
Integrating Issue Management Systems
of Independently Developed Software

Components

Sandro Speth1(B) , Uwe Breitenbücher2 , Niklas Krieger1 ,
Pia Wippermann1, and Steffen Becker1

1 Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
{Sandro.Speth,Niklas.Krieger,Pia.Wippermann,

Steffen.Becker}@iste.uni-stuttgart.de
2 Herman Hollerith Zentrum, Reutlingen University, Reutlingen, Germany

uwe.breitenbuecher@reutlingen-university.de

Abstract. Modern component-based architectural styles, e.g., microser-
vices, enable developing the components independently from each other.
However, this independence can result in problems when it comes to
managing issues, such as bugs, as developer teams can freely choose their
technology stacks, such as issue management systems (IMSs), e.g., Jira,
GitHub, or Redmine. In the case of a microservice architecture, if an
issue of a downstream microservice depends on an issue of an upstream
microservice, this must be both identified and communicated, and the
downstream service’s issues should link to its causing issue. However,
agile project management today requires efficient communication, which
is why more and more teams are communicating through comments in
the issues themselves. Unfortunately, IMSs are not integrated with each
other, thus, semantically linking these issues is not supported, and iden-
tifying such issue dependencies from different IMSs is time-consuming
and requires manual searching in multiple IMS technologies. This results
in many context switches and prevents developers from being focused
and getting things done. Therefore, in this paper, we present a concept
for seamlessly integrating different IMS technologies into each other and
providing a better architectural context. The concept is based on aug-
menting the websites of issue management systems through a browser
extension. We validate the approach with a prototypical implementation
for the Chrome browser. For evaluation, we conducted expert interviews,
which approved that the presented approach provides significant advan-
tages for managing issues of agile microservice architectures.

Keywords: Microservices · Issue management · Service engineering ·
Component-based architectures · Gropius · Browser extension

1 Introduction

The component-based architectural style, e.g., microservices, gained much atten-
tion since it enables the development of individual software components inde-
pendently from each other and composing them systematically to new sys-
tems [1]. Developing components independently has significant advantages, e.g.,
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-33976-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_1&domain=pdf
http://orcid.org/0000-0002-9790-3702
http://orcid.org/0000-0002-8816-5541
http://orcid.org/0009-0007-7616-3155
http://orcid.org/0000-0002-4532-1460
https://doi.org/10.1007/978-3-031-33976-9_1


4 S. Speth et al.

microservices can be implemented in different programming languages by dif-
ferent teams [2]. However, this independence can also result in drawbacks when
it comes to managing issues [3], such as bug reports or feature requests. For
example, in microservice architectures, we can observe that often different issue
management systems are used for different microservices. Moreover, as soon as
an architecture includes 3rd-party services, such as SaaS offerings, or open-source
components, these, of course, have their own issue management systems, and it
is clear that not all services are developed by the same team. Therefore, it is
very unlikely that all components of a larger system use the same issue man-
agement system. Hence, different teams might use different issue management
systems (IMSs), e.g., Jira, GitHub, or Redmine [4]. In the following, we use
microservices as an example of independently developed components to make
the problem clear. For example, suppose a malfunction, anomaly, or failure of
a Checkout microservice actually results from a bug in an invoked Payment
microservice, e.g., missing parameters through a change violating the services
contract [5]. Figure 1 depicts such a scenario. In this case, the malfunction of
the Checkout microservice should be reported as an issue relating to its causing
bug of the Payment microservice, hence, allowing the developers of the Checkout
service to track the bug report’s status of the Payment service. Furthermore, the
Checkout service’s team should communicate the issue to the Payment service’s
developer team to resolve the issue. However, documenting and tracking such
cross-component issues is challenging [3], primarily since no issue management
system supports explicit relations to other issues managed by another issue man-
agement system as different IMSs are not integrated with each other. Thus, if
issues of microservices are managed by different tools, e.g., one microservice is
managed in Jira, the other in Redmine, it is not supported by any IMS to seman-
tically relate the issues with each other, which is often required to understand
the dependencies of issue propagations, e.g., because of cascading failures, and
how issues need to be solved. Furthermore, developers often communicate via
the issue’s comments and keeping track of the related issues results in switching
between the different issue management systems. This leads to many context
switches and, thus, ineffective communication and preventing the developers
from focused work. However, especially in modern agile processes like Scrum,
“getting things done” is a central value that is thereby hindered. Furthermore,
it is required to describe the dependency relation between the two issues while
putting them in their correct architectural context to prevent the developers
of Checkout microservice from trying to fix the malfunction separately, which is
problematic since another microservice causes it. Therefore, we require to bypass
the limitation of IMS boundaries and integrate their issues into each other, which
leads to our first research question:

RQ1: “How could different issue management systems such as Jira and
GitHub be seamlessly integrated to avoid context switches through additional
tooling?”

