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Abstract: Salivary gland tumors (SGTs) are a relevant, highly diverse subgroup of head and neck
tumors whose entity determination can be difficult. Confocal Raman imaging in combination with
multivariate data analysis may possibly support their correct classification. For the analysis of the
translational potential of Raman imaging in SGT determination, a multi-stage evaluation process
is necessary. By measuring a sample set of Warthin tumor, pleomorphic adenoma and non-tumor
salivary gland tissue, Raman data were obtained and a thorough Raman band analysis was performed.
This evaluation revealed highly overlapping Raman patterns with only minor spectral differences.
Consequently, a principal component analysis (PCA) was calculated and further combined with a
discriminant analysis (DA) to enable the best possible distinction. The PCA-DA model was character-
ized by accuracy, sensitivity, selectivity and precision values above 90% and validated by predicting
model-unknown Raman spectra, of which 93% were classified correctly. Thus, we state our PCA-DA
to be suitable for parotid tumor and non-salivary salivary gland tissue discrimination and prediction.
For evaluation of the translational potential, further validation steps are necessary.

Keywords: salivary gland tumor; confocal Raman imaging; principal component analysis; discrimi-
nant analysis; multivariate data analysis; molecular diagnostics

1. Introduction

Salivary gland tumors (SGTs) are a sub-group of head and neck tumors and account for
3% to 6% of all head and neck neoplasms [1,2]. Most SGTs are of benign nature, representing
approx. 80% of all incidences [3,4]. More than thirty different malignant and benign SGTs
are known according to the 2017 WHO classification, of which the two main benign tumors
are the cystadenolymphoma (Warthin tumor) and pleomorphic adenoma [5]. Due to the
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high variety in tumor entities, a reliable diagnosis only based on histo- or cytomorphological
criteria is difficult and sometimes impossible [6]. As a result, pre- and intraoperative malig-
nancy assessment based on fine-needle aspiration cytology, core needle biopsy and open
biopsy is sometimes unreliable [7–9]. However, reliable malignancy assignment is necessary
to avoid revision surgery [10]. The cytological methods frequently used preoperatively and
also intraoperative histopathological diagnostics highly depend on the experience of the
pathologist and may occasionally be subject to uncertainties, even in the case of experienced
diagnosticians [6].

In addition to standard cyto- and histopathologic approaches, spectroscopic methods
in combination with multivariate data analysis (MVA) are finding increasing acceptance
to support tumor diagnostic methodologies [11–17]. By applying different spectroscopy
principles, either chemical or morphological signatures are obtained, which reveal tissue-
related features and are thus highly tissue-specific. Due to improvements in spatial reso-
lution and scanning speed, spectroscopic imaging became increasingly popular for data
acquisition [18–20]. Consequently, large imaging data sets with a high spatial and spec-
tral resolution are obtained [21,22]. The linkage with MVA techniques, such as principal
component analysis (PCA), allows the extraction of the most relevant spectral charac-
teristics from the imaging data and to distinguish the samples based on the previously
extracted attributes [23,24]. A combination of PCA with discriminant analysis (DA) ad-
ditionally describes the distinction in a quantitative manner and enables a prediction of
non-included spectra or samples. Typical imaging methods applied for tumor diagnosis are
Fourier-transform infrared spectroscopy [25], fluorescence [26] and Raman imaging [27],
which are mainly associated with statistical tools, such as PCA, DA, support vector ma-
chine, the k-nearest neighbor algorithm or artificial neural network analysis [25,28–30].
The spectroscopy-based models are used for the identification or distinction of brain [31],
colon [32], breast [33] or head and neck tumors [34,35].

First spectroscopic attempts of parotid tumor identification were performed using
Raman spectroscopy coupled with support vector machine [36,37]. Further studies focused
on identifying differences in lipid composition and changes in secondary protein structure
between cancerous and non-cancerous salivary gland tissue using Raman imaging [38]. Our
group just recently published a study employing Raman spectroscopy and PCA analysis to
enable a differentiation between benign pleomorphic adenoma and low-malignant adenoid
cystic carcinomas [39]. Although primary efforts in differentiating SGTs were achieved, no
study on deploying spectral differences has been published yet to implement a Raman-MVA
model as diagnostic adjunct and review its functionality.

To evaluate the translational potential of Raman imaging (RI) for the overarching
objective to use RI for supporting SGT entity and malignancy determination, probably
a multi-stage data analysis process will be necessary. Due to the high number of tumor
entities of SGTs, a multi-stage process with identification of the spectra that were acquired
in the tumor tissue and exclusion of all spectra that were acquired in the non-tumor salivary
gland tissue could help to enhance the statistical accuracy. Therefore, our study deals with
the implementation of a PCA-DA model using Raman imaging data of normal salivary
gland tissue, Warthin tumor and pleomorphic adenoma to differentiate between the tissue
types and predict unknown parotid samples. Relevant tissue regions of unstained parotid
cross-sections are chosen based on a hematoxylin and eosin (HE) assessment and measured
using Raman imaging. The obtained imaging data are initially analyzed via a detailed
Raman band evaluation. Afterwards, a PCA is computed to achieve the best possible tissue
type separation due to tissue-specific information and combined with a DA to enable the
classification of model-unknown Raman spectra. By applying the final PCA-DA, new tissue
areas of interest are tested and classified in a proof-of-principle concept. The assignments are
validated by a corresponding HE diagnosis to confirm whether the PCA-DA predictions are
correct. Final model classification abilities are expressed by the overall accuracy, sensitivity,
specificity and precision. As a result of a successful PCA-DA implementation, its utilization
as diagnostic assistance in the clinical routine might be possible.
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2. Materials and Methods
2.1. Patient Selection and Parotid Tissue Sample Preparation

