol–gel process was performed with
the four different alkoxysilanes, TMOS (a), TEOS (b), TPOS (c) and TBOS (d), in 2-propanol
and H2O as solvents (Methods 1 and 2, Scheme 1). In Method 1, all reactants except the
template are soluble in 2-propanol. Under these conditions silica nanoparticles (SNP) are
formed in the continuous phase, which diffuse into the template and accumulate in the
pores and on the surface [37–40]. The size of the SNPs depends on the hydrolysis and
condensation rates of the precursors. With the fastest rate of hydrolysis, TMOS forms the
largest SNPs, which accumulate in the pores (Figure S4, HB1a). Moreover, the hydrolysis
and condensation rates of TMOS are so high that some of the SNPs become too large
(~60 nm) to enter the template network. These secondary particles remain in the continuous
phase and are mostly removed from the reaction mixture during the purification process,
while some of them are left at the template surface (Figure S4, HB1a). With TEOS as the
precursor, particle formation is already four times slower than for TMOS [32], resulting
in smaller SNPs that easily penetrate the porous network of the template and form HB1b
(Figure S4). The longer alkoxy chains of the TPOS and TBOS alkoxides decrease their
hydrolysis rates further. Thus, less silica species are available for condensation to build
SNPs. The accumulation of SNPs in the template is now difficult, and SNPs are hardly
observed on the surface of the hybrid particles (Figure S4, HB1c and HB1d). Overall, the
size of the SNPs decreases with the rates of hydrolysis in the TMOS > TEOS > TPOS >
TBOS series (Figure S4), and the incorporation of silica into the pores of the template is best
achieved for TEOS.

In Method 2, the sol–gel process is carried out in H2O, which reduces the differences
of the kinetic effects of the hydrolysis and condensation of the four different alkoxysi-
lanes (Method 2, Scheme 1). This should have an impact on the SNP formation and the
incorporation of silica into the pores of the template. Ammonia as catalyst is added after
24 h of stirring to enable the nonpolar precursors to diffuse into the template network.
Condensation does not start until NH3 is added. After another 24 h, the hybrid particles
HB2a-d are obtained (Figure S5 and Table 1). As a consequence of the reduced rate of
the hydrolysis of TMOS, no secondary particles are observed. The particles HB2a grow
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by 0.7 µm and HB2b by 0.3 µm and are thus larger than HB1a-d. In contrast to particles
prepared by Method 1, a more edgy morphology of the hybrid materials is achieved. For
TPOS (HB2c) and TBOS (HB2d) as precursors, there are no changes in size and morphology
compared to the template.

Table 1. Particle properties of hybrid beads and corresponding mesoporous silica microspheres.

Particle Size SiO2 Content Particle Size Median Pore Size Pore Volume Specific Surface Area

(µm) (%) (µm) (nm) (mL g−1) (m2 g−1)

HB1a 6.3 37.8 MPSM1a 6.0 23.6 0.50 271
HB1b 6.3 29.9 MPSM1b 5.5 11.3 0.84 389
HB1c 6.3 17.7 MPSM1c 3.6 8.8 0.62 339
HB1d 6.3 6.6 MPSM1d 2.2 4.0 0.68 637
HB2a 6.7 32.7 MPSM2a 5.9 15.7 0.87 390
HB2b 6.2 35.8 MPSM2b 6.0 24.9 0.69 346
HB2c 6.0 0.01 MPSM2c 0.8 1 1 1