In addition, developers need an efficient solution to discover dependencies of
their own issue to issues in other issue management systems, as these are often



Integrating IMSs of Independently Developed Software Components 5

hidden in current systems only via natural language in the comments. This leads
us to our second research question:

RQ2: “How could developers in their own issue management system quickly
identify dependencies of their own issues on issues of other issue manage-
ment systems?”
For this reason, in this paper, we propose a concept that makes issues

from different issue management systems available in each other in an IMS-
independent way. The concept is based on seamlessly augmenting the websites of
issue management systems such as Jira, Redmine, or GitHub via Browser exten-
sions. In doing so, we use Gropius, which we developed in previous work [6,7], in
the extensions to synchronize issues and enable Gropius features, such as seman-
tic links in the IMS, that do not otherwise exist. Gropius is a standalone IMS
platform that enables issue management across the boundaries of every single
software component and their IMSs while putting the issues in their correct archi-
tectural context. However, while Gropius offers a top-down view of the entire
architecture and their issues as a separate tool, developers still require a seam-
less developer-specific view from inside a component in their usual issue manage-
ment systems without switching between IMSs. Therefore, our concept maps the
top-down view of the architecture to a developer-specific view of the architec-
ture from within a component. This hides unnecessary or disruptive information
from the developer and puts the focus on the developer’s own component and
the upstream or downstream components from it. Thus, if certain issues of a
component are shown, for example, in GitHub, associated issues that might be
managed by other issue management systems such as Jira are directly embed-
ded in the website of GitHub, which enables quickly recognizing dependencies
and navigating to other issues. Developers should therefore get their work done
faster and communicate more efficiently via the dependent issues’ comments
with other teams. We validated the practical feasibility of this Gropius Browser
Extension concept by a prototypical implementation for the Chrome browser
and GitHub as an exemplary issue management system. Moreover, we evaluated
the concept and the prototype through expert interviews. The experts approved
that the approach provides significant advantages for managing issues of indi-
vidual services in a component-based architecture, e.g., independently developed
microservices.

2 Fundamentals of Issue Management and Gropius

Today’s issue management systems (IMS), such as Jira or Redmine, allow
developers to document, manage and track issues, e.g., bug reports or feature
requests, for their projects, discuss the issues’ context with other developers,
and collaborate on them. Often, architectural design decisions are also discussed
in issues as they both influence each other. Therefore, issue management sys-
tems often act as the main tool to coordinate their work and become increas-
ingly central to every software development process as a hub for communication



6 S. Speth et al.

Order Service

Order fails #1331

CheckOut Service

Payment fails #13

depends on depends on

Payment Service

API Bug #14

issues managed in

Order
Service

CheckOut
Service

Payment
Service

issues managed in issues managed in

Fig. 1. Motivating scenario showing how bugs propagate through the architecture.

Fig. 2. Overview of the Gropius concept and architecture.

and collaboration [8]. Furthermore, issue management systems offer the possi-
bility for distributed negotiations required to resolve the issue [9]. However, in
modern software development, individually developed components typically use
their independent issue management systems. Therefore, linking an issue from
one IMS to another systems’ issue, e.g., for a dependency relation, is not directly
possible as traditional IMSs are restricted to their component’s boundaries. Nev-
ertheless, related issues should be linked amongst each other [8] in order to pro-
vide all helpful information required to resolve the issue and increase its qual-
ity [10]. Gropius attempts to remove this limitation and facilitate (1) synchro-
nization of issues across different issue management systems, and (2) relations
between those cross-component issues. In Gropius, each issue can be associated
with one or more components that together form the architecture of a software
system. Such a software system is represented in a project in Gropius, i.e., a
Gropius Project. In general, Gropius supports various kinds of components, e.g.,
microservices, libraries, and infrastructure. One goal of Gropius is to effectively
represent the impact of issues on the architecture and issue propagation, as well
as architectural dependencies between the components. For this reason, in the
Gropius Web UI, components of such a Gropius project are modeled in a UML