This study was approved by the institutional ethics committee on human research
of the Julius-Maximilians-University Würzburg (vote 224/18). All experiments were per-
formed according to the Declaration of Helsinki. All patients agreed to participate in this
study through informed consent.

Patients with a salivary gland tumor (parotid tumor) were preoperatively screened,
and respective tissue specimens were selected. Suitable tissue samples had to consist of
either Warthin tumor (n = 5) or pleomorphic adenoma (n = 4) and non-tumor salivary gland
tissue (n = 9) in order to be included in the final sample set. All tissues were identified by a
trained pathologist.

Tissue specimens were initially cut into smaller tissue pieces, which were arranged
to display tumor and non-tumor salivary gland tissue. Afterwards, the tissue pieces were
frozen in this arrangement and a series of 10 µm thick consecutive cryosections was pre-
pared. Parotid cryosections were placed onto quartz objective slides (Suprasil® 1, Aachener
Quarzglas-Technologie Heinrich GmbH & Co. KG, Aachen, Germany) and subsequently
fixed with a 4% paraformaldehyde solution (ROTI®Histofix 4%, Carl Roth, Karlsruhe,
Germany) for 30 min. Following cross-section fixation, three washing steps with phos-
phate buffered saline were performed, and the samples were dried overnight at ambient
temperature. These unstained sections were used for Raman imaging.

A detailed histopathological evaluation was applied based on corresponding 3 µm
thick HE-stained cross-sections. The HE staining was performed according to a standard-
ized protocol. HE cross-sections were analyzed and imaged using the BZ-9000 BIOREVO
System (Keyence, Neu-Isenburg, Germany). Whole slide images were scanned at 40×
using a slide scanner, Panoramic SCAN II (3DHISTECH, Budapest, Hungary).

2.2. Confocal Raman Imaging

Raman data acquisition was performed with a confocal microscopic setup (Alpha
300 RA&S, WITec, Ulm, Germany) according to the summarized measurement and data
extraction workflow illustrated in Figure 1.

A confocal microscope system, equipped with a lens-based spectrometer (UHTS 300,
WITec, Ulm, Germany) and a CCD camera (DU970, Andor Technology, Belfast, UK), was
used for Raman imaging [40]. Excitation was performed with a 532 nm frequency-doubled
Nd:YAG laser transmitted via a single-mode fiber onto the tissue cross-sections. The inelas-
tically scattered light was collected with a 20× objective (EC Epiplan, 20×/0.4, Carl Zeiss
AG, Oberkochen, Germany) and transferred to the spectrometer and CCD camera (EMCCD,
16 Bit, 1600 × 200 pixel, 16 µm × 16 µm, thermoelectrically cooled: −60 ◦C) via a 100 µm
core diameter multimode fiber. Each Raman image encompassed a size of 20 µm × 20 µm
and was acquired with a scan step size of 1 µm and a scan speed of 30 s/line. Thus, 20 × 20
spectra within the image were recorded with an integration time of 1.5 s per spectrum,
resulting in a total number of 400 Raman spectra per tissue area. The Raman shift was
recorded from 50 cm−1 to 3670 cm−1 with a 600 g/mm (blaze wavelength (BLZ) = 500 nm)
grating and centering the spectrometer at 2000 cm−1. The spectral resolution of the optical
system was 2 cm−1 [41]. Overall, three tumorous areas (Warthin tumor or pleomorphic
adenoma) and three salivary gland areas per tissue sample and patient were selected for
Raman imaging. Following image acquisition, Raman spectra were subtracted from the
quartz background and treated with a baseline fluorescence correction (shape: 100) and a
cosmic ray correction (filter size: 2, dynamic factor: 8).

2.3. Data Pre-Treatment and Multivariate Data Analysis

MVA was performed with The Unscrambler X 10.5 (Camo Analytics AS, Oslo, Nor-
way). All model-included Raman mean spectra were preprocessed equally by applying
a standard normal variate transformation followed by a Savitzky–Golay smoothed 1st
order derivative (2nd polynomial order, symmetrical 41 points). The spectral area of
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900–1750 cm−1 was used for MVA calculations, while additional spectrum ranges (50 cm−1

to 900 cm−1, 1750 cm−1 to 3670 cm−1) without relevant information were excluded for vari-
able reduction. The PCA was calculated with mean centering, a full cross-validation and
the singular value decomposition algorithm to distinguish between the different parotid
tissue types. Model outliers were identified in the influence plot hotelling’s T2 versus
F-residuals (outlier limits 5% each) and excluded from the model if proven to be true.
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Figure 1. Schematic acquisition workflow for Raman imaging of parotid tissue cross-sections and
data extraction. Raman images were recorded with the WITec Alpha 300 RA&S using a 532 nm
frequency-doubled Nd:YAG laser for excitation purposes (a). Initially, a suitable tissue region was
chosen in an overview brightfield image, which was in accordance with the corresponding HE
evaluation ((b), *** marks the sample). In this overview image, a 20 µm × 20 µm tissue area of interest
((b,c), yellow box) was determined and Raman imaged in a stepwise manner. The obtained Raman
image (d) is composed of single Raman spectra (1–6) located at distinct x,y-positions. Raman spectra
were extracted individually for PCA-DA model formation (e).

