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A B S T R A C T

Wave-like differential equations occur in many engineering applications. Here the engineering setup is
embedded into the framework of functional analysis of modern mathematical physics. After an overview, the
L2–Hilbert space approach to free Euler–Bernoulli bending vibrations of a beam in one spatial dimension is
investigated. We analyze in detail the corresponding positive, selfadjoint differential operators of 4-th order
associated to the boundary conditions in statics. A comparison with free string wave swinging is outlined.
1. Introduction, overview

Wave-like differential equations occur in many engineering appli-
cations. In engineering textbooks the solution methods seem to be
very specific to the specially chosen situation, leaving some deeper
mathematical questions unanswered. Nevertheless the methods used
are successful and appropriate for the selected application, leading
to very concrete solutions, analytically and/or for numerical solving
procedures, e.g. Refs. 1–4. In case of beam dynamics four engineering
theories exist: Euler–Bernoulli model, Rayleigh model, shear model and
Timoshenk model. Classically the dynamics of the transversally bending
beam is investigated by eigenfunction expansion.5

Functional analysis is capable to provide general statements for very
general cases, namely predictions on existence and smoothness degrees
of eigenfunctions and solutions (regularity). Furthermore even numer-
ical solutions of partial differential equations can be obtained with
methods from functional analysis as the reproducing kernel Hilbert
space method, see e.g. Refs. 6–8. The mentioned specific engineering
techniques are far from being able to deal with this generality. The
present article aims to bring together computational and theoreti-
cal engineering science with functional analysis as used in modern
mathematical physics. The novelty of our approach is the complete
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incorporation and investigation of free Euler–Bernoulli vibrations in the
general context of Hilbert space operator theory in functional analysis.

In order to be precise let us introduce now, what will be understood
under a wave-like differential equation in Hilbert space language.

Definition 1.1 (Wave-Like Differential Equation). A differential equa-
tion of type 𝑑2𝑢(𝑡)

𝑑𝑡2
= −𝐴𝑢(𝑡) in a Hilbert space  with some positive,

selfadjoint operator 𝐴 is called to be wave-like. A solution of which is a
trajectory R ∋ 𝑡 ↦ 𝑢(𝑡) ∈ , where the variable 𝑡 ∈ R is interpreted as
evolution in time.

In engineering or physical applications, the operators 𝐴 usually
represent differential operators of second or higher order acting in some
L2–Hilbert space of square integrable functions on a region 𝛬 ⊆ R𝑟,
𝑟 ∈ {1, 2, 3}. The primary wave equation concerns Laplace operators
𝐴 = −𝛥, so the notion wave-like is a generalization. To free Euler–
Bernoulli bending vibrations of a beam belong differential operators
𝐴 of 4th order.

We treat first the general Hilbert space solution of wave-like differ-
ential equations, Section 2. In Section 3 the mathematical procedure
for L2–Hilbert space approach is described and some general results
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for related differential operators from the literature are reported. More-
over, a short overview over three wave-like equations is given: primary
wave dynamics, wave decoupling for electromagnetic radiation, and
free bending vibrations of a plate.

In Section 4 we outline in detail the L2–Hilbert space frame for
positive, selfadjoint differential operators 𝐴 of 4th order necessary
for describing the free Euler–Bernoulli bending vibrations of a beam
in the interval (0,𝓁) of length 𝓁 > 0 in terms of wave-like equa-
tions. Intrinsically involved into the domain of definition of such a
differential operator 𝐴 of 4th order is the chosen boundary condition
(support) of the beam. Each 𝐴 is identified as the well known Friedrichs
extension9,10 of the suitable product operator of four differential op-
erators of first order respecting exactly the support of the beam. For
such positive, selfadjoint 𝐴 we prove the existence of a purely discrete
spectrum with help of a Sobolev compact embedding theorem. Two
groups of these operators 𝐴 are distinguished, one group with ana-
lytically solvable eigenequations, and the other group for which only
numerical solutions are possible; that reflects directly some properties
of the mentioned Friedrichs extensions and presents unknown operator
features.

In Section 5 we discuss the difference between free bending vibra-
tions and free string wave swinging for comparable boundary condi-
tions.

The detailed mathematical proofs are given in the last Section 6.
Abbreviating we write IV for initial value(s), IVP for initial value

problem, BV for boundary value(s), IBVP for initial boundary value
problem, PDE for partial differential equation(s), and ONB for orthonor-
mal basis.

Moreover, the natural numbers are without zero, namely N =
{1, 2, 3, 4,…}.

2. Wave-like differential equation in general Hilbert space

Let  be a separable real or complex Hilbert space with inner
(scalar) product ⟨.|.⟩, being anti-linear in the first and linear in the
second variable in the complex case, and with associated norm ‖.‖ =
√

⟨.|.⟩. (Note: In some purely mathematical texts the inner product is
aken linear in the first factor, but linearity in the second factor is
eneral standard in mathematical physics. Also the notion ⟨.|.⟩ for the

scalar product is common in mathematical physics, but in mathematics
one also finds (., .) or (.; .).)

All operators used are linear, so we will not mention this anymore.
Discontinuity of an operator 𝐴 (in the ‖.‖–topology on ) is equivalent
to its unboundedness. For such an unbounded operator 𝐴 its domain of
definition dom(𝐴) cannot be the whole Hilbert space .

For an operator 𝐴 with (norm-) dense domain of definition dom(𝐴) ⊆
, there are the following notions in Hilbert space theory:

(a) 𝐴 is called positive, if ⟨𝜉|𝐴𝜉⟩ ≥ 0 for all 𝜉 ∈ dom(𝐴), denoted as
𝐴 ≥ 0.

(b) The adjoint 𝐴∗ of 𝐴 is defined by (𝜂𝜉 is unique since dom(𝐴) is
dense)

dom(𝐴∗) = {𝜉 ∈  ∣ ∃ 𝜂𝜉 ∈  with ⟨𝜂𝜉 |𝜑⟩ = ⟨𝜉|𝐴𝜑⟩ ∀𝜑 ∈ dom(𝐴)},

𝐴∗𝜉 = 𝜂𝜉 , ∀𝜉 ∈ dom(𝐴∗) . (2.1)

(c) 𝐴 is symmetric, if 𝐴𝜉 = 𝐴∗𝜉 for all 𝜉 ∈ dom(𝐴) ⊆ dom(𝐴∗), denoted
by 𝐴 ⊆ 𝐴∗, that is, if ⟨𝜉|𝐴𝜑⟩ = ⟨𝐴𝜉|𝜑⟩ for all 𝜉, 𝜑 ∈ dom(𝐴).

(d) 𝐴 is called selfadjoint, if 𝐴 = 𝐴∗, i.e. symmetry with dom(𝐴) =
dom(𝐴∗).

Selfadjointness (not only symmetry) of an operator 𝐴 is an im-
ortant property, since only such operators enable spectral calculus,
.g. Refs. 10, 11: Each real- or complex-valued function 𝑓 ∶ 𝜎(𝐴) ∋
↦ 𝑓 (𝑦) ∈ R or ∈ C, being defined on the spectrum 𝜎(𝐴) ⊆ R of
, gives rise to an operator 𝑓 (𝐴) acting on . 𝑓 (𝐴) is selfadjoint, if
nd only if the ordinary function 𝑓 is real-valued. 𝑓 (𝐴) is a bounded,
2

hus continuous operator, if 𝑓 is a bounded function. 𝑓 (𝐴) is a positive
perator on , if 𝑓 has values only in the positives [0,∞). Note that 𝐴
s positive if and only if its spectrum is positive, that is 𝜎(𝐴) ⊆ [0,∞).

heorem 2.1 (Wave-Like IVP). Consider the following IVP for the positive,
elfadjoint operator 𝐴 in the Hilbert space  and given vectors 𝑢0, �̇�0 ∈ ,

ifferential equation 𝑑2𝑢(𝑡)
𝑑𝑡2

= −𝐴𝑢(𝑡) , 𝑡 ∈ R , (2.2)

V (at 𝑡 = 0) 𝑢(𝑡)|𝑡=0 = 𝑢0 ∈  ,
𝑑𝑢(𝑡)
𝑑𝑡

|

|

|

|𝑡=0
= �̇�0 ∈  ,

(The differential equation (2.2) is short notion, it is mathematically
rigorously formulated in the weak sense as 𝑑2

𝑑𝑡2
⟨𝜂|𝑢(𝑡)⟩ = −⟨𝐴𝜂|𝑢(𝑡)⟩ for

ll 𝜂 ∈ dom(𝐴).)
Then the unique solution trajectory of the wave-like IVP is given by

(𝑡) = cos(𝑡
√

𝐴)𝑢0 +
sin(𝑡

√

𝐴)
√

𝐴
�̇�0 , ∀𝑡 ∈ R . (2.3)

oreover, the trajectory R ∋ 𝑡 ↦ 𝑢(𝑡) ∈  is continuous with respect to the
norm ‖.‖ on .