Integrating IMSs of Independently Developed Software Components 7

CheckOut Service

Payment fails

Payment Service

API Bug #14

extract issues

Gropius

CheckOut
Service

Payment
Service

…

issues managed in issues managed in

Ext Ext

depends on

extract issues
Add related

issues via extension

Fig. 3. Overview and architecture of the Gropius Browser Extension concept.

component diagram-like graph. Stakeholders with an overview of the entire soft-
ware system, e.g., a software architect, can create representations of components
and their provided interfaces in Gropius and connect them to model the archi-
tecture. Furthermore, each component in Gropius is either Gropius internal or
requires a URL to its actual IMS. Each component is attached with the issues
that affect that component. Through Gropius, developers can create relations
between issues of different components which are added to the issues. These
relations are graphically represented by arrows and collectively depicted in the
issue view metadata. To enable these cross-component issue features while lever-
aging the issues of the actual IMSs, Gropius acts as a wrapper over traditional
IMSs, such as GitHub or Jira, as depicted in Fig. 2 and offers a GraphQL API to
clients. Through specific adapters for the different IMSs, Gropius synchronizes
issues between the systems. Furthermore, Gropius keeps a copy of the issues,
especially for data that is not supported by the actual IMSs, such as cross-IMS
issue relations.

3 The Gropius Browser Extension Concept

This section presents the conceptual idea of the Gropius Browser Extension
(GBE) for integrating different issue management systems used by independently
developed software components. First, we give a brief overview of the concept in
Sect. 3.1. Afterwards, we explain the concept with regard to elicited requirements
in detail. Please note that while we use microservices as a common example for
independently developed software components, the GBE concept is not restricted



8 S. Speth et al.

to microservices but also enables other independently developed and includable
software projects, e.g., libraries or infrastructure components such as Kubernetes
and Docker. Therefore, we use the general term “component” for the remainder.

3.1 General Idea and Objectives

Figure 3 shows the general idea based on the motivating scenario. The main
objective is to enable cross-component issue management across different issue
management systems in a seamless manner using their standard websites in
a traditional way. The websites get seamlessly enriched by the extension with
information about related issues of dependent components in the architecture,
which are possibly managed by other issue management systems. This integra-
tion concept avoids two drawbacks of existing issue management approaches:
(i) First, relations between issues managed by different IMSs are typically doc-
umented using textual comments, which provides no systematic means and hin-
ders “browsing” them. (ii) Second, additional tooling, such as the Gropius Web
App, that enables cross-component issue management is not required for creat-
ing, relating, and managing issues, thus, reducing context switches of developers.

3.2 Overview and Architecture of the GBE

The Gropius Browser Extension is a plugin that runs in a web browser and
automatically manipulates the HTML DOM of shown websites, in our case, the
websites of issue management systems such as Jira or Redmine. The extension
connects to the Gropius backend, which contains information about issues in
different IMSs and also contains dependencies between them as well as other
metadata [6,7]. Thus, the Gropius backend acts here as a normalized store for
issues from different IMSs, which are automatically extracted and synchronized
by Gropius in a certain time interval.

The GBE has access to the DOM of the currently shown page of the issue
management system, from which it retrieves relevant context information, e.g.,
which issue is currently shown. Using this information, the GBE calls the Gropius
backend to fetch cross-component issue features for the current issue, e.g., related
issues and their respective components. This information is additionally injected
into the issue management system’s website by manipulating its HTML DOM,
hence, enabling Gropius functionality directly in the component’s issue manage-
ment system’s website following its look and feel. Thus, this provides a seamless
integration of the Gropius features into the regular work of developers as no
additional website or tool needs to be used to see issue relations, issues of other
components, etc. Especially, content based on different issue management sys-
tems can be integrated into the developer’s used issue management system.

In the following, we concretely describe the Gropius features that are inte-
grated using the GBE into the standard website of the issue management sys-
tems. Please note that we describe in this section only the concepts and provide
details on the technical implementation in Sect. 4, which describes our open-
source prototype of the Gropius Browser Extension.



Integrating IMSs of Independently Developed Software Components 9

3.3 Gropius Features Integrated in the Browser Extension

In this section, we describe the Gropius features and functionalities that are
integrated by the Gropius Browser Extension into the standard websites of issue
management systems and how they are realized in the presented architecture.