HB2d 6.0 0.01 MPSM2d 0.5 1 1 1

HB1e 7.1 43.0 MPSM1e 7.3 16.6 0.79 247
HB1f 8.6 33.8 MPSM1f 6.6 15.6 1.06 311

1 The poor yield did not allow us to record adsorption/desorption measurements.

The thermal degradation behavior of the hybrid beads HB1a-d and HB2a-d compares
well with that reported earlier (Figure 1) [41]. After the loss of surface water, the degradation
processes of the polymer backbone led to a complete decomposition of the template and
allowed the determination of the silica content of the hybrid beats. Here the hybrid
particles HB1a contain the highest quantity of silica (37.8 %). The amounts of silica of
HB1b (29.9%), HB1c (17.7%) and HB1d (6.6%) correlate with their decreasing hydrolysis
rates. The amounts of SiO2 in HB2a and HB2b (32.7% and 35.8%, respectively) differ
little (Figure 1). Due to the suppressed hydrolysis in H2O, the hydrolysis rates of TMOS
and TEOS are comparable. Thus, similar amounts of SiO2 are deposited. The percentage
of incorporated silica in the hybrid particles correlates well with the particle size of the
resulting MPSMs (Table 1). Thermogravimetric analyses of HB2c and HB2d result in only
very small amounts of SiO2. This is traced back to the poor miscibility of the alkoxysilanes
TPOS and TBOS with water. Thus, only small amounts of SNPs are generated during
the reaction.
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The calcination of the hybrid beads HB1a-d and HB2a-d for 10 h at 600 ◦C removed the
organic polymer template and released the monodisperse mesoporous silica microspheres
MPSM1a-d (Figure 2) and MPSM2a-d (Figure 3). The nanoparticulate morphology of the
MPSMs is comparable to that of their corresponding hybrid beads. The particle size of
the MPSMs decreases with the decreasing hydrolysis rate of the precursors. Thus, while
MPSM1a (6.0 µm) and MPSM1b (5.5 µm) represent the size of the template quite well,
the sizes of MPSM1c (3.6 µm) and MPSM1d (2.2 µm) are strongly reduced. Consequently,
only TMOS and TEOS map the template to 100% and 92%, respectively, while, for TPOS
and TBOS, the template is mapped to only 60% and 37%, respectively. The particle sizes
of MPSM2a and MPSM2b are 5.9 µm and 6.0 µm, respectively, and completely replicate
the template. For MPSM2c and MPSM2d, 800 nm and 500 nm polydisperse porous silica
particles are generated.
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The pore properties of the MPSMs were determined via nitrogen adsorption/desorption
measurements and are listed in Table 1. The corresponding pore size distributions are
shown in Figure 4. Here, the median pore size of the MPSMs decreases and the specific
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surface area increases with the decreasing hydrolysis rates of the precursors. This result
is consistent with the size of the SNPs that form the silica network. Large SNPs generate
large pores of the MPSMs, while small SNPs result in smaller pores [38,40]. Therefore, the
median pore size becomes smaller in the order of MPSM1a (23.6 nm), MPSM1b (11.3 nm),
MPSM1c (8.8 nm), and MPSM1d (4.0 nm). As smaller pores form larger specific surface
areas, the highest specific surface area is obtained for MPSM1d, and the lowest specific
surface area is obtained for MPSM1a. The sol–gel process according to Method 2 leads
to an edgier morphology for MPSM2a and MPSM2b, resulting in larger surface areas
compared to MPSM1a and MPSM1b. The pore volume of the MPSMs differs between
0.5 mL g−1 and 0.9 mL g−1.
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2.2. Preparation and Characterization of MPSM1e and MPSM1f

The properties of the MPSMs are controlled by the hydrolysis rate of the precursors
and the solvent medium. TMOS produces non-porous secondary particles while TPOS
does not fully map the size of the template if the sol–gel process is carried out in 2-propanol
and H2O. To avoid this unwanted behavior, the two precursor combinations of TMOS with
TEOS (MPSM1e) and TPOS with TEOS (MPSM1f) were applied in a sol–gel process in
the presence of a P@TEPA template with a diameter of 7.2 µm. The new HBs and MPSMs
are shown in Figure 5. Interestingly, no secondary particles are observed for HB1e and
MPSM1e. The HB1e particles have the highest silica content of all hybrid particles, and
the corresponding silica microspheres have a nanoparticulate surface and exhibit a size of
7.3 µm (Table 1). Thus, they completely map the template without the negative effects of the
high hydrolysis rate of TMOS. With a median pore size of 16.6 nm, this is in between that
of MPSM1a and MPSM1b. This results in SNPs in the continuous phase that are smaller
than those of MPSM1a and larger than those of MPSM1b. The combination of TEOS and
TPOS leads to the particles HB1f and MPSM1f. The resulting silica materials have a size
of 6.6 µm, representing 92% of the template. Interestingly, the median pore size of 15.6 nm
and the pore volume of 1.06 mL g−1 are larger than the pore properties of MPSM1b, for
which only TEOS was used. Compared with MPSM1c, the template is better replicated in
MPSM1f.
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Figure 5. SEM images of hybrid beads HB1e and HB1f and corresponding MPSM1e and MPSM1f
with 2000× magnification (top row) and 50,000× magnification (bottom row).

2.3. Chromatographic Measurements of MPSM1b

For the use of MPSMs as a stationary phase in high-performance liquid chromatogra-
phy, high monodispersity is required to achieve efficient separation. MPSM1b particles
were chosen based on their particle size and monodispersity to investigate their suitability
as a stationary phase in HPLC. Therefore, MPSM1b particles were functionalized with
trimethoxy (octadecyl) silane and packed in a 250 mm × 4.6 mm stainless steel column
with acetone as the slurry and methanol/water (85 v.%/15 v.%) as the pressure medium.