Sketch of Proof. That (2.3) is indeed a solution of the IVP, is im-
mediately verified with help of the spectral calculus. For uniqueness
see Refs. 12, 13. ■

Remark, for each 𝑡 ∈ R the selfadjoint operators cos(𝑡
√

𝐴) and
sin(𝑡

√

𝐴)
√

𝐴
arise by spectral calculus from the ordinary continuous bounded

functions of a single variable

[0,∞) ∋ 𝑦↦ cos(𝑡
√

𝑦) , [0,∞) ∋ 𝑦↦

⎧

⎪

⎨

⎪

⎩

𝑡 , if 𝑦 = 0 ,
sin(𝑡

√

𝑦)
√

𝑦
, if 𝑦 > 0 .

(2.4)

Regardless of whether 𝐴 is bounded or unbounded, both selfadjoint
operators cos(𝑡

√

𝐴) and sin(𝑡
√

𝐴)
√

𝐴
are bounded, thus defined everywhere

in .

Corollary 2.2. If  is a complex Hilbert space, then the solution trajectory
𝑡 ↦ 𝑢(𝑡) from (2.3) is related to the strongly continuous unitary group
e𝑖𝑡

√

𝐴 in the following sense: 𝑢(𝑡) = e𝑖𝑡
√

𝐴𝑢0 for all 𝑡 ∈ R, if and only if
�̇�0 = 𝑖

√

𝐴𝑢0.

In the next sections we consider such positive, selfadjoint operators
𝐴 for physical or technical applications. There 𝐴 is often modified to
𝜍2𝐴 with some physical or material constant 𝜍 > 0. Then

√

𝐴 has to be
replaced by 𝜍

√

𝐴.
Let us suppose that the positive, selfadjoint operator 𝐴 possesses a

pure point (= purely discrete) spectrum, 𝜎(𝐴) = 𝜎𝑝(𝐴) ⊂ [0,∞). Then
here exists an ONB of  consisting of normalized eigenvectors 𝜓𝑛,
∈ N (since  is supposed to be separable, the ONB is countable),

orresponding to the eigenvalues (= discrete spectral points) 𝑎𝑛 ≥ 0,
∈ N, that is

𝜓𝑛 = 𝑎𝑛𝜓𝑛 ⇒ 𝑓 (𝐴)𝜓𝑛 = 𝑓 (𝑎𝑛)𝜓𝑛 , ∀𝑛 ∈ N . (2.5)

orollary 2.3. With the purely discrete spectrum (2.5) of the positive,
elfadjoint operator 𝐴, the solution 𝑢(𝑡) of formula (2.3) rewrites as

(𝑡) =
∞
∑

𝑛=1

(

cos(𝑡
√

𝑎𝑛)⟨𝜓𝑛|𝑢0⟩ +
sin(𝑡

√

𝑎𝑛)
√

𝑎𝑛
⟨𝜓𝑛|�̇�0⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= ⟨𝜓𝑛|𝑢(𝑡)⟩

)

𝜓𝑛 , ∀𝑡 ∈ R . (2.6)

roof. Remark the spectral properties according to the second part of
q. (2.5),

cos(𝑡
√

𝐴)𝜓𝑛 = cos(𝑡
√

𝑎𝑛)𝜓𝑛 ,
sin(𝑡

√

𝐴)
√

𝜓𝑛 =
sin(𝑡

√

𝑎𝑛)
√

𝜓𝑛 . (2.7)

𝐴 𝑎𝑛
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Since the normalized eigenvectors 𝜓𝑛, 𝑛 ∈ N constitute an ONB of ,
e may decompose 𝑢(𝑡) of (2.3) according to the spectral projections

(𝑡) =
∞
∑

𝑛=1
⟨𝜓𝑛|𝑢(𝑡)⟩𝜓𝑛

=
∞
∑

𝑛=1
⟨𝜓𝑛| cos(𝑡

√

𝐴)𝑢0 +
sin(𝑡

√

𝐴)
√

𝐴
�̇�0⟩𝜓𝑛

=
∞
∑

𝑛=1

(

⟨𝜓𝑛| cos(𝑡
√

𝐴)𝑢0⟩ + ⟨𝜓𝑛|
sin(𝑡

√

𝐴)
√

𝐴
�̇�0⟩

)

𝜓𝑛

⋆
=

∞
∑

𝑛=1

(

⟨cos(𝑡
√

𝐴)𝜓𝑛|𝑢0⟩ + ⟨

sin(𝑡
√

𝐴)
√

𝐴
𝜓𝑛|�̇�0⟩

)

𝜓𝑛

(2.7)
=

∞
∑

𝑛=1

(

cos(𝑡
√

𝑎𝑛)⟨𝜓𝑛|𝑢0⟩ +
sin(𝑡

√

𝑎𝑛)
√

𝑎𝑛
⟨𝜓𝑛|�̇�0⟩

)

𝜓𝑛 ,

here at the equality sign ⋆
= with star we used the selfadjointness of

he bounded operators cos(𝑡
√

𝐴) and sin(𝑡
√

𝐴)
√

𝐴
. ■

3. On applications in 𝐋𝟐–Hilbert spaces

Let  = L2(𝛬) be the Hilbert space of R– or C–valued, Lebesgue
square integrable functions defined on the subset 𝛬 ⊆ R𝑟 in 𝑟 ∈ N

real dimensions, with standard inner product (𝜉(𝑥) complex conjugate
to 𝜉(𝑥)) and norm,

⟨𝜉|𝜂⟩ = ∫𝛬
𝜉(𝑥)𝜂(𝑥) 𝑑𝑟𝑥 , ‖𝜉‖2 = ⟨𝜉|𝜉⟩ = ∫𝛬

|𝜉(𝑥)|2𝑑𝑟𝑥 , ∀𝜉, 𝜂 ∈ L2(𝛬).

is chosen as an open and connected subset of R𝑟, which usually is
alled a domain or a region. ‘‘Connected’’ means ‘‘path connected’’, so
hat any pair of points in 𝛬 may be connected via a continuous path
ithin 𝛬. The domain 𝛬 is called interior if 𝛬 is bounded, and exterior if

ts set complement R𝑟⧵𝛬 is bounded. �̄� denotes the topological closure
f 𝛬, and, 𝜕𝛬 = �̄� ⧵ 𝛬 its boundary.

The first step is to transform the spatial differentiation operation
n 𝛬 into a positive, selfadjoint operator 𝐴 acting on the Hilbert
pace L2(𝛬), a procedure, which in general requires much mathematical
ffort. That operator 𝐴 is taken for the wave-like differential equa-
ion (2.2). The exact mathematical definition of such a selfadjoint
ifferential operator 𝐴 on L2(𝛬) is often done in terms of a positive
esquilinear form, which intrinsically includes the considered BV, for
xamples see e.g. Refs. 9, 11–15 and Section 4. Sometimes the con-
idered BV requires some kind of smoothness for the boundary 𝜕𝛬
f the region 𝛬, e.g. segment property, or uniform cone property, or
iece-wise C𝑘–smoothness, etc.

.1. Primary wave PDE in a spatial region 𝛬

Consider the Laplacian on an arbitrary domain 𝛬 ⊆ R𝑟,

𝛥 = −
(

𝜕21 + 𝜕
2
2 +⋯ + 𝜕2𝑟

)

,

here 𝜕𝑗 =
𝜕
𝜕𝑥𝑗

for 𝑗 = 1, 2,… , 𝑟. It is well known that the Laplacian −𝛥

indeed gives rise to a positive, selfadjoint operator 𝐴 acting on L2(𝛬) for
each of the classical homogeneous BV such as Dirichlet, or Neumann,
or mixed. Even when incorporating an anisotropic, inhomogeneous
medium into 𝛬, in many cases positivity and selfadjointness hold,
e.g. Refs. 12–14.