PCA was combined with DA by using the Mahalanobis distance algorithm and PCA
score values. The number of deployed principal components (PCs) for the DA was similar
to the shown PCA model. In total, 5 PCs were applied for calculating the DA. The overall
accuracy, sensitivity, specificity and precision of the PCA-DA model were additionally
calculated based on the confusion matrix terminology [42,43].

3. Results
3.1. Raman Mean Spectra Analysis

To reveal significant spectral differences, Raman mean spectra for normal salivary
gland, Warthin tumor and pleomorphic adenoma tissues were compared and calculated by
averaging all respective Raman spectra to one overall mean spectrum including the corre-
sponding 95% confidence interval, illustrated in Figure 2. Potential differences between
the spectra can be a varying number of Raman bands, a changing relation between bands
or different intensities or variations in shape. From 500 cm−1 to 3500 cm−1 (Figure 2a), no
clear spectral variations are distinguishable. Two major bands at 746 cm−1 and 2927 cm−1

correspond to a ring breathing of DNA/RNA bases and to CH/CH3 vibrations of lipids
and proteins, respectively, and are identical in each spectrum. A detailed band analysis in
the range of 900–1700 cm−1 was performed, and main spectral differences were highlighted
(Figure 2b, (1)–(14)). A superimposed illustration of this range is shown in Figure S1, Sup-
plementary information and a summary of all Raman signal assignments is presented in
Table 1.
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Figure 2. Overall Raman mean spectra with corresponding 95% confidence intervals (light colors)
of normal salivary gland tissue (green), Warthin tumor (blue) and pleomorphic adenoma (red),
illustrated in a Raman shift region of 500–3500 cm−1 (a). Main spectral differences were noticed
between 900 and 1700 cm−1, which was analyzed in more detail (b). In this region, distinct Raman
band assignments were performed (1–14). The spectra are vertically displayed. Corresponding
molecular vibrations and causes are comprehensively listed in Table 1.

Table 1. Raman band assignments for non-tumor salivary gland tissue, Warthin tumor, pleomorphic
adenoma. Column 1 indicates the number assigned to the corresponding Raman band in the overall
mean spectra (Figure 2b). Column 2 reveals the distinct relative shift (cm−1) of each Raman band
identified in the mean spectra. The molecular vibration (column 3) resulting from specific molecules
(column 4) within the tissues are listed. In column 5, all references of the Raman band assignments
are summarized.

Number Raman Shift/cm−1 Assignment Cause Reference [44]

(1) 915; 920 -; C-C stretch Ribose RNA; collagen [45,46]

(2) 1043 ring stretching Collagen proline [46]

(3) 1158; 1168 C-N stretching; ν(C=C); ν(C-C) Proteins/lipids [47,48]

(4) 1197; 1204 Antisymmetric phosphate vibrations;
amide III, CH2 wagging vibrations Glycine backbone or proline side chains [48,49]

(5) 1222; 1228 C-N stretching and N-H bending,
thymine, adenine stretch Amide III, proteins, DNA/RNA [47,50]

(6) 1304 CH2/CH3 deformation, twisting or bending Lipids, collagen [46,51]

(7) 1337 CH2/CH3 wagging, twisting
and/or bending mode Collagens, lipids, amide III (proteins) [45,48,52]

(8) 1360 - Tryptophan [44]

(9) 1396 - β-carotene [44]

(10) 1443; 1454 CH2 deformation; CH2 stretching/CH3
asymmetric deformation

Lipids, proteins, triglycerides (fatty
acids); elastin, collagen, phospholipids [51,53–55]

(11) 1517 C-C stretch mode β-Carotene accumulation [53]

(12) 1585 C=C olefinic stretch Proteins [54,56]

(13) 1628; 1640 Cα=Cα stretch; - Proteins; amide I (proteins) [44,57]

(14) 1654 C-C stretch, C=O stretching mode Amide I (proteins), collagen, lipids [46,48,51]