The reproducibility of the synthesis of MPSM1b in its chromatographic properties
is shown in Figure 6. The particles of three different batches with the same reaction
conditions were packed in 250 mm × 4.6 mm stainless steel columns and examined for their
chromatographic properties. As can be seen in Figure 6, the particles of all three batches
show the same retention behavior of the test mixture. Moreover, even after one hundred
injections, the retention times of toluene and uracil did not change (Supporting Information
Table S1). This indicates the good stability of the stationary phase MPSM1b-C18.

The successful separation of five water-soluble vitamins is shown in Figure 7. A
gradient from eluent A, consisting of water containing 0.025% TFA, to eluent B, consisting
of acetonitrile (ACN), was used for the separation. An initial isocratic step for five minutes
with eluent A is followed by an increase from eluent B to eluent A to 25/75 (v.%/v.%) in six
minutes, as proposed by Heudi et al. [42]. This is followed by a second gradient on eluent
B to eluent A 40/60 (v.%/v.%) in eight minutes, holding this for an additional minute.
Then, the initial conditions are restored in one minute and equilibrated for four minutes.
The vitamins were baseline separated and assigned based on single measurements of the
analytes. The elution order is vitamin B1 < B3 < B5 < B9 < B12 as detected at 210 nm.
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254 nm.
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phase B: ACN; gradient (A/B): 5 min (100/0), 11 min (75/25), 19 min (60/40), 20 min (60/40), 21 min
(100/0) and 25 min (100/0); flow: 0.8 mL · min−1; injection volume: 20 µL; column temperature:
30 ◦C; UV detection: 210 nm.
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3. Materials and Methods
3.1. Chemicals

Tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS) and trimethoxy (oc-
tadecyl) silane (ODTMS) were obtained from abcr GmbH (Karlsruhe, Germany). Ammonia
(28–30% aqueous solution), tetrapropyl orthosilicate (TPOS) and tetrabutyl orthosilicate
(TBOS) were purchased from Alfa Aesar (Schwerte, Germany). Ethanol, hydrochloric acid,
2-propanol, triethylamine and the water-soluble vitamins (B1, B3, B5, B9 and B12) were
bought from Sigma-Aldrich (Taufkirchen, Germany). Acetonitrile (ACN), trifluoro acetic
acid (TFA) and water (all HPLC grade) were purchased from Fisher Scientific (Schwerte,
Germany). Toluene and deionized water were cleaned using a solvent purification sys-
tem. The test mixture (uracil, phenol, N,N-diethyl-m-toluamide and toluene) for column
characterization was provided by Dr. Maisch HPLC, (Ammerbuch, Germany).

3.2. Characterization

For the evaluation of the morphology, particle size and dispersity, SEM images were
acquired using a Hitachi SU8030 (Krefeld, Germany). The mean particle diameter was
obtained by calculating at least 400 particles from SEM images and is expressed in µm. The
pore parameters of the materials are determined by nitrogen adsorption on a BELSORP
MiniX from Microtrac Retsch GmbH (Haan, Germany). The sample preparation was carried
out on a BELSORP VACII (Microtrac Retsch GmbH, Haan, Germany). For that, the silica
materials were heated for 3 h at 300 ◦C, and a vacuum of 2 × 10−2 mbar was used to remove
possible physisorbed residues and to achieve a reproducible equilibrium [43]. Adsorption
and desorption isotherms were performed at 77 K. For the determination of the specific
surface area, the adsorption isotherms were evaluated by the Brunauer–Emmet–Teller
(BET) method, and for the pore volume (single point measurement at p/p0 = 0.95) and pore
size distributions, the desorption isotherms were evaluated by the Barrett–Joyner–Halenda
(BJH) method using BELMaster 7 software [44,45]. The amount of SiO2 was determined
after thermogravimetric measurements on a Mettler Toledo TGA/DSC. Samples were
weighed in an aluminum vessel and measured at a heating rate of 5 K min−1 and synthetic
air (50 mL min−1).

Analytical high-performance liquid chromatography of water-soluble vitamins was
performed on an Agilent 1100 series system from Agilent Technologies (Waldbronn, Ger-
many), which consisted of a quaternary pump with degasser, an autosampling system,
a column oven and a diode array detector. Instrument control, data acquisition and au-
tomated data analysis was performed by the OpenLAB CDS (Rev. C.01.07 SR3 software,
Agilent Technologies, Walbronn, Germany). A running gradient of eluent A consisting of
water and 0.025 v.% TFA to eluent B consisting of acetonitrile was used according to Heudi
et al. [42] The vitamins B1, B5 and B12 (1 mg mL−1), B3 (0.5 mg mL−1) and B9 (2 mg mL−1)
were dissolved in water.