Here (2.2) describes the classical propagating wave in 𝛬 satisfying
the BV for which the positive, selfadjoint Laplacian 𝐴 = −𝛥 is defined.
In terms of continuously differentiable functions 𝑢(𝑡)(𝑥1, 𝑥2,… , 𝑥𝑟) =
𝑢(𝑥1, 𝑥2,… , 𝑥𝑟, 𝑡), the differential equation (2.2) is rewritten as the well
known wave PDE with wave velocity 𝜍 > 0, namely

𝜕2𝑢(𝑥 ,… , 𝑥 , 𝑡) = −𝜍2(−𝛥)𝑢(𝑥 ,… , 𝑥 , 𝑡).
3

𝑡 1 𝑟 1 𝑟
3.2. Maxwell radiation and wave equations in electromagnetism

Details to the present subsection are found in Ref. 15. We consider
electromagnetism in vacuum in the spatial region 𝛬 ⊆ R3. We use
the real Hilbert space L2(𝛬,R6) for R6–valued functions on 𝛬 (vector
functions with 6 components). 𝐄(𝑡) denotes the electric field and 𝐁(𝑡)
the magnetic field (3 components for each), depending on time 𝑡.
Assuming no current and no charge distribution in 𝛬 the two dynamical
Maxwell equations are summarized in matrix notation as

𝑑
𝑑𝑡

(

𝐄(𝑡)
𝐁(𝑡)

)

⏟⏟⏟
= 𝑢(𝑡)

=
(

0 curl
− curl0 0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= A

(

𝐄(𝑡)
𝐁(𝑡)

)

⏟⏟⏟
= 𝑢(𝑡)

. (3.1)

he dielectric constant 𝜖0 and the magnetic permeability 𝜇0 are set to
1 for convenience. The walls of 𝛬, i.e. the boundary 𝜕𝛬, are supposed
to consist of a perfect conductor material. This leads to the well known
BV 𝐄(𝑡) × 𝑛|𝜕𝛬 = 0 and 𝐁(𝑡) ⋅ 𝑛|𝜕𝛬 = 0, where 𝑛 denotes the outer normal
ector at the boundary points. The two curl (rotation) operators, curl0
nd curl, are well defined according to these BV by minimal and
aximal Sobolev domains of definition, respectively.

The Maxwell operator A is anti-selfadjoint, meaning A∗ = −A (in
he complexified Hilbert space 𝑖A is selfadjoint), since curl∗ = curl0 and
url∗0 = curl for the adjoints. Consequently, exp{𝑡A}, 𝑡 ∈ R, constitutes
strongly continuous orthogonal group in L2(𝛬,R6). With IV 𝑢(𝑡)|𝑡=0 =

0 =
(

𝐄0
𝐁0

)

the unique solution trajectory of the IVP (3.1) is given by

(𝑡) = exp{𝑡A}𝑢0 , ∀𝑡 ∈ R . (3.2)

3.2) describes the freely evolving electromagnetic field in the spatial
egion 𝛬, namely the radiation, in which intense coupling of the electric
nd magnetic fields takes place due to the non-diagonal matrix operator

in (3.1).
It is well known that the electric and the magnetic components can

e decoupled. Second time derivative in (3.1) leads to the wave-like
quation

𝑑2𝑢(𝑡)
𝑑𝑡2

= A2𝑢(𝑡) = − A∗A
⏟⏟⏟

≥ 0

𝑢(𝑡) , (3.3)

here we have inserted A∗ = −A. It holds that

∗A = −A2 = −
(

0 curl
− curl0 0

)(

0 curl
− curl0 0

)

=
(

curl curl0 0
0 curl0 curl

)

s a diagonal matrix operator in the electromagnetic field Hilbert space
2(𝛬,R6), which decouples the electric and magnetic fields. A∗A is
positive, selfadjoint operator, and so are both double curl operators
url curl0 and curl0 curl.

Decoupling ensures that we get two separate wave equations, one
or the electric field and another for the magnetic field, each of which
ives now in the Hilbert space L2(𝛬,R3) with three components, only,

𝑑2𝐄(𝑡)
𝑑𝑡2

= −

−𝛥𝐸 ≥ 0
⏞⏞⏞⏞⏞⏞⏞
curl curl0 𝐄(𝑡) ,

𝑑2𝐁(𝑡)
𝑑𝑡2

= −

−𝛥𝐵 ≥ 0
⏞⏞⏞⏞⏞⏞⏞
curl0 curl𝐁(𝑡) . (3.4)

Here the operators curl curl0 and curl0 curl agree with two different
Laplace operators −𝛥𝐸 and −𝛥𝐵 not covered by the mentioned classical
BV cases in the previous subsection. Solutions of both wave Eqs. (3.4),
or equivalently of (3.3), agree with the original solution (3.2) of the
dynamic Maxwell equations (3.1) only for the correlation of the IV in
direct analogy to Corollary 2.2,

�̇�0 =
(

�̇�0
̇

)

=
𝑑𝑢(𝑡) |

|

|

= A𝑢0 =
(

curl𝐁0
)

. (3.5)
𝐁0 𝑑𝑡
|𝑡=0 −curl0 𝐄0
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3.3. Free bending vibrations of a plate

A plate is in 𝛬 ⊆ R𝑟, and bends into a further (spatial) dimension.
or an isotropic, homogeneous plate the differential operator 𝐴 is given
p to some material constant by −𝛥2 = −

(

𝜕21+⋯+𝜕2𝑟
)2. In the literature

ne finds some BV, which give rise to positivity and selfadjointness of
, see e.g. Ref. 12.

The literature however does not cover the case 𝑟 = 1 with the dif-
erent BV from statics, which we will investigate in great mathematical
etail in Section 4.

.4. On spectral properties of the differential operators 𝐴

Let 𝛬 be interior, with some mild assumptions about the smooth-
ess of the boundary 𝜕𝛬 when necessary. Then a positive, selfadjoint
ifferential operator 𝐴 of the above mentioned types has a pure point
= purely discrete) spectrum 𝜎(𝐴) = 𝜎𝑝(𝐴) ⊂ [0,∞). Each eigenspace is
inite dimensional and the eigenvalues 𝑎𝑛 from (2.5) may be arranged
ncreasingly and converge to infinity,

≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4 ≤ 𝑎5 ≤ ⋯ .. , lim
𝑛→∞

𝑎𝑛 = ∞ . (3.6)

xceptions are the two curlcurl–operators in Section 3.2, since the
ernels of these operators are infinite dimensional. But for the strictly
ositive eigenvalues the preceding statements (3.6) remain valid. The
xistence of such a discrete spectrum is proven with help of compact
mbeddings of related Sobolev spaces into L2(𝛬), e.g. Refs. 13, 14.
e will do so in Section 6, too. However, analytic calculations of

igenfunctions are only possible, if 𝛬 has certain geometric properties,
.g. such as parallelepiped, ball, circular disc, or bounded interval.

When 𝛬 is exterior, then 𝐴 possesses an absolutely continuous
pectrum 𝜎(𝐴) = 𝜎𝑎𝑐 (𝐴) = [0,∞), which is necessary for scattering
heory, e.g. Ref. 11, etc.

.5. On regularity of eigenvectors and solution trajectories

Every Hilbert space element 𝜐 ∈ L2(𝛬) represents a class of functions
efined on 𝛬, which agree almost everywhere in 𝛬. Thus point evalua-
ions and notions of continuity or partial differentiation do not make
ense. Therefore an L2–Hilbert space formulation of an ordinary PDE is
generalization.

A function 𝑢 ∶ 𝛬 → R or C is called smooth, if it is (partially)
ontinuous or continuously differentiable in some degree. When a
ilbert space class 𝜐 ∈ L2(𝛬) contains a function 𝑢 with some smooth-
ess properties, then the class 𝜐 usually is represented by that smooth
epresentant 𝑢.

Regularity statements, e.g. Refs. 12–14, are of the following kind:
igenvectors 𝜓𝑛 = 𝜓𝑛(𝑥1,… , 𝑥𝑟) of a differential operator 𝐴, and L2–
olution trajectories 𝑢(𝑡) in Theorem 2.1 possess some kind of smooth-
ess, whenever the boundary 𝜕𝛬 and the IV functions 𝑢0, �̇�0 ∈ L2(𝛬)
ulfill some degree of smoothness. Then in addition 𝑢(𝑡) satisfies the
nderlying ordinary PDE.

Each domain 𝛬 ⊆ R in one dimension is a bounded or unbounded
pen interval and thus possesses a completely smooth boundary, so
egularity arises.