Browser Extension Feature 1: Creating Gropius Project. Before devel-
opers can use any Gropius features in the used IMS, they must create a project
in Gropius, add relevant components to this project, and specify the respective
issue management systems. This functionality is supported directly by the GBE
as otherwise the external Gropius Web App needs to be used, which would lead to
context-switches. Therefore, we integrated a feature to create a Gropius project
or to add an IMS’s project, e.g., a GitHub repository, to an existing project.
This way, developers can add microservices, libraries, and other components to
their Gropius project when browsing through the respective project of the IMS
used. Please note that the way this feature is shown and how it is triggered, e.g.,
through a button, is IMS-specific. Therefore, the browser extension will look and
feel slightly different for GitHub than for Jira and other systems.

Browser Extension Feature 2: Issue Dependencies and Architectural
Context. One main objective of the Gropius Browser Extension is to enrich an
issue currently shown in an issue management system’s website with additional
information regarding its dependencies to other issues. Especially if the related
issues belong to another component, the extension must provide the architectural
context in an understandable fashion in order to enable the developer to quickly
identify the impact and dependencies of the issue to other components and
their issues. Therefore, the GBE injects two kinds of additional information to
the issue view of an IMS: (1) the related issues of the same component and of
other components, and (2) an excerpt of the architecture graph that shows the
component of this issue and also all other components having issues to which
the currently shown issue relates to.

For the first kind of injected information, i.e., the list of related issues of
the same or other components, the Gropius Browser Extension shows for the
currently shown issue which components and other issues the shown issue directly
affects or is otherwise related to. To easily create relations between the current
issue viewed to other issues of the same or a different component, the Gropius
Browser Extension enables to add such relations directly in the issue view page of
the issue management system, thus, no further tooling is required. For example,
if developers create an issue for the own component and know that this issue
actually results from another component’s issue, i.e., has a dependency to it, they
are interested in directly adding the relation to the other issue in order to specify
the complete dependencies. Without the Gropius Browser Extension, developers
would have to add a text comment including the URL to the related issue of
a possibly different issue management system and write an explanation which
describes the semantics of the relation. Of course, text-based issue relations are



10 S. Speth et al.

only a workaround that tries to compensate this obviously missing feature to
link issues in different systems. On the other side, using the Gropius Browser
Extension, this problem is solved since relations to issues of the same component
or other components can be directly added in the issue’s view page including a
precise specification of the semantics of the relation, e.g., that the issue depends
on an issue of another component in another IMS.

In general, adding such relations are especially complex for issue management
systems that already allow semantic issue relations, for example GitLab’s Linked
issues or Redmine’s Related issues. While such issue management systems allow
relating issues within the same issue management system provider, relating issues
to other providers, e.g., issues of a GitHub repository, is impossible. Therefore,
the GBE enables integrating relations to issues of different issue management
system providers in the currently shown issue view.

The second kind of information the Gropius Browser Extension adds to an
issue’s view is an excerpt of the overall architecture of the system that shows
(a) the component of the currently shown issue as well as (b) all other compo-
nents having issues to which the shown issue relates. Thus, this provides a visual
overview of the architectural context and enables developers to quickly under-
stand the impacts and causes that the shown issue has, i.e., all dependencies.

Browser Extension Feature 3: Entire Architecture of the System. The
Gropius Browser Extension aims at enabling developers a quick overview of
issues and their relations to other issues of possibly other components in the
architecture. Therefore, the previously introduced Browser Extension Feature
2 enables to show an architectural excerpt that provides an overview of the
directly related issues and their respective components. However, this excerpt
only shows a part of the system’s architecture and often developers need to see
the entire architecture of the system in which the current component is used.
Therefore, the GBE enables to load the entire architecture of a system that
includes all components, their issues, and their dependencies into the currently
used issue management system’s website. Thus, developers can browse the entire
architecture and directly jump to the IMSs of other components by clicking on
the component in the graph or on one of its issues. In the latter case, a new tab
opens the other IMS and shows the clicked issue. This enables browsing through
the entire architecture of the system directly in the IMS and avoids that another
tool needs to be used by developers to inspect the overall system architecture.

Please note that a certain component and its issues can be part of multiple
different systems. For example, a component such as the Payment Service might
be used in our webshop motivation example but also in a car rental application
or other applications that require payment functionality. In this case, a certain
component would be part of multiple different system architectures which are
managed in Gropius as individual Gropius projects. Thus, one Gropius project
represents one system, describing its architecture, and listing all components
with the corresponding issues. Therefore, the Gropius Browser Extension enables



Integrating IMSs of Independently Developed Software Components 11

switching between Gropius projects in the issue management systems website
and then shows the architecture and all components of current selected project.