3.3. Syntheses

Monodisperse porous p(GMA-co-EDMA) particles were prepared by a seed sus-
pension polymerization of glycidyl methacrylate and ethylene glycol dimethacrylate
in the presence of monodisperse polystyrene particles (1.5 ± 0.1 µm, Figure S1, Sup-
porting Information) [35,36,46]. Then, the p(GMA-co-EDMA) particles were functional-
ized with TEPA according to previous reports (for details, see Supporting Information,
Figures S1–S3 [36,38,39]) to generate P@TEPA template particles. A nitrogen content of
2.4% and spectroscopic analysis indicate successful functionalization.

3.3.1. Preparation of Monodisperse Porous Hybrid Beads (HB1a-f and HB2a-d) and
Mesoporous Silica Microspheres (MPSM1a-f and MPSM2a-d)

Method 1: An amount of 1 g of P@TEPA particles was dispersed in a mixture of 60 mL
of 2-propanol and 7.5 mL of H2O. Then, 2.4 mL of TMOS (a), TEOS (b), TPOS (c) and TBOS
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(d) and 0.2 mL of an aqueous ammonia solution (28–30%) was added, and the mixture was
stirred at 200 rpm for 24 h to produce hybrid beads HB1a-d (Table 1).

The hybrids HB1e-f were produced after 2.4 mL of TEOS and 1.5 mL of TMOS (e) or
TPOS (f) and 0.2 mL of an aqueous ammonia solution (28–30%) were added to a dispersion
of 1 g P@TEPA particles in 60 mL of 2-propanol and 7.5 mL of H2O. The mixture was stirred
at 200 rpm for 24 h (Table 1).

Method 2: An amount of 1 g of P@TEPA particles was dispersed in 67.5 mL of H2O.
Then, 2.4 mL of the corresponding alkoxysilane was added, and the mixture was stirred at
200 rpm. After 24 h, 0.2 mL of an aqueous ammonia solution (28–30%) was added, and the
reaction was stirred for further 24 h at 200 rpm to produce hybrid beads HB2a-d (Table 1).

All hybrid beads were separated from their solutions, washed three times with EtOH
and three times with H2O, and dried at 65 ◦C for 16 h. The resulting hybrid beads were
calcinated at 600 ◦C for 10 h to provide the corresponding mesoporous silica microspheres
MPSMs (Table 1).

3.3.2. Octadecyl Functionalization of Mesoporous Silica Microspheres for
Chromatographic Measurements

An amount of 5 g of silica particles MPSM1b was dispersed in 600 mL of hydrochloric
acid (3.7%) and stirred for 3 h at 100 ◦C (200 rpm). The particles were separated from the
solution, washed with EtOH and H2O until neutral and dried at 65 ◦C for 16 h. The particles
were then dispersed in 75 mL of toluene; 25 mL of ODTMS and 0.5 mL of triethylamine
were added; and the mixture was stirred at 100 ◦C (200 rpm) for 6 h. The particles were
separated from the solution; washed three times with toluene, three times with EtOH and
twice with MeOH; and dried at 65 ◦C for 16 h.

The functionalized particles were packed with acetone as slurry and MeOH/H2O
(85 v.%/15 v.%) as pressure medium.

4. Conclusions

Monodisperse mesoporous silica microspheres (MPSM) can be tailored in their sizes
and pore parameters via the hard template method. This is achieved if, at the stage of
the hybrid bead syntheses, the sol–gel parameters are adjusted properly. This has been
successfully demonstrated here by applying a basic sol–gel process with four different
alkoxysilanes in the presence of functionalized p(GMA-co-EDMA) as the template. The
SNPs grow at various rates and are thus incorporated into the template pores in non-
uniform sizes, which is a consequence of the different hydrolysis and condensation rates
of the alkoxysilane precursors. Thus, different amounts of silica are incorporated into the
template, which has an impact on the final size of the MPSM. With TMOS and TEOS as
precursors, the size of the template is reproduced, while TPOS and TBOS as precursors
lead to much smaller MPSMs. Moreover, the various sizes of the incorporated SNPs
generate different pore parameters. The larger the SNP, the larger the pores of the MPSM,
which is important for HPLC applications. The silica particles synthesized with TEOS
according to Method 1 were functionalized with trimethoxy (octadecyl) silane and used
as the stationary phase in HPLC. The complete baseline separation of five water-soluble
vitamins was achieved with these microspheres. The robustness of the synthesis of MPSMs
in their chromatographic properties was demonstrated via HPLC using three different
batches with a reversed phase test mixture.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms241411729/s1.
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