. Bending vibrations of a beam in one spatial dimension

In the interior open interval 𝛬 = (0,𝓁) with boundary points 𝑥 = 0
and 𝑥 = 𝓁 is placed a slender, isotropic, homogeneous, straight, elastic
beam of length 𝓁 with constant cross–sectional area. The 𝑥–axis is
along the neutral fiber of the beam, and the bending deformations
𝑢(𝑡)(𝑥) = 𝑢(𝑥, 𝑡) are vertical (transversal) to the 𝑥–axis. It is assumed
that the beam is supported only at its ends, namely at 𝑥 = 0 and at
4

= 𝓁. f
4.1. Sobolev spaces for the open interval (0,𝓁)

For the mathematical description of differential operators it is in-
evitable to work with Sobolev spaces. We state here some properties
needed subsequently, e.g. Ref. 13, overview in Ref. 15.

Let L2 = L2((0,𝓁)) denote the complex Hilbert space of square
integrable, C–valued functions on (0,𝓁) with inner product and norm

⟨𝜉|𝜂⟩ = ∫

𝓁

0
𝜉(𝑥)𝜂(𝑥) 𝑑𝑥 , ‖𝜉‖2 = ⟨𝜉|𝜉⟩ = ∫

𝓁

0
|𝜉(𝑥)|2𝑑𝑥 , ∀𝜉, 𝜂 ∈ L2.

By C∞
𝑐 (𝐼) we denote the set of infinitely often continuously differ-

ntiable functions 𝜉 ∶ 𝐼 → C for the open interval 𝐼 ⊆ R with compact
upport within 𝐼 , the standard test function space in distribution theory
or the interval 𝐼 . The elements of C∞

𝑐 (𝐼)|𝐽 are the restrictions 𝜉|𝐽 of
∈ C∞

𝑐 (𝐼) to the open subinterval 𝐽 ⊆ 𝐼 .
Let 𝜉 ∶ R → C be an 𝑠–times continuously differentiable function

nd 𝜑 a test function on (0,𝓁), that is 𝜑 ∈ C∞
𝑐 ((0,𝓁)). When integrating

–times partially, no boundary terms occur, since the test function 𝜑
as compact support in (0,𝓁) and hence vanishing boundary values
(𝑘)(0) = 0 = 𝜑(𝑘)(𝓁) for all derivatives,

⟨𝜉(𝑠)|𝜑⟩ = ∫

𝓁

0
𝜉(𝑠)(𝑥)𝜑(𝑥) 𝑑𝑥 = (−1)𝑠 ∫

𝓁

0
𝜉(𝑥)𝜑(𝑠)(𝑥) 𝑑𝑥 = (−1)𝑠⟨𝜉|𝜑(𝑠)

⟩.

This is the guiding line for the definition of square integrable distribu-
tional differentiability : Suppose for a 𝜉 ∈ L2 the existence of a vector
𝜉(𝑠) ∈ L2 with

⟨𝜉(𝑠)|𝜑⟩ = (−1)𝑠⟨𝜉|𝜑(𝑠)
⟩ , ∀𝜑 ∈ C∞

𝑐 ((0,𝓁)) . (4.1)

hen 𝜉(𝑠) ∈ L2 is called the square integrable 𝑠th distributional deriva-
tive of 𝜉 ∈ L2. Provided existence, 𝜉(𝑠) is unique, since C∞

𝑐 ((0,𝓁)) is
ense in L2. So, the distributional definition is an extension of ordinary
ifferentiation using conventional differential limits.

efinition 4.1 (Sobolev Spaces). For each 𝑚 ∈ N0 = N ∪ {0} =
{0, 1, 2, 3,…} the 𝑚th Sobolev space is defined as W𝑚 = W𝑚((0,𝓁)) ∶=
{𝜉 ∈ L2 ∣ 𝜉(𝑠) ∈ L2 for 0 ≤ 𝑠 ≤ 𝑚}. It is equipped with the Sobolev inner
product and norm

⟨𝜉|𝜂⟩𝑚 ∶=
𝑚
∑

𝑠=0
⟨𝜉(𝑠)|𝜂(𝑠)⟩ , ‖𝜉‖𝑚 =

√

⟨𝜉|𝜉⟩𝑚 . (4.2)

The index 𝑚 = 0 yields ⟨𝜉|𝜂⟩0 = ⟨𝜉|𝜂⟩ and ‖𝜉‖0 = ‖𝜉‖ =
√

⟨𝜉|𝜉⟩, the
onventional scalar product and norm on L2 = W0.

roposition 4.2. The following assertions are valid:

(a) W𝑚 is a separable complex Hilbert space for every 𝑚 ∈ N0 with
respect to its Sobolev inner product ⟨.|.⟩𝑚 and 𝑚th norm ‖.‖𝑚, cf.
Eq. (4.2).

(b) C∞
𝑐 (R)|

|(0,𝓁) is ‖.‖𝑚–dense in the 𝑚th Sobolev space W𝑚 for each 𝑚 ∈
N0. (This way W𝑚 may defined without distributional derivatives.)

(c) If 𝑚 > 𝑘, then W𝑚 ⊆ C𝑘([0,𝓁]), the 𝑘–times continuously differen-
tiable functions on the open interval (0,𝓁), for which each derivative
extends continuously to both boundary points 𝑥 = 0 and 𝑥 = 𝓁.

(d) Let 𝑚 > 𝑛. Then the identical embedding W𝑚 ↪ W𝑛 is continuous,
injective and a compact map. Especially, W1 ↪ L2 is compact.

.2. Differential operators of first order for different BV

We define four different differential operators 𝛿. . ∈ {𝛿++, 𝛿+−, 𝛿−+,
−−} acting on L2 as

. . 𝜉 = 𝜉′ , 𝜉 ∈ dom(𝛿. .) ⊂ L2.

nboundedness (discontinuity) makes it impossible that such a dif-
erential operator may act on all Hilbert space vectors. Therefore,
e define four different ‖.‖–dense domains of definition leading to

our different operators. By Proposition 4.2(c) we know that W1 is a
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subspace of C0([0,𝓁]) (continuous functions on [0,𝓁]) and thus allows
for a direct boundary evaluation,

𝛿++ dom(𝛿++) ∶= {𝜉 ∈ W1 ∣ 𝜉(0) = 0 , 𝜉(𝓁) = 0} ;

𝛿+− dom(𝛿+−) ∶= {𝜉 ∈ W1 ∣ 𝜉(0) = 0 , no BV at 𝓁} ;
𝛿−+ dom(𝛿−+) ∶= {𝜉 ∈ W1 ∣ no BV at 0, 𝜉(𝓁) = 0} ;

𝛿−− dom(𝛿−−) ∶= {𝜉 ∈ W1 ∣ no BV at both 0,𝓁} = W1.

These domains are ‖.‖1–closed subspaces of W1, since the embedding
W1 ⊆ C0([0,𝓁]) is continuous. The minus or plus sign in the index means
for ‘‘+’’ that the BV zero is fulfilled, and for ‘‘−’’ the BV is not fulfilled,
corresponding to the left or right boundary point, 𝑥 = 0 and 𝑥 = 𝓁,
respectively.

Let us mention that these four differential operators of first order
are auxiliary but necessary for introducing the correct BV from statics
for the diverse differential operators of 4th order for the bending beam
in Section 4.4.

Lemma 4.3. The four differential operators 𝛿. . ∈ {𝛿++, 𝛿+−, 𝛿−+, 𝛿−−} are
closed, and for their L2–adjoints it holds that

𝛿∗++ = −𝛿−− , 𝛿∗−− = −𝛿++ , 𝛿∗+− = −𝛿−+ , 𝛿∗−+ = −𝛿+−.

Proof. The graph norm of these operators agrees with the Sobolev
norm ‖.‖1. So they are closed unbounded operators in L2 by construc-
tion. Especially

C∞
𝑐 ((0,𝓁)) , C∞

𝑐 ((0,∞))|
|(0,𝓁) , C∞

𝑐 ((−∞,𝓁))|
|(0,𝓁) , C∞

𝑐 (R)|
|(0,𝓁)

are operator cores, which are ‖.‖1–dense in the domains dom(𝛿. .) ⊆W1,
respectively.

Let us first consider the pair 𝛿++ and 𝛿−−. According to the construc-
tion of the adjoint of an operator in (2.1) we have

dom(𝛿∗++) = {𝜉 ∈ L2 ∣ ∃ 𝜂𝜉 ∈ L2 with ⟨𝜂𝜉 |𝜑⟩ = ⟨𝜉|𝜑′
⟩ ∀𝜑 ∈ C∞

𝑐 ((0,𝓁))},

and 𝛿∗++𝜉 ∶= 𝜂𝜉 . It is sufficient to use here the core C∞
𝑐 ((0,𝓁)) of 𝛿++,

instead of its whole domain of definition as in (2.1). That coincides with
the concept of square integrable distributional differentiation from the
previous subsection, see (4.1). Thus 𝜉 ∈ W1 = dom(𝛿−−), and moreover,
dom(𝛿∗++) = W1 with −𝜉′ = −𝛿−−𝜉 = 𝛿∗++𝜉, which means 𝛿∗++ = −𝛿−−.
The closedness of 𝛿++ gives by adjoining, 𝛿++ = 𝛿∗∗++ = −𝛿∗−−.