Browser Extension Feature 4: Create Issues for Other Components
Managed in Other Issue Management Systems. In many situations, a
bug in one component results from a bug in an invoked component. For example,
in the motivating scenario, the bug in the Payment Service’s API leads to an
issue in the CheckOut Service that depends on this API. Thus, if a developer
of the CheckOut Service detects that the checkout functionality does not work
correctly, the developer needs to report this as an issue for the CheckOut Service.
However, if the developer directly understands that the root cause of this bug
is the broken API of the Payment Service, maybe as a result of a failure root
cause analysis, also a bug should be created for the Payment Service and the two
issues should be linked, i.e., that the checkout bug results from the payment’s
API bug. Therefore, the Gropius Browser Extension supports creating issues
also for other components of the architecture directly in the issue’s view page
of the issue management system, even if the current IMS is different from the
IMS of the other component. Based on this feature, developers do not require to
open the other issue management system to report the causing issue. This is a
significant advantage since such a context switch requires the developers to first
orient themselves in the other issue management system.

4 Prototypical Validation

To validate the practical feasibility of the presented concept, we implemented a
prototype of the Gropius Browser Extension for the Google Chrome Browser.
The implementation is open source available1. Section 4.1 describes the technical
design of the prototype. Moreover, Sect. 4.2 shows how the implemented browser
extension for Chrome supports GitHub, i.e., how the extension interacts with
the Web UI of GitHub and how issues from other issue management systems are
embedded.

4.1 Technical Design of the Gropius Browser Extension for Chrome

The architecture of our Gropius Browser Extension is based on the web exten-
sions framework, which is an official W3C standard cross-browser architecture2

and supported by all popular desktop web browsers except for Safari.
Figure 4 depicts our prototype’s architecture for the Google Chrome browser.

Following the web extension framework, our prototype consists of three compo-
nents (1) background pages, (2) UI pages, and (3) content scripts. The extension
executes background pages as soon as loaded. Especially code that maintains
long-term state and operations, which should be independent of any website’s

1 https://doi.org/10.5281/zenodo.6810943.
2 https://browserext.github.io/browserext/#availability-csp-content.

https://doi.org/10.5281/zenodo.6810943
https://browserext.github.io/browserext/#availability-csp-content


12 S. Speth et al.

Fig. 4. Architecture of the Gropius Browser Extension prototype for Google Chrome.

or browser window’s lifetime, must be added as background pages. In the con-
text of our extension, the background scripts decide whether one of the content
scripts should be active, i.e., the content script for a GitHub issue view, if the
developer has opened the GitHub page. When clicking on the extension popup
button in Chrome’s upper right part, it offers UI elements and options for login
to Gropius to the user via the UI pages component, i.e., popup.js and popup.html.
While the background and UI pages can access the browser’s API, they cannot
interact with the issue management system’s website. In contrast, the content
scripts interact with the issue management system’s website, however, having
only limited access to the browser’s API. Therefore, content scripts run in the
context of the issue management system’s website, and the background and UI
pages run in the context of our GBE. Content scripts enable the way websites
are displayed to the user and their functionalities to be manipulated. In our
context, this means adding UI elements related to Gropius to the issue manage-
ment system’s website, thus, enhancing the issue management system’s website
with additional Gropius functionalities. For example, a button to add a new
related issue in the issue’s view, which opens a dialogue to add the relation, is
injected here. The communication between content scripts, background, and UI
pages works via messages. Therefore, components listen to other components’
messages and respond via the same channel. The extension interacts with the
Gropius backend via its provided GraphQL API to add or retrieve architectural
and Gropius project information, issues, and issue relations.

4.2 Implementation for GitHub and Case Study

We implemented our prototype in Vue.js, a progressive JavaScript framework
for web applications. For our prototype, we especially use the plugin “vue-cli-
plugin-browser-extension”, a third-party library for Vue that supports creating
extensions for popular browsers. For our prototype, we focus on Google Chrome
as web browser and the issue management system of GitHub. In the following,
we describe the prototype based on an extended version of the example scenario



Integrating IMSs of Independently Developed Software Components 13

Fig. 5. Browser screenshot of the Gropius Browser Extension prototype.

described in Sect. 1, i.e., the webshop application consisting of the (1) Order
Service, the (2) CheckOut Service, which is the service our development team
focuses on, and the (3) Payment Service.