At 915 cm−1, one distinct weak Raman band (1) occurs for normal salivary gland
tissue, which is less pronounced or even absent for both parotid tumors (Figure 2b), and
can be assigned to vibrations of ribose RNA (Table 1). Instead, pleomorphic adenoma tissue
reveals a band at 920 cm−1 that can be ascribed to a C-C stretching of collagen proline,
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which is also visible in the Warthin tumor, but far less distinctive. A further spectral band at
1043 cm−1 (2) is clearly illustrated for the salivary gland tissue, but missing for both tumors
that can also be assigned to collagen proline (Figure 2b, Table 1). Varying intensity relations
can be observed for two bands at 1158 cm−1 and 1168 cm−1 (3). In case of salivary gland
tissue, the band at 1158 cm−1 is more highlighted than the second band at 1168 cm−1, which
is opposite for the Warthin tumor and pleomorphic adenoma tissues. Both Raman bands
can mainly be deduced from C-N and C-C stretching vibrations of proteins and C-C/C=C
lipid oscillations (Table 1). While salivary gland and pleomorphic adenoma tissues exhibit a
Raman band at 1197 cm−1 (4), the Warthin tumor exposes a slightly shifted band maximum
at 1204 cm−1 (4, Figure 2b). The bands can either be allocated to antisymmetric phosphate
(1197 cm−1) or amide III and CH2 wagging vibrations (1204 cm−1) of glycine backbone or
proline side chains (Table 1). Changes in band intensity, shape and position between the
tissue types are indicated for the 1222 cm−1 band (5). It is most intense for salivary gland
tissue, but varies in intensity and shape for Warthin tumor tissue and is even slightly shifted
for pleomorphic adenoma tissue (1228 cm−1) (Figure 2b). The two signals (1222 cm−1 and
1228 cm−1) are mainly assignable to amide III vibrations of proteins and thymine/adenine
stretching of DNA/RNA (Table 1). Between 1300 and 1400 cm−1, a series of distinct
Raman bands (6–9) occurs in all three Raman mean spectra with pronounced shoulders or
double maxima mainly for Warthin tumor tissue (6–8), but also for salivary gland (9) and
pleomorphic adenoma (8) tissues, respectively. Reasons for the occurrence of these Raman
bands are oscillations of lipids, collagens, proteins, tryptophan and β-carotene within the
respective tissues (Table 1). Additional differences in intensity relations emerge between
two Raman band maxima at 1443 cm−1 and 1454 cm−1 (10), which reveal a slightly more
emphasized first maximum at 1443 cm−1 in the salivary gland and Warthin tumor spectra
compared to the second band at 1454 cm−1. In contrast, pleomorphic adenoma tissue shows
equally dominant Raman bands for both (Figure 2b). The two bands are mainly caused by
the CH2/CH3 stretching of proteins, lipids, triglycerides and collagen (Table 1). A Raman
band at 1517 cm−1 (11) is observed for salivary gland tissue with the highest intensity,
followed by Warthin tumor and pleomorphic adenoma tissues with a decreasing peak
appearance. This band is ascribable to the C-C stretching mode of β-carotene (Table 1). The
Raman band at 1585 cm−1 (12) solely exhibits an additional shoulder in the Warthin tumor
spectrum, which is missing in the salivary gland and pleomorphic adenoma spectra and
corresponds to a C=C olefinic stretching of proteins (Table 1). Signature differences between
the parotid tissues can further be attributed to Raman bands at 1628 cm−1/1640 cm−1 (13)
and 1654 cm−1 (14), which mainly result from the Cα=Cα, C-C and C=O stretching modes
of proteins, collagen and lipids (Table 1). Aside from these few spectral differences (1)–(14),
the Raman patterns are highly similar and overlapping, with small signatures that can
hardly be assigned to distinct vibrational modes. Therefore, a PCA evaluation is inevitable
to extract minor pattern variations as a result of the high spectral similarity.

3.2. Raman Data Analysis via PCA-DA

Due to there being only minor Raman band differences in the overall mean spectra,
an improved discrimination of all three tissue types is needed. This was accomplished
by a PCA calculation. As a PCA allows the extraction of the most relevant and differing
chemical information of the Raman spectra, a precise distinction of the tissue types is
enabled. For this purpose, three tumorous areas (Warthin tumor or pleomorphic adenoma)
and three non-tumor salivary gland tissue areas were selected for Raman image acquisition,
which resulted in 6 × 400 Raman spectra (2400 spectra) for each patient. Consequently,
9 × 6 × 400 Raman spectra (21,600 spectra) were measured overall. Mean spectra were
formed by averaging 100 adjacent, processed spectra, which yielded four spectra per tissue
area. Therefore, a total number of 216 Raman mean spectra (48 pleomorphic adenoma,
60 Warthin tumor and 108 salivary gland tissue) were used to generate the PCA model.
The final PCA is illustrated in Figure 3. Different perspectives of the 3D PCA scores plot
are shown in Figure S2, Supplementary information. Since the most dominant changes
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were previously identified within 900–1750 cm−1, PCA was performed only on the basis of
this region.
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purpose, histopathologically distinct regions of non-tumor salivary gland tissue (Figure 
4, 1–5, light blue squares) and tumor tissue (Figure 4, 1–5, black squares) were previously 
defined as suitable prediction regions on HE sections (Figure 4, 1). These HE regions were 

Figure 3. PCA model for the differentiation of salivary gland, Warthin tumor and pleomorphic
adenoma. The 3D scores plot is illustrated in (a), displaying PC1 (40%), PC2 (18%) and PC5 (4%). A
successful separation of salivary gland (green circles), Warthin tumor (blue triangles) and pleomorphic
adenoma (red squares) clusters is achieved with only minor group overlaps in the center. The
corresponding loading plots are shown in (b), revealing the main influencing Raman shift of PC1,
PC2 and PC5 for the group segregation. To demonstrate the clear differentiation between parotid
tissue clusters by the PCA model, various perspectives on the 3D scores plot are shown in Figure
S2. Additional 2D scores and respective loading plots of all model-included PCs are summarized in
Figure S3, Supplementary information.