For 𝛿+− and 𝛿−+ the situation is different. By definition of the adjoint
it holds

dom(𝛿∗−+) = {𝜉 ∈ L2 ∣ ∃𝛿∗−+𝜉 ∈ L2 with ⟨𝛿∗−+𝜉|𝜑⟩ = ⟨𝜉|𝜑′
⟩∀𝜑 ∈ dom(𝛿−+)}.

Let first 𝜉 ∈ dom(𝛿∗−+). Applying the test functions 𝜑 ∈ C∞
𝑐 ((0,𝓁)) ⊂

dom(𝛿−+) to the connection ⟨𝛿∗−+𝜉|𝜑⟩ = ⟨𝜉|𝜑′
⟩ = −⟨𝜉′|𝜑⟩, we arrive

at 𝜉 ∈ W1 and 𝛿∗−+𝜉 = −𝜉′. In order to prove 𝜉′ ∈ dom(𝛿−+),
we integrate partially (extension from smooth functions to W1 via
Proposition 4.2(b))

⟨𝛿∗−+𝜉|𝜑⟩ = −⟨𝜉′|𝜑⟩ = −∫

𝓁

0
𝜉′(𝑥)𝜑(𝑥) 𝑑𝑥

= −
[

𝜉(𝑥)𝜑(𝑥)
]𝓁

0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
boundary term

+∫

𝓁

0
𝜉(𝑥)𝜑′(𝑥) 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= ⟨𝜉|𝜑′⟩

.

Thus ⟨𝛿∗−+𝜉|𝜑⟩ = ⟨𝜉|𝜑′
⟩ is fulfilled for all 𝜑 ∈ dom(𝛿−+), if and only if the

boundary term vanishs. We know 𝜑(𝓁) = 0 for all 𝜑 ∈ dom(𝛿−+) = {𝜑 ∈
W1 ∣ 𝜑(𝓁) = 0}, but there is no BV at 𝑥 = 0 for 𝜑 ∈ dom(𝛿−+). Thus a
vanishing boundary term forces 𝜉(0) = 0, implying 𝜉 ∈ dom(𝛿+−) = {𝜉 ∈
W1 ∣ 𝜉(0) = 0}. So far, 𝛿∗−+𝜉 = −𝜉′ = −𝛿+−𝜉 for 𝜉 ∈ dom(𝛿∗−+) ⊆ dom(𝛿+−).
Conversely, let 𝜉 ∈ dom(𝛿+−). Then the above partial integration yields
⟨−𝛿+−𝜉|𝜑⟩ = ⟨−𝜉′|𝜑⟩ = ⟨𝜉|𝜑′

⟩ for all 𝜑 ∈ dom(𝛿−+), implying 𝜉 ∈
dom(𝛿∗−+) and 𝛿∗−+𝜉 = −𝜉′ = −𝛿+−𝜉. Therefore, 𝛿∗−+ = −𝛿+−, and by
adjoining 𝛿 = 𝛿∗∗ = −𝛿∗ . ■
5

−+ −+ +−
We would like to mention that there exist overcountably many anti-
selfadjoint differential operators 𝛿𝑧 = −𝛿∗𝑧 operating in L2, one for each
𝑧 ∈ C with |𝑧| = 1,

𝛿𝑧𝜉 = 𝜉′ , ∀𝜉 ∈ dom(𝛿𝑧) ∶= {𝜉 ∈ W1 ∣ 𝜉(0) = 𝑧𝜉(𝓁)},

belonging to the boundary condition 𝜉(0) = 𝑧𝜉(𝓁), e.g. Refs. 10, 11, 15.
The 𝛿𝑧 are related to the two types 𝛿++ and 𝛿−−, in the sense that

𝛿++ ⊂ 𝛿𝑧 ⊂ 𝛿−− , meaning dom(𝛿++) ⊂ dom(𝛿𝑧) ⊂ dom(𝛿−−).

𝛿++ is the smallest, 𝛿−− the largest differential operator in L2, whereas
all the anti-selfadjoint operators 𝛿𝑧 lie in between, also 𝛿+− and 𝛿−+.
When multiplying with −𝑖 and Planck’s constant ℏ, one arrives at
the selfadjoint momentum operators 𝑝𝑧 = −𝑖ℏ𝛿𝑧 used in quantum
mechanics on the spatial interval [0,𝓁].

4.3. Four different positive, selfadjoint Laplace operators

Recall that the operator product 𝐵𝐶 of two operators 𝐵 and 𝐶 is
defined by

dom(𝐵𝐶) = {𝜉 ∈ dom(𝐶) ∣ 𝐶𝜉 ∈ dom(𝐵)} , 𝐵𝐶𝜉 ∶= (𝐵𝐶)𝜉 = 𝐵(𝐶𝜉) .

(4.3)

Since for a closed operator 𝐵 the operator product 𝐵∗𝐵 is al-
ways positive and selfadjoint, one immediately obtains the next result
with help of Lemma 4.3. The indices, 𝐷𝑁 , 𝐷𝐷, etc., denote homoge-
neous Dirichlet or Neumann BV at the left or right end of the beam,
respectively.

Corollary 4.4 (Four Positive, Selfadjoint Laplacians Acting on L2). Con-
sider the following four Laplace operators 𝛥. . ∈ {𝛥𝐷𝐷, 𝛥𝑁𝑁 , 𝛥𝐷𝑁 ,
𝛥𝑁𝐷} acting on the Hilbert space L2. It holds 𝛥. .𝜉 = 𝜉′′ for 𝜉 ∈ dom(𝛥. .) ⊂
W2. We multiply with the minus sign in order to obtain positivity.

(a) The positive, selfadjoint Dirichlet Laplacian −𝛥𝐷𝐷 is given by the
operator product

−𝛥𝐷𝐷 = 𝛿∗++𝛿++ = −𝛿−−𝛿++.

From 𝛥𝐷𝐷 = 𝛿−−𝛿++ and the fact that 𝛿−− has no BV, it follows that
−𝛥𝐷𝐷 satisfies the BV for 𝛿++, namely the homogeneous Dirichlet BV
𝜉(0) = 0 = 𝜉(𝓁). In the literature this boundary condition is indexed
by ∞, that means 𝛥𝐷𝐷 = 𝛥∞.

(b) The positive, selfadjoint Neumann Laplacian −𝛥𝑁𝑁 is given by the
operator product

−𝛥𝑁𝑁 = 𝛿∗−−𝛿−− = −𝛿++𝛿−−.

Since 𝛿−− has no BV, the BV for 𝛥𝑁𝑁 = 𝛿++𝛿−− arises from the
BV of 𝛿++ for the derivative 𝛿−−𝜉 = 𝜉′, namely the homogeneous
Neumann BV 𝜉′(0) = 0 = 𝜉′(𝓁). In the literature this boundary
condition is indexed by 0, that is 𝛥𝑁𝑁 = 𝛥0.

(c) The two positive, selfadjoint mixed Laplacians, −𝛥𝐷𝑁 and −𝛥𝑁𝐷,
are given by the operator products

−𝛥𝐷𝑁 = 𝛿∗+−𝛿+− = −𝛿−+𝛿+− , −𝛥𝑁𝐷 = 𝛿∗−+𝛿−+ = −𝛿+−𝛿−+

with mixed homogeneous Dirichlet and Neumann BV, 𝜉(0) = 0 =
𝜉′(𝓁) and 𝜉′(0) = 0 = 𝜉(𝓁), respectively.

Note that by Proposition 4.2(c) we have W2 ⊆ C1([0,𝓁]), and thus 𝜉 and
𝜉′ allow for a boundary evaluation, and so the BV are defined as usual.