The Checkout Service consumes the Payment Service’s API to handle the
payment of orders. The Checkout Service’s issues are managed in GitHub and
the other services in different IMSs. The prototype allows adding a GitHub
repository as a component to an existing Gropius project (cf. Feature 1). To add
a GitHub repository which is opened in the web browser to a Gropius project,
the extension injects a button in the sidebar of the repositories “Code” tab. After
modelling the provided interfaces and architectural dependencies in the Gropius
Web App, developers can add relations between issues of the CheckOut Service
and issues of the other components (cf. Feature 2). Figure 5 depicts an example
issue for the CheckOut Service, which describes a bug regarding checking out an
order. On top of the issue’s description, the GBE injects an architecture graph to
show the issue’s architectural context (cf. Feature 2 & 3). Our prototype injects
two additional metadata in the issue view’s sidebar above the assignees. The
“Active Gropius Projects” part allows switching the active Gropius project in
which the CheckOut service is included. In the example, the Gropius project
“Webshop” is selected as active. Therefore, the extension shows in the “Related
Issues” part related issues and their components in the context of this project
(cf. Feature 2). The icons next to the related issue’s titles indicate whether the
currently viewed issue depends on the related issue or causes it. Additionally,
the “Related Issues” part allows developers to add new relations to issues of



14 S. Speth et al.

Fig. 6. Steps for adding a related issue.

Fig. 7. Results of the evaluation for each question.

the same or different component or remove existing relations. As depicted in
Fig. 6, when adding new relations, the extension opens a dialogue frame where
a developer has first to select the component of the related issue and then select
the issue which should be related. Furthermore, instead of selecting an existing
issue, a developer can create new issues for the chosen component directly in the
issue’s view (cf. Feature 4).

5 Evaluation

We evaluated our concept based on a Goal Question Metric approach and
a prototype version of our software. We formulated the goal “enabling inte-
grated context-aware issue relationship management for independently managed



Integrating IMSs of Independently Developed Software Components 15

software systems”. Based on this, we derived questions evaluating the general
concept and how our prototype fulfills the goal. To answer the questions, we
conducted an expert survey. As the rating scale for the questions, we used five
interval points where the endpoints are named to match associated questions.
Therefore, the scale ranges from −2 over 0 to 2, where −2 means an entirely
negative evaluation, 0 is the neutral element, and 2 means an entirely positive
evaluation. Since our concept aims especially to improve the developers’ issue
management across multiple independently managed components, we consulted
eleven experienced industrial software developers from different small-sized to
big-sized companies in Germany and Canada. The participants worked between
3 and 15 years in developing component-based systems, during the last years
also focusing on microservices. Most of their roles are developer and software
architect. Furthermore, while developing, their components interacted with com-
ponents developed by other teams. We conducted the expert survey by hosting
interviews in which we showed the prototype version of the GBE and an example
architecture with issues to the participants. Afterwards, we provided them with
our questionnaire.

5.1 Results of the Expert Survey

This section describes the questions and the results of the survey.

(Q1) “How helpful is the main feature of the Gropius Browser Extension to
see related issues of other components?” The scale ranges here from not
helpful at all (−2) to very helpful (+2). In total, eight experts (73%) rated
(Q1) with +2 and three (27%) rated it with +1, which means that they
evaluated to see related issues of other components in a concise way as
very helpful.

(Q2) “How big do you estimate the time savings enabled by the Gropius Browser
Extension to find related issues of other components (compared to the com-
mon approach without the extension)?” The interviewees were asked to
rate this with a value ranging from very low (−2) to very high (+2).
Seven of the experts (64%) rated +2, four experts (36%) rated +1. Thus,
developers estimate that the extension may help saving time for finding
related issues.

(Q3) “How important do you consider the presented concept of the Gropius
Browser Extension for the development process of software and its opera-
tion?” The interviewees were asked to rate this with a value ranging from
not important at all (−2) to very important (+2). For (Q3), four experts
(36%) rated a +2 while seven experts (64%) stated the importance of our
concept for the development process with a +1. Signals that our concept
is generally important but not significantly required.

(Q4) “How well do you find the Gropius Browser Extension integrated into the
look and feel of GitHub?” The interviewees were asked to rate this with a
value ranging from not good at all (−2) to very good (+2). Overall, nine
experts (82%) evaluated the integrated look and feel of our prototype with



16 S. Speth et al.

+2, and two experts (18%) stated a +1, which strongly indicates that our
prototype seamlessly integrates into GitHub.

(Q5) “How high do you rate the chance that the Gropius Browser Extension will
be accepted in the industry?” The interviewees were asked to rate this with
a value ranging from very low (−2) to very high (+2). The acceptance of
our concept within the industry was evaluated as relatively high. However,
the results are well distributed between +2 and 0, i.e. five times (45%)
+2, four times (36%) +1, and two times (18%) 0. Therefore, not every
expert was convinced of acceptance in the industry.