The PCA model encompasses a total number of five PCs to distinguish between the
different parotid gland tumors and the parotid gland tissues and reaches a total explained
variance of 77%, considering PC1–PC5. The number of PCs was chosen based on the
explained variance and the interpretable information on loadings [58–60]. The aim was
to create a PCA-DA model with as few PCs as possible for a reliable prediction of the
parotid tissue types. Information about the relation of the calibration and validation PCA
is given in Figure S4, Supplementary information. Within the 3D scores plot (Figure 3a),
PC1, PC2 and PC5 are presented, explaining 40%, 18% and 4% of the explained variance,
respectively. The separation of the Warthin tumor cluster (blue triangles) has already
been realized by PC1 and PC2. Here, the Warthin cluster is arranged almost completely
below-average for PC1 and above-average for PC2. Additionally, PC1 and PC2 cause a
group splitting of the salivary gland (green circles) and pleomorphic adenoma (red squares)
cluster into mixed tissue type groups, respectively. Here, salivary gland and pleomorphic
adenoma are randomly organized into above and below the average of PC1 and PC2, with
no apparent cluster formation. This is more clearly shown in the 2D scores plot illustration
in Figure S2, Supplementary information. Therefore, PC5 is required to clearly demarcate
between salivary gland and pleomorphic adenoma spectra. Within the PC2/PC5 plane, the
salivary gland cluster is completely structured below-average, whereas the pleomorphic
adenoma group is organized above-average in terms of PC5 (Figure 3a). The Warthin
group, however, is arranged above-average for PC2 and almost completely below-average
for PC5 within this setting. As a result, a clear group separation between Warthin tumor,
pleomorphic adenoma and salivary gland spectra is achieved, with only minor cluster
overlaps at the center (Figure 3a). Although PC3 and PC4 explain 15% of the model
variance, this represented information does not contribute to the tissue type differentiation.
An overview of the complete PCA model including all PCs (PC1–PC5), as well as related
2D scores and loading plots, is represented in Figure S3, Supplementary information.
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In Figure 3b, the corresponding loading plots of PC1, PC2 and PC5 are illustrated. The
loadings plots display the highest spectral influence on the tissue type separation in the 3D
scores plot. Some of the main influencing maxima can even be referred to Raman bands
assigned in Figure 2. Negative maxima at 1164 cm−1 (3, Figure 2, Table 1) and 1530 cm−1

in the PC1 loadings have a major impact on the tissue separation (Figure 3b). Further
influencing maxima can be defined at 1596 cm−1 and 1643 cm−1 (13, Figure 2, Table 1)
according to the PC1 loadings. The PC2 loadings plot shows the most dominating impact
between 1440 and 1680 cm−1 with main positive maxima at 1440 cm−1 (10, Figure 2, Table 1)
and 1643 cm−1 (13, Figure 2, Table 1) and negative maxima at 1467 cm−1 and 1680 cm−1

(Figure 3b). Within the PC5 loadings, a few pronounced positive maxima can be determined
at 1450 cm−1 (10, Figure 2, Table 1) and 1546 cm−1 as well as negative ones at 1285 cm−1

and 1384 cm−1.
Based on the formed PCA model, a DA was subsequently calculated by using the

PCA score values of PC1 to PC5 and the Mahalanobis distance algorithm. The PCA-DA’s
performance is evaluated using an internal validation process. For this purpose, each model-
included spectrum was allocated to one tissue cluster as if it was not contained in the model.
As a result, a confusion matrix is obtained (Table S1, Supplementary information), which
describes the accordance of the model’s assignments and the pathologist’s diagnosis and
is used to compute the model’s accuracy, sensitivity, specificity and precision (Table 2).
Salivary gland model spectra were most accurately assigned with 97% accuracy, whereas
Warthin tumor spectra resulted in 91% correctly matched spectra. Pleomorphic adenoma
is still allocated correctly with 89% accuracy. Due to the excellent group assignment of
the model spectra, high performance parameters of 94% accuracy, 94% sensitivity, 95%
specificity and 94% precision were accomplished (Table 2).

Table 2. Model performance parameters for the tissue entity distinction. All model-included Raman
mean spectra (column 2) were ascribed to one tissue group in order to validate the PCA-DA. The total
and relative (%) number of correctly assigned model spectra are listed in columns 3 and 4. Overall
accuracy, sensitivity, specificity and precision of the model are summarized in columns 5–8.