The spectra 𝜎(−𝛥. .) of these four Laplacians −𝛥. . acting in the
Hilbert space L2 are purely discrete,

𝜎(−𝛥𝐷𝐷) = {
( 𝑛𝜋
𝓁

)2 ∣ 𝑛 ∈ N}; 𝜎(−𝛥𝑁𝑁 ) = {
( (𝑛 − 1)𝜋

𝓁

)2 ∣ 𝑛 ∈ N};

𝜎(−𝛥𝐷𝑁 ) = {
( (2𝑛 − 1)𝜋

2𝓁
)2 ∣ 𝑛 ∈ N}; 𝜎(−𝛥𝑁𝐷) = {

( (2𝑛 − 1)𝜋
2𝓁

)2 ∣ 𝑛 ∈ N}.
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The associated normalized eigenfunctions

− 𝛥𝐷𝐷 = −𝛿−−𝛿++ 𝜓𝑛(𝑥) =
√

2
𝓁

sin( 𝑛𝜋
𝓁
𝑥), 𝑛 ∈ N;

− 𝛥𝑁𝑁 = −𝛿++𝛿−− 𝜓𝑛(𝑥) =
√

2
𝓁

cos(
(𝑛 − 1)𝜋

𝓁
𝑥), 𝑛 ≥ 2,

𝜓1(𝑥) =
1

√

𝓁
, 𝑛 = 1;

− 𝛥𝐷𝑁 = −𝛿−+𝛿+− 𝜓𝑛(𝑥) =
√

2
𝓁

sin(
(2𝑛 − 1)𝜋

2𝓁
𝑥), 𝑛 ∈ N;

− 𝛥𝑁𝐷 = −𝛿+−𝛿−+ 𝜓𝑛(𝑥) =
√

2
𝓁

cos(
(2𝑛 − 1)𝜋

2𝓁
𝑥), 𝑛 ∈ N;

constitute four different ONBs of the Hilbert space L2 = L2((0,𝓁)).

4.4. Differential operators of 4th order for beam BV from statics

In statics usually the following three support possibilities are used.
That is, for the transverse, purely spatial bending function 𝜉(𝑥) we
choose at one end 𝑥⋆ of the beam, 𝑥⋆ = 0 or 𝑥⋆ = 𝓁, different BV,
e.g. Ref. 2 etc.,

(a) = flexible support 𝜉(𝑥⋆) = 0 , 𝜉′′(𝑥⋆) = 0 ;

(b) = fixed support 𝜉(𝑥⋆) = 0 , 𝜉′(𝑥⋆) = 0 ;

(c) = free end 𝜉′′(𝑥⋆) = 0 , 𝜉′′′(𝑥⋆) = 0 .

Especially, flexible support (a) allows rotations with no moment re-
sistance, and free end (c) in addition translations, see Theorem 4.8(c)
below.

Notational Remark 4.5. If the left end of the beam is supported
according to (a) and the right end by (b), then we briefly call the beam
to be (a)–(b) supported. Analogously, (c)–(b), (b)–(a), …, and so on.

For these different possibilities of support at the ends of the beam
we will construct positive, selfadjoint differential operators 𝐴 of 4th
order, 𝐴𝜉 = 𝜉(4) = 𝜉′′′′, so that the BV are respected. Moreover, we add
three cases, which are not in agreement with the above supports known
from engineering statics.

Subsequently we list in the first column the considered support of
the beam, then the associated four BV, and finally in the third column
the corresponding product differential operator �̂� of 4th order respect-
ing exactly these four support BV (see (4.3) for operator products). The
positive, selfadjoint 𝐴 will turn out to be a unique extension of the
product operator �̂�.

(a)–(a) BV: 𝜉(0) = 0, 𝜉(𝓁) = 0, 𝜉′′(0) = 0, 𝜉′′(𝓁) = 0, �̂� = 𝛿−−𝛿++𝛿−−𝛿++;

(a)–(b) BV: 𝜉(0) = 0, 𝜉(𝓁) = 0, 𝜉′(𝓁) = 0, 𝜉′′(0) = 0, �̂� = 𝛿−−𝛿+−𝛿−+𝛿++;

(a)–(c) BV: 𝜉(0) = 0, 𝜉′′(0) = 0, 𝜉′′(𝓁) = 0, 𝜉′′′(𝓁) = 0, �̂� = 𝛿−+𝛿++𝛿−−𝛿+−;

(b)–(b) BV: 𝜉(0) = 0, 𝜉(𝓁) = 0, 𝜉′(0) = 0, 𝜉′(𝓁) = 0, �̂� = 𝛿−−𝛿−−𝛿++𝛿++;

(b)–(c) BV: 𝜉(0) = 0, 𝜉′(0) = 0, 𝜉′′(𝓁) = 0, 𝜉′′′(𝓁) = 0, �̂� = 𝛿−+𝛿−+𝛿+−𝛿+−;

(c)–(c) BV: 𝜉′′(0) = 0, 𝜉′′(𝓁) = 0, 𝜉′′′(0) = 0, 𝜉′′′(𝓁) = 0, �̂� = 𝛿++𝛿++𝛿−−𝛿−−;

add-(i) BV: 𝜉′(0) = 0, 𝜉′(𝓁) = 0, 𝜉′′′(0) = 0, 𝜉′′′(𝓁) = 0, �̂� = 𝛿++𝛿−−𝛿++𝛿−−;

add-(ii) BV: 𝜉(0) = 0, 𝜉′(𝓁) = 0, 𝜉′′(0) = 0, 𝜉′′′(𝓁) = 0, �̂� = 𝛿−+𝛿+−𝛿−+𝛿+−;

add-(iii) BV: 𝜉(𝓁) = 0, 𝜉′(0) = 0, 𝜉′′(𝓁) = 0, 𝜉′′′(0) = 0, �̂� = 𝛿+−𝛿−+𝛿+−𝛿−+.

For the remaining possibilities (b)–(a), (c)–(a), (c)–(b) of statics, simply
invert the beam. Also BV add-(iii) is the inverted beam with BV add-(ii).
We have C∞

𝑐 ((0,𝓁)) ⊂ dom(�̂�) ⊂W4, hence each �̂� is densely defined in
L2. Note that

�̂�𝜉 = 𝜉′′′′, ∀𝜉 ∈ dom(�̂�) = {𝜉 ∈ W4 ∣ 𝜉 fulfills all 4 BV of �̂�}.

For an operator 𝐴 to be an extension of the operator �̂�, means

̂ ̂ ̂
6

dom(𝐴) ⊆ dom(𝐴) with 𝐴𝜉 = 𝐴𝜉 , ∀𝜉 ∈ dom(𝐴),
denoted as �̂� ⊆ 𝐴. We write �̂� ⊂ 𝐴 or equivalently 𝐴 ⊃ �̂�, if 𝐴 is a
genuine operator extension of �̂�, that is dom(�̂�) ⫋ dom(𝐴).

Theorem 4.6 (Existence of Unique Positive, Selfadjoint Extensions). In
each of the above cases, there exists a unique positive, selfadjoint extension
𝐴 ⊇ �̂� for the product operator �̂� such that dom(𝐴) is a subset of

{𝜉 ∈ W2 ∣ 𝜉 fulfills the BV for 𝜉 and 𝜉′ of �̂� but not for higher derivatives}.

For that unique 𝐴 it holds

𝐴𝜉 = �̂�𝜉 = 𝜉′′′′ for all 𝜉 ∈ dom(𝐴) ∩ W4 = dom(�̂�).

The proof is given in Section 6.
𝐴 is the so called Friedrichs extension of the product operator �̂�, the

smallest form extension of �̂�, e.g. Refs. 9–11, 13. Possibly there may
exist further positive, selfadjoint extensions of �̂�, but their domains of
definition contain elements not from
{𝜉 ∈ W2 ∣ 𝜉 fulfills BV for 𝜉, 𝜉′ of �̂� but not for higher derivatives}.

Corollary 4.7. We distinguish two groups of operators of type 𝐴 or �̂�:

(I) In each of the cases (a)–(a), add-(i), add-(ii), and add-(iii), the
positive, selfadjoint 𝐴 is not a genuine operator extension of �̂�, since
already the product operator �̂� is positive and selfadjoint, and thus
coincides with 𝐴,

(a)–(a) 𝐴 = �̂� = 𝛿−−𝛿++𝛿−−𝛿++ = (−𝛥𝐷𝐷)2;

add-(i) 𝐴 = �̂� = 𝛿++𝛿−−𝛿++𝛿−− = (−𝛥𝑁𝑁 )2;

add-(ii) 𝐴 = �̂� = 𝛿−+𝛿+−𝛿−+𝛿+− = (−𝛥𝐷𝑁 )2;

add-(iii) 𝐴 = �̂� = 𝛿+−𝛿−+𝛿+−𝛿−+ = (−𝛥𝑁𝐷)2.