(Q6) “How important do you consider the concept of cross-component issues for
the software engineering process of complex systems that consist of several
independent components?” The interviewees were asked to rate this with
a value ranging from not important at all (−2) to very important (+2).
For (Q6), ten experts (91%) rated the concept of cross-component issues
as very important, i.e., appointing a value of +2, and one expert (9%)
esteemed it as important with a value of +1.

(Q7) “How quickly can you recognize that the issue currently viewed has depen-
dencies on issues of other components?” The interviewees were asked to
rate this with a value ranging from very slow (−2) to very fast (+2). With
nine experts (82%) rated (Q2) with +2 and two experts (18%) rated a
+1, the average of +1.82 means that the experts could recognize depen-
dencies on issues other component’s issues very fast, thus, supporting the
usability.

(Q8) “How user friendly is editing and adding related issues?” The interviewees
were asked to rate this with a value ranging from not user friendly at
all (−2) to very user friendly (+2). Three experts (27%) judged the user
friendliness for editing and adding related issues with a +2 and eight (73%)
with a +1. Therefore, the average of +1.27 supports the user friendliness.

5.2 Summary of the Evaluation and Threats to Validity

To summarize, the feedback regarding our concept was very positive. Therefore,
our expert survey shows that a problem in managing cross-component issues in
complex software systems, such microservices, is seen, supporting some of the
challenges outlined by Mahmood et al. [3]. Often, ratings of +1 and below were
justified by the fact that there are more important tasks, especially regarding
the entire development process and operation. Additionally, our prototypical
implementation was rated very good. In particular, the immersive integration
and design to GitHub’s UI was frequently emphasized in debriefings. While our
concept provides one possible answer for our first research question, especially
the answers to question 7 support that integrating the dependency graph into the
traditional IMS’s UI and adding relations to other issues in a semantic clear way
enables efficient identification of the own issue’s dependencies, thus, answering
our second research question.

Please note that since we conducted an expert survey, the given answers
depend on personal opinions. Thus, the results are subjective, resulting in a



Integrating IMSs of Independently Developed Software Components 17

threat to internal validity and external validity regarding how representative
our surveyed group is [11]. Furthermore, there is a threat to construct validity if
the experts misunderstood some questions. However, these threats were solved
by allowing the intervewees to ask questions that were answered.

6 Related Work

There are several attempts for cross-component issue management. Various Red-
mine and Jira forums3 discuss how issues can be related to multiple IMS projects.
Proposed solutions are always limited to one IMS provider and are usually plu-
gins for the respective IMS providers instead of a provider-independent browser
extension. Issue tracking across the boundaries of an IMS provider is not enabled,
and is, therefore, not practical for our use case where components are devel-
oped independently and thus manage their issues in different IMS providers,
e.g., GitHub and Jira. Especially for Jira and GitHub, plugins exist that enable
approaches that support multiple IMS projects from the same provider. Syn-
chronization of issues across multiple Jira projects is enabled by the Jira plugin
Backbone Issue Sync4 and the Multi Project Picker5 Jira plugin removes the
restriction that an issue can only belong to one Jira project. For GitHub, there
is the plugin ZenHub6 which offers additional project management functionali-
ties. With ZenHub, issues are not restricted to one GitHub repository anymore.
However, ZenHub does not support linking GitHub issues to issues of other IMS
providers. Additionally, there are browser extensions for issue management in
Jira which aim at saving time, e.g., JIRA Assistant, Zephyr, JIRA Template
Injector, and Google to Jira. However, similar to the plugins above, none of the
extensions enables issue relations across different IMS projects or providers. We
followed with GropiusVSC, an IDE extension for Gropius, a similar approach
as we to reduce context-switches and improve a developer’s productivity [12].
GropiusVSC offers a developer for a selected component of a Gropius project
the list of issues and an issue view. The issue view shows the issues title, descrip-
tion, and related issues with their components. By clicking on a related issue of
another component, this component is automatically selected as active compo-
nent, and GropiusVSC shows the issue’s view. While GropiusVSC is helpful
during development time, a relevant part of a developer’s week consists of meet-
ings, e.g., Sprint Planning, or other occasions where developers work within the
actual issue tackers’ web pages, and, therefore, not sufficient alone. Hence, our
browser extension helps developers by integrating context-aware issue manage-
ment across a component’s boundary in the component-specific IMS.