Entity Total
Spectra

Correctly
Assigned

Correctly
Assigned/%

Accuracy
/%

Sensitivity
/%

Specificity
/%

Precision
/%

Salivary gland tissue 94 91 97
94 94 95 94Pleomorphic adenoma 35 31 89

Warthin tumor 47 43 91

The PCA-DA was finally used to predict model-unknown Raman mean spectra of all
investigated parotid tissues in order to verify the model’s classification abilities. For this
purpose, histopathologically distinct regions of non-tumor salivary gland tissue (Figure 4,
1–5, light blue squares) and tumor tissue (Figure 4, 1–5, black squares) were previously
defined as suitable prediction regions on HE sections (Figure 4, 1). These HE regions
were afterwards identified on the consecutive, unstained cross-section used for Raman
imaging (Figure 4, 2; 1–5, light blue and black squares). After Raman image acquisition,
mean spectra of the tissues were again calculated by processing and averaging 100 adjacent
Raman spectra (Figure 4, 3 and 4). This second group of 15 Raman mean spectra (5 per entity;
1500 spectra) was predicted by the final PCA-DA model and evaluated whether they were
classified falsely (red cross) or correctly (green check mark) (Figure 4, 5). This corresponded
to an external model validation. The model prediction outcome was finally corroborated
by the initial HE diagnosis, which allowed a final assessment of the PCA-DA. Typical HE
sections of a pleomorphic adenoma (Figure 4f) and a Warthin tumor (Figure 4g) with a
magnification of 4× are shown in detail to compare the different morphological features.
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Figure 4. Schematic description of the external PCA-DA validation. At first, histopathologically
appropriate tissue regions were defined on the HE-stained cross-sections (1–5 tumor tissue, 1–5
salivary gland tissue in (a)). Afterwards, these regions were identified on the corresponding unstained
cross-sections used for Raman imaging (1–5 tumor tissue, 1–5 salivary gland tissue in (b)). Raman
images (c) and resulting Raman mean spectra (d) were acquired and calculated to be predicted by
the PCA-DA model. The tested Raman mean spectra are either correctly (3) or falsely (5) classified
by the model (e), which is evaluated by the initial HE diagnosis in step (a). Examples for the typical
histomorphology of (f) a pleomorphic adenoma and (g) a Warthin tumor with adjacent healthy
salivary gland tissue.

The classification results of unknown Raman mean spectra by the PCA-DA model are
summarized in Table 3. Almost all Raman mean spectra were assigned to the correct tissue
type, except for one pleomorphic adenoma spectrum, which was classified as salivary
gland tissue.

Table 3. Prediction outcome of model-unknown Raman mean spectra. Five Raman mean spectra
for salivary gland, Warthin tumor and pleomorphic adenoma (column 1 and 2) tissues were clas-
sified, respectively, by the PCA-DA model (column 3) and compared with the initial HE diagnosis
(column 4). Correctly predicted Raman mean spectra are indicated in green and bold, whereas wrong
classifications are depicted in red and regular font.

Entity Prediction Spectra Model Classified as HE Diagnosed as

Salivary
gland tissue

1 Salivary gland tissue Salivary gland tissue

2 Salivary gland tissue Salivary gland tissue

3 Salivary gland tissue Salivary gland tissue

4 Salivary gland tissue Salivary gland tissue

5 Salivary gland tissue Salivary gland tissue
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Table 3. Cont.

Entity Prediction Spectra Model Classified as HE Diagnosed as

Pleomorphic
adenoma

1 Pleomorphic adenoma Pleomorphic adenoma

2 Pleomorphic adenoma Pleomorphic adenoma

3 Pleomorphic adenoma Salivary gland tissue

4 Pleomorphic adenoma Pleomorphic adenoma

5 Pleomorphic adenoma Pleomorphic adenoma

Warthin tumor

1 Warthin tumor Warthin tumor

2 Warthin tumor Warthin tumor

3 Warthin tumor Warthin tumor

4 Warthin tumor Warthin tumor

5 Warthin tumor Warthin tumor

4. Discussion

Accurate classification of salivary gland tumors can be difficult but is clinically very
important. Therefore, new approaches that can support a correct diagnosis are of great
interest. Thus, we focused on Raman spectroscopic imaging combined with MVA to create
a valid and robust PCA-DA model for the differentiation of salivary gland, Warthin tumor
and pleomorphic adenoma tissues.