(II) In the cases (a)–(b), (a)–(c), (b)–(b), (b)–(c), (c)–(c), the positive,
selfadjoint extension 𝐴 is a genuine operator extension of the original
product operator �̂�, that is 𝐴 ⊃ �̂�. Here 𝐴 is defined in terms of
a positive closed sesquilinear form. Therefore, neither the spectrum
of 𝐴 nor that of any of the sandwiched operator products �̂�, like
�̂� = 𝛿−+ 𝛿++𝛿−−

⏟⏟⏟
=𝛥𝑁𝑁

𝛿+− for (a)–(c) support, are related to the spectra

of the Laplacians from Corollary 4.4.

Proof. The result for (I) is a consequence of Section 4.3, since the
Laplacians are operator products. So �̂� is already selfadjoint, and for
a selfadjoint operator there do not exist selfadjoint extensions. (II) is
obvious. ■

Since 𝛬 = (0,𝓁) is interior, one obtains a spectral result as in
Section 3.4.

Theorem 4.8. For each positive, selfadjoint operator 𝐴 of Theorem 4.6
it holds:

(a) 𝐴 has a pure point (= purely discrete) spectrum 𝜎(𝐴) = 𝜎𝑝(𝐴) ⊂
[0,∞).

(b) Each eigenspace is finite dimensional and the eigenvalues 𝑎𝑛, 𝑛 ∈ N,
may be arranged increasingly so that (3.6) is satisfied.

(c) Only the cases (a)–(c), (c)–(c), and add-(i) possess the eigenvalue
zero.

Part (c) means that rotation of the beam is allowed, and for (c)–(c) even
translation is possible. This corresponds to eigenfunctions of type 𝜂(𝑥) =
𝑎 + 𝑏𝑥 for all 𝑥 ∈ (0,𝓁) with constants 𝑎, 𝑏 ∈ R, possessing eigenvalue
zero since 𝜂′′ = 0. For the proof of Theorem 4.8 see Section 6.

4.5. Euler–Bernoulli differential equation in L2((0,𝓁)) for the beam

The Euler–Bernoulli differential equation IBVP for the bending vi-
2
brations of the beam is written in L –Hilbert space language as in
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Theorem 2.1, namely

differential equation 𝑑2𝑢(𝑡)
𝑑𝑡2

= −𝜍2𝐴𝑢(𝑡) , 𝑡 ∈ R , (4.4)

V (at 𝑡 = 0) 𝑢(𝑡)|𝑡=0 = 𝑢0 ∈ L2,
𝑑𝑢(𝑡)
𝑑𝑡

|

|

|

|𝑡=0
= �̇�0 ∈ L2,

with given IV 𝑢0, �̇�0 ∈ L2. The positive, selfadjoint differential (ex-
tension) operator 𝐴 ⊇ �̂� of 4th order has to be chosen according to
Theorem 4.6 for the considered support, (a)–(b), (b)–(b), etc., multi-
plied with the material constant 𝜍2 ∶= 𝐸𝐼

𝜌Acs
arising from the constant

cross-sectional area Acs, the mass density per unit length 𝜌, the elas-
ticity modulus 𝐸 for the material of the beam, and the second area
moment 𝐼 of the cross-section, e.g. Ref. 2, etc.

With the purely discrete spectrum {𝑎𝑛 ≥ 0 ∣ 𝑛 ∈ N} of 𝐴 and
corresponding normalized eigenvectors 𝜓𝑛 ∈ L2, 𝑛 ∈ N, constituting an
ONB, the solution of the IBVP (4.4) is given with (2.6) by the spectral
decomposition

𝑢(𝑡) =
∞
∑

𝑛=1

(

cos(𝑡𝜍
√

𝑎𝑛)⟨𝜓𝑛|𝑢0⟩ +
sin(𝑡𝜍

√

𝑎𝑛)

𝜍
√

𝑎𝑛
⟨𝜓𝑛|�̇�0⟩

)

𝜓𝑛 , 𝑡 ∈ R . (4.5)

Recall, the operator 𝐴 is 𝑑4

𝑑𝑥4
with a specific domain of definition

consisting of smooth functions satisfying the BV (regularity). There-
fore, the eigenequation for an eigenfunction 𝜓𝑛 is just the ordinary
differential equation of 4th order,

𝐴𝜓𝑛(𝑥) = 𝜓 ′′′′
𝑛 (𝑥) = 𝑎𝑛𝜓𝑛(𝑥) , ∀𝑥 ∈ (0,𝓁) , 𝑎𝑛 ≥ 0 , (4.6)

where e.g. the support (a)–(b) causes the BV 𝜓𝑛(0) = 0, 𝜓𝑛(𝓁) =
, 𝜓 ′

𝑛(𝓁) = 0, 𝜓 ′′
𝑛 (0) = 0.

ummary 4.9. The eigenequation BVP (4.6) is analytically solvable
nly for BV (a)–(a), add-(i), add-(ii), and add-(iii) of group (I) in Corol-
ary 4.7. For group (II) the eigenequation (4.6) is solvable numerically, only,
f. Ref. 2 and references therein.

.6. Euler–Bernoulli for BV (a)–(a), add-(i), add-(ii), add-(iii) of group (I)

In the four BV cases of Corollary 4.7(I) the eigenequation (4.6)
s solvable analytically. Since each positive, selfadjoint 𝐴 = �̂� is the

square of one of the four Laplacians in Corollary 4.4, the eigenspectrum
{𝑎𝑛 ∣ 𝑛 ∈ N} of 𝐴 = (−𝛥. .)2 is the square of the eigenvalues
f the Laplacians, respectively, however with the same normalized
igenvectorfunctions 𝜓𝑛, 𝑛 ∈ N, as in Section 4.3,

a)–(a) 𝐴 = (−𝛥𝐷𝐷)2 ∶ 𝑎𝑛 =
( 𝑛𝜋
𝓁

)4, 𝜓𝑛(𝑥) =
√

2
𝓁

sin( 𝑛𝜋
𝓁
𝑥) ;

dd-(i) 𝐴 = (−𝛥𝑁𝑁 )2 ∶ 𝑎𝑛 =
( (𝑛 − 1)𝜋

𝓁

)4, 𝜓𝑛(𝑥)
𝑛≠1
=

√

2
𝓁

cos(
(𝑛 − 1)𝜋

𝓁
𝑥) ;

dd-(ii) 𝐴 = (−𝛥𝐷𝑁 )2 ∶ 𝑎𝑛 =
( (2𝑛 − 1)𝜋

2𝓁
)4, 𝜓𝑛(𝑥) =

√

2
𝓁

sin(
(2𝑛 − 1)𝜋

2𝓁
𝑥) ;

add-(iii) 𝐴 = (−𝛥𝑁𝐷)2 ∶ 𝑎𝑛 =
( (2𝑛 − 1)𝜋

2𝓁
)4, 𝜓𝑛(𝑥) =

√

2
𝓁

cos(
(2𝑛 − 1)𝜋

2𝓁
𝑥) .

n each case the unique solution of the Euler–Bernoulli IBVP (4.4)
s given by Eq. (4.5). For add-(i) with 𝐴 = (−𝛥𝑁𝑁 )2 we have for
𝑛 = 1 the eigenvalue 𝑎1 = 0 with eigenfunction 𝜓1(𝑥) = 1

√

𝓁
, and

t holds cos(𝑡𝜍
√

𝑎1)
𝑎1=0= cos(0) = 1 and sin(𝑡𝜍

√

𝑎1)
𝜍
√

𝑎1

𝑎1=0= 𝑡 in accordance
with Eq. (2.4).

5. Bending vibrations of a beam versus wave swinging of a string

Here we compare the solution for the beam bending equation de-
rived in the prior section with the solution of a wave equation. Directly
comparable are the support case (a)–(a) for the Euler–Bernoulli IBVP
7

and homogeneous Dirichlet BV for the wave IBVP, only. ‖
5.1. Bending vibrations with (a)–(a) support of the beam

We take the (a)–(a) operator 𝐴 = (−𝛥𝐷𝐷)2 for the Euler–Bernoulli
IBVP from (4.4). The eigenquantities for 𝐴 = (−𝛥𝐷𝐷)2 are stated in
Section 4.6. The inner products of the eigenvectors 𝜓𝑛 with the IV 𝑢0, �̇�0,

𝑛 ∶=
√

2
𝓁
⟨𝜓𝑛|𝑢0⟩ , �̇�𝑛 ∶=

√

2
𝓁
⟨𝜓𝑛|�̇�0⟩ , (5.1)

ppearing in (4.5), constitute just the sine Fourier coefficients 𝑆𝑛 and
�̇�𝑛 of the (odd extensions of the) IV functions 𝑢0, �̇�0 ∈ L2, respectively.
Then the unique solution (4.5) of the Euler–Bernoulli IBVP is the
Fourier series expansion

𝑢(𝑡)(𝑥) = 𝑢(𝑥, 𝑡) =
∞
∑

𝑛=1

[

𝑆𝑛 cos(𝜔𝑛𝑡) +
�̇�𝑛
𝜔𝑛

sin(𝜔𝑛𝑡)
]

sin( 𝑛𝜋
𝓁
𝑥) (5.2)

for all 𝑥 ∈ [0,𝓁] and all 𝑡 ∈ R, where 𝜔𝑛 ∶= 𝜍
√

𝑎𝑛 =
( 𝑛𝜋

𝓁

)2𝜍 for each
∈ N.