3 http://bit.ly/3EdNU0g, https://bit.ly/Iuk3NrP, and https://bit.ly/3lKKv2n.
4 https://www.k15t.de/software/backbone-issue-sync-for-jira.
5 http://bit.ly/3xqofh5.
6 https://www.zenhub.com/.

http://bit.ly/3EdNU0g
https://bit.ly/Iuk3NrP
https://bit.ly/3lKKv2n
https://www.k15t.de/software/backbone-issue-sync-for-jira
http://bit.ly/3xqofh5
https://www.zenhub.com/


18 S. Speth et al.

7 Conclusion

The central objective of this work was that developers of a component could
manage cross-component issues in the context of the issue management sys-
tem they use. We achieved this by the Gropius Browser Extension concept that
seamlessly integrates various issue management systems via the Gropius back-
end. Our prototype has shown that the concept can be practically realized while
the conducted expert interviews in the evaluation confirm the relevance of the
approach. The main advantages of the approach are the reduction of developers’
context switches and the avoidance of a separate tool in the development pro-
cess to manage issues in different management systems. In future work, we will
extend our prototype for all common issue management systems, such as Jira.

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-oriented
Programming. Pearson Education (2002)

2. Nygard, M.: Release It!: Design and Deploy Production-Ready Software. Pragmatic
Bookshelf (2007)

3. Mahmood, S., Niazi, M., Hussain, A.: Identifying the challenges for managing
component-based development in global software development: preliminary results.
In: Science and Information Conference (SAI). IEEE 2015, pp. 933–938 (2015)

4. Speth, S.: Semi-automated cross-component issue management and impact analy-
sis. In: Proceedings of 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering, IEEE, pp. 1090–1094 (November 2021)

5. Ramı́rez, F., Mera-Gómez, C., Bahsoon, R., Zhang, Y.: An empirical study on
microservice software development. SESoS/WDES 2021, 16–23 (2021)

6. Speth, Sandro, Breitenbücher, Uwe, Becker, Steffen: Gropius — a tool for managing
cross-component issues. In: Muccini, Henry, Avgeriou, Paris, Buhnova, Barbora,
Camara, Javier, Caporuscio, Mauro, Franzago, Mirco, Koziolek, Anne, Scandurra,
Patrizia, Trubiani, Catia, Weyns, Danny, Zdun, Uwe (eds.) ECSA 2020. CCIS,
vol. 1269, pp. 82–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59155-7 7

7. Speth, S., Becker, S., Breitenbücher, U.: Cross-component issue metamodel and
modelling language. In: Proceedings of the 11th International Conference on Cloud
Computing and Services Science, SciTePress, pp. 304–311 (May 2021)

8. Bertram, D., Voida, A., Greenberg, S., Walker, R.: Communication, collaboration,
and bugs: the social nature of issue tracking in small, collocated teams. In: Pro-
ceedings of the 2010 ACM Conference on Computer Supported Cooperative Work,
pp. 291–300 (2010)

9. Sandusky, R.J., Gasser, L.: Negotiation and the Coordination of Information and
Activity in Distributed Software Problem Management. In: Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work, ACM, pp.
187–196 (2005)

10. Bettenburg, N., et al.: What makes a good bug report? In: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
SIGSOFT 2008/FSE-16, pp. 308–318. ACM (2008)

https://doi.org/10.1007/978-3-030-59155-7_7
https://doi.org/10.1007/978-3-030-59155-7_7


Integrating IMSs of Independently Developed Software Components 19

11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Emp. Softw. Eng. 14(2), 131–164 (2008)

12. Speth, S., Krieger, N., Breitenbücher, U., Becker, S.: Gropius-VSC: IDE support
for cross-component issue management. In: Companion Proceedings of the 15th
European Conference on Software Architecture, CEUR (October 2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Integrating Issue Management Systems of Independently Developed Software Components
	1 Introduction
	2 Fundamentals of Issue Management and Gropius
	3 The Gropius Browser Extension Concept
	3.1 General Idea and Objectives
	3.2 Overview and Architecture of the GBE
	3.3 Gropius Features Integrated in the Browser Extension

	4 Prototypical Validation
	4.1 Technical Design of the Gropius Browser Extension for Chrome
	4.2 Implementation for GitHub and Case Study

	5 Evaluation
	5.1 Results of the Expert Survey
	5.2 Summary of the Evaluation and Threats to Validity

	6 Related Work
	7 Conclusion
	References