A comparison of Raman mean spectra in the range of 900–1700 cm−1 enabled us
to reveal individual spectral patterns and thus spectral changes between the different
tissue types (Figure 2b, Table 1). Throughout the investigated Raman shift, most of the
identified Raman bands match between the tissue types with only a few distinct band
differences (1)–(14), (Figure 2b). Most of these differences allow the discrimination of non-
tumor salivary gland tissue from parotid gland tumors. This is expressed by several bands
or band relations, which are different for normal salivary gland tissue than for both tumors.
A distinctly appearing band (1) for the salivary gland tissue, which is less pronounced or
shifted within the tumor spectra, indicates variations in RNA. Comparably, band (5) also
implies changes in DNA/RNA between the tissue types. DNA/RNA differences can be
correlated to the abundance of DNA/RNA in tumors due to an intensified proliferation
and metabolic activity of cancer cells [61,62]. Aside from DNA/RNA related differences,
mainly protein and lipid associated vibrations (3)–(5) allow a demarcation of non-tumor
salivary gland tissue from Warthin tumor and pleomorphic adenoma (Figure 2b). This can
be attributed to a dysregulated synthesis of certain lipids and proteins, often enhanced
in tumors [63,64]. Additionally, characteristic tumor signal relations are observed at (3),
(10), (13) for Warthin tumor and pleomorphic adenoma that are also related to triglyceride,
lipid and protein variations and help to discriminate between tumor and non-tumor
tissue. These band relations additionally enable distinguishing between the tumor entities
themselves, as shown, e.g., for (13). This is assumed to result from the individual protein
or lipid expression levels of both tumors [65]. Furthermore, the triglyceride indication
can be ascribed to a high endogenous synthesis of fatty acids, which is estimated to be
linked to the high degree of tumor cell proliferation [66]. Further bands, e.g., (1; 920 cm−1),
(2), (10), (14), enable differentiating salivary gland tissue from parotid tumors (Figure 2b),
which are expected to correlate with collagen vibrations of the tumor’s extracellular matrix.
Collagen was proven to be increasingly accumulated and expressed in tumorous tissue
and thus contribute to tumor progression, invasion and metastasis [67,68]. As a result, the
abundance, type and composition of collagen might be different in the three tissue types,
which also allows the distinction of the parotid tumors.

Although spectral differences are already indicated by the band allocations, the small-
est changes that contribute to a clear parotid differentiation might not be assignable or
might even be missed. To identify these, a PCA analysis between 900 and 1750 cm−1 was
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performed (Figure 3). The final tissue type separation was achieved by PC1, PC2 and PC5
and can be deduced from the corresponding loading plots (Figure 3b). The main loading
maxima allow spectral regions or bands with the highest impact on the tissue demarcation
to be identified. As the Warthin tumor is almost fully separated by PC1 and PC2, the
main influences in both loadings are assumed to affect this segregation. Within the PC1
loadings, maxima at 1164 cm−1 (3, Figure 2, Table 1), 1530 cm−1, 1596 cm−1 and 1643 cm−1

(13, Figure 2, Table 1) are identified to have a major impact on the Warthin cluster position.
The impact at 1164 cm−1 is associated with a tyrosine variation in the tissues that mainly
causes a separation of Warthin tumor tissue from pleomorphic adenoma. Tyrosine was
found to be accumulated as crystals in pleomorphic adenoma, assumed to result from a
disordered protein synthesis [69]. This seems not to be the case for other parotid tumors,
such as the Warthin tumor, which explains the discrimination of both tumor entities at
1164 cm−1 (3, Figure 2, Table 1) and also the differentiation from salivary gland tissue.
Another PC1 loading maximum corresponds to 1530 cm−1, which can be correlated to a
carotenoid vibration. Carotenoids were mainly shown to suppress tumor metastasis or
progression, but were also suggested to promote tumor invasion by actively interfering
into various signal pathways [70]. Variations in carotenoids in Warthin tumor tissue might
thus result in a differently up- or downregulated gene expression, which affects changes
in molecular mechanisms and tissue composition. As a consequence, the Warthin tumor
group is more distinguishable from salivary gland and pleomorphic adenoma tissues on
PC1. Furthermore, the influence of PC1 loadings at 1596 cm−1 and 1643 cm−1 (13, Figure 2,
Table 1) are mostly ascribable to amide III oscillations of proteins and lipids that were
previously discussed to be highly abundant in tumors as a result of protein and lipid
dysregulation [63,64]. Consequently, this contributes to a segregation of the tumors from
non-tumor salivary gland tissue. A high concentration of unsaturated triacylglycerol in
healthy salivary gland tissue and a high protein concentration in SGT tissue were observed
by Paluszkiewicz et al. [6].

PC2 is additionally needed to achieve a complete separation of the Warthin tumor
group. Here, the loading at 1440 cm−1 (10, Figure 2, Table 1) enables a separation of
Warthin tumor and pleomorphic adenoma from salivary gland tissue and is tentatively
assigned to a cholesterol vibration. This can be explained by an increased cholesterol
concentration in tumors, especially in proliferating cancer cells [71], which was shown for
numerous cancers [71,72]. Particularly in Warthin tumors, the cystic structures contain cell
debris and cholesterol crystals, which further supports the cholesterol-based explanation.
Another explanation for the 1440 cm−1 band derives from a varying lipid composition or
concentration in Warthin tumor tissue, as it is a characteristic vibration for lipids [73,74].
This might be corroborated by the fact that further cholesterol bands, such as 701 cm−1

and 1087 cm−1, are less pronounced in the Raman spectra. Additional PC2 loadings at
1467 cm−1, 1643 cm−1 (13, Figure 2, Table 1) and 1680 cm−1 again indicate a high impact of
proteins and lipids on the separation of the Warthin tumor cluster, which implies a varying
protein and lipid composition for Warthin tumors.