For completeness we state the Euler–Bernoulli (E-B) IBVP in func-
ion language with ordinary solution function 𝑢(𝑡)(𝑥) = 𝑢(𝑥, 𝑡) and
upport (a)–(a),

-B PDE 𝜕2𝑡 𝑢 = −𝜍2𝜕4𝑥𝑢 , 𝑥 ∈ (0,𝓁) ,

𝑡 ∈ R ,

V (at 𝑡 = 0) 𝑢(𝑥, 0) = 𝑢0(𝑥) , 𝜕𝑡𝑢(𝑥, 0) = �̇�0(𝑥) , 𝑥 ∈ (0,𝓁) ,

BV 𝑢(0, 𝑡) = 𝑢(𝓁, 𝑡) = 𝜕2𝑥𝑢(0, 𝑡) = 𝜕2𝑥𝑢(𝓁, 𝑡) = 0 , 𝑡 ∈ R .

5.2. Wave swinging with homogeneous Dirichlet BV of the string

The IBVP for the wave equation in one spatial dimension with
homogeneous Dirichlet BV is written in function language as

wave PDE 𝜕2𝑡 𝑢 = 𝜍2𝜕2𝑥𝑢 , 𝑥 ∈ (0,𝓁) , 𝑡 ∈ R ,

IV (at 𝑡 = 0) 𝑢(𝑥, 0) = 𝑢0(𝑥) , 𝜕𝑡𝑢(𝑥, 0) = �̇�0(𝑥) , 𝑥 ∈ (0,𝓁) ,

BV 𝑢(0, 𝑡) = 𝑢(𝓁, 𝑡) = 0 , 𝑡 ∈ R ,

here 𝜍 > 0 is the wave speed, and 𝑢0(𝑥), �̇�0(𝑥) are two given IV functions.
The solution can be interpreted as a vibrating string (of a violin or
guitar) with length 𝓁 > 0, which is fixed at both ends. In Hilbert space
language we have

wave equation 𝑑2𝑢(𝑡)
𝑑𝑡2

= −𝜍2(

=𝐴
⏞⏞⏞
−𝛥𝐷𝐷 )𝑢(𝑡) , 𝑡 ∈ R ,

IV (at 𝑡 = 0) 𝑢(𝑡)|𝑡=0 = 𝑢0 ∈ L2 ,
𝑑𝑢(𝑡)
𝑑𝑡

|

|

|

|𝑡=0
= �̇�0 ∈ L2 ,

ith given IV 𝑢0, �̇�0 ∈ L2. The BV are covered by the positive, selfadjoint
irichlet Laplacian 𝐴 = −𝛥𝐷𝐷 from Corollary 4.4. The L2–solution

rajectory is given by (4.5) but here with the eigenvalues 𝑎𝑛 =
( 𝑛𝜋

𝓁

)2

for 𝐴 = −𝛥𝐷𝐷 and eigenfunctions 𝜓𝑛(𝑥) =
√

2
𝓁
sin( 𝑛𝜋

𝓁
𝑥) as before, cf.

Section 4.3. With the Fourier coefficients 𝑆𝑛 and �̇�𝑛 of Eq. (5.1) the
solution is written like the Fourier series expansion (5.2), however now
with 𝜔𝑛 ∶= 𝜍

√

𝑎𝑛 =
𝑛𝜋
𝓁
𝜍, 𝑛 ∈ N.

ummary 5.1. The solutions, Euler–Bernoulli and wave, differ only in the
xponent 𝑗 = 2 or 𝑗 = 1 for the associated selfadjoint, positive differential
perators 𝐴 = (−𝛥𝐷𝐷)𝑗 .

. Proof of Theorems 4.6 and 4.8 from Section 4.4

Part (a). By Ref. 12 theorem 2.6(2) there is a 𝑐 > 0 so that (‖.‖ is
he L2–norm)

𝜉′‖ ≤ 𝑐
(

‖𝜉‖ + ‖𝜉′′‖
)

, ∀𝜉 ∈ W2.
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Consequently, we arrive at the following estimate for the second
Sobolev norm ‖.‖2

‖𝜉‖22 = ‖𝜉‖2 + ‖𝜉′‖2 + ‖𝜉′′‖2 ≤ ‖𝜉‖2 + 𝑐2
(

‖𝜉‖ + ‖𝜉′′‖
)2 + ‖𝜉′′‖2

= (1 + 𝑐2)‖𝜉‖2 + (1 + 𝑐2)‖𝜉′′‖2 + 2𝑐2‖𝜉‖‖𝜉′′‖
⋆
≤ (1 + 𝑐2)‖𝜉‖2 + (1 + 𝑐2)‖𝜉′′‖2 + 𝑐2

(

‖𝜉‖2 + ‖𝜉′′‖2
)

= (1 + 2𝑐2)
(

‖𝜉‖2 + ‖𝜉′′‖2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=∶ ‖𝜉‖2𝑠

)

≤ (1 + 2𝑐2)
(

‖𝜉‖2 + ‖𝜉′‖2 + ‖𝜉′′‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= ‖𝜉‖22

)

.

At
⋆
≤ we used 0 ≤ (𝑎 − 𝑏)2 = 𝑎2 + 𝑏2 − 2𝑎𝑏, therefore 2𝑎𝑏 ≤ 𝑎2 + 𝑏2. That

means, the norm ‖.‖𝑠 and the second Sobolev norm ‖.‖2 are equivalent
on W2.

For the demonstration how to proceed, let us take for example the
support case (a)–(b); the other cases work analogously. For (a)–(b) it is
�̂� = 𝛿−−𝛿+−𝛿−+𝛿++. Taking adjoints according to Lemma 4.3 one gets

⟨𝜉|�̂�𝜂⟩ = ⟨𝛿−+𝛿++𝜉|𝛿−+𝛿++𝜂⟩ , ∀𝜉 ∈ dom(𝛿−+𝛿++) , ∀𝜂 ∈ dom(�̂�) ⊆W4.

We define the positive sesquilinear form 𝑠 by

𝑠(𝜉, 𝜂) ∶= ⟨𝛿−+𝛿++𝜉|𝛿−+𝛿++𝜂⟩,

for 𝜉, 𝜂 ∈ dom(𝑠) ∶= dom(𝛿−+𝛿++) = {𝜂 ∈ W2 ∣ 𝜂(0) = 0, 𝜂(𝓁) = 0, 𝜂′(𝓁) =
0} (since W2 ⊆ C1([0,𝓁]) the boundary terms are well defined). Because
of the equivalence of ‖.‖𝑠 and the second Sobolev norm ‖.‖2, it follows
that the form 𝑠 is closed, since {𝜉 ∈ W2 ∣ 𝜉(0) = 0, 𝜉(𝓁) = 0, 𝜉′(𝓁) = 0} is
a ‖.‖2–closed subspace of the Sobolev space W2. Especially, the product
operator 𝛿−+𝛿++ is closed.

We now cite9 subsection VI § 2, 1 with a result, which is valid for
every positive closed form in any real or complex Hilbert space  (here
 = L2).

Theorem 6.1 (First Representation Theorem9). For the positive closed form
𝑠 there exists a positive, selfadjoint operator 𝐴 acting on , such that:

(i) dom(𝐴) ⊆ dom(𝑠), and 𝑠(𝜉, 𝜂) = ⟨𝜉|𝐴𝜂⟩, ∀𝜉 ∈ dom(𝑠), ∀𝜂 ∈ dom(𝐴).
(ii) dom(𝐴) is a form core for 𝑠.
(iii) If for 𝜂 ∈ dom(𝑠) and 𝜑 ∈  it holds 𝑠(𝜉, 𝜂) = ⟨𝜉|𝜑⟩ for all 𝜉 from

a form core of 𝑠, then 𝜂 ∈ dom(𝐴) and 𝐴𝜂