PC5, however, was required to enable a complete distinction between pleomorphic
adenoma and normal salivary gland tissue. The most influencing PC5 loading maxima
are shown at 1285 cm−1, 1384 cm−1, 1450 cm−1 (10, Figure 2, Table 1) and 1546 cm−1.
The PC5 loading at 1285 cm−1 points to the impact of collagen on the distinction between
pleomorphic adenoma and salivary gland tissue. This again confirms that tumors differ
from normal tissues by their collagen composition, type and abundance, as was already
discussed. Another influence is also assigned to cytosine, which is associated with tumori-
genesis due to cytosine methylation [75]. Compared to that, pronounced PC5 loadings at
1384 cm−1 and 1450 cm−1 (10, Figure 2, Table 1) result from CH2/CH3 bending modes that
are at least partly malignant-specific. A further assignment of these loadings is possible due
to the CH2/CH3 modes of biomolecules, including proteins and lipids. Both loading alloca-
tions can be interpreted as an increase in biomass, typically observed for tumors [76], and
are thus highly specific for pleomorphic adenoma. At a PC5 loading value of 1546 cm−1,
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bound/free nicotinamide adenine dinucleotide hydride (NADH) and tryptophan are ex-
pected to additionally trigger the separation of pleomorphic adenoma from salivary gland
tissue. This is reasonable since tumors reveal an increased metabolism that correlates
with a higher NADH and tryptophan demand [62,77]. Furthermore, the ratio of bound to
free NADH differs between normal and tumorous tissue and thus contributes to a better
distinction between non-tumor salivary gland tissue and pleomorphic adenoma [78].

The final PCA-DA model was used to predict model-unknown Raman mean spectra of
the three tissue types and test its classification suitability. Model performance parameters
are all beyond 90% and thus demonstrate the model’s applicability for prediction purposes.
Except for one misclassification of pleomorphic adenoma, all Raman mean spectra were
predicted correctly according to the corresponding HE diagnosis (Table 3). A possible
reason for the failed prediction might be the high tissue heterogeneity of pleomorphic
adenoma, which could hamper its classification by the model. However, all other pleomor-
phic adenoma spectra were distinctly identified by the model and thus suggest that the
PCA-DA covers the variations in tissue heterogeneity. This indicates the high potential of
the PCA-DA model to be a supporting diagnostic tool. Our findings support, that Raman
spectroscopy (RS)-based imaging systems are able to separate non-tumor salivary gland
tissue and salivary gland tumor tissue based on spectroscopic information with a high
accuracy. However, further validation steps are necessary to evaluate whether RS-based
spectroscopy approaches are suitable for salivary gland tumor entity determination. In
the next step, the investigation of a data set with more different tumor entities is planned.
Although a good classification accuracy is achieved, the time-consuming Raman imag-
ing prevents the measurement of a large number of patient samples. Consequently, an
automatization is required to enable a high imaging throughput in the future.

5. Conclusions

This study focused on the identification and differentiation of non-tumor salivary
gland tissue, Warthin tumor and pleomorphic adenoma via Raman imaging combined
with MVA. Representative regions of all three tissue types were Raman-imaged in a point-
scanning manner with an adequate spatial and high spectral resolution. This allowed us
to conduct a thorough Raman band analysis in order to identify differences in the spectra
and understand the biological background. Spectral variations were mainly observed for
RNA/DNA-, lipid-, protein- and collagen-related bands or band relations that primarily
contribute to a discrimination of tumorous and non-tumorous tissues. Due to the high
spectral similarity between the tissues, a subsequent PCA calculation with the Raman data
was necessary to uncover the tissue-specific impact responsible for a distinct differentiation.
This revealed major influences of tyrosine, carotenoids, cholesterol, cytosine, NADH and
tryptophan, aside from proteins and lipids, that allowed for a clear parotid tissue separation
via PCA. These results emphasized the necessity of PCA to extract the hidden information,
not determinable to this extent by a Raman band analysis. By combining the PCA with
a subsequent DA, a reliable PCA-DA model was formed, which achieved an accuracy of
94%, sensitivity of 94%, specificity of 95% and precision of 94%. To verify the model’s
prediction capability, an external proof-of-principle validation of model-unknown Raman
mean spectra was performed. The results revealed an almost completely correct prediction
outcome, except for one false pleomorphic adenoma classification. Possible reasons for
that were ascribed to its pronounced heterogeneity. All prediction results were additionally
confirmed by corresponding HE diagnoses. Consequently, we consider our PCA-DA model
to be a useful supportive means in identifying salivary gland tumor tissue. However
further evaluation steps are necessary for a more in-depth assessment of the translational
potential. In detail, an evaluation of the PCA-DA model with a big dataset containing a
higher number of different salivary gland tumor entities is necessary.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14010092/s1, Figure S1: Superimposed Raman mean
spectra of normal salivary gland, Warthin tumor and pleomorphic adenoma within 900–1700 cm−1;
Figure S2: Different perspectives of the 3D PCA scores plot for distinguishing salivary gland, Warthin
tumor and pleomorphic adenoma; Figure S3: 2D score plots and corresponding loading plots of the
PCA model; Figure S4: 2D score plots of the calibration and validation model and explained variance
/ residual variance of the PCA model; Table S1: Confusion matrix of the final PCA-DA model.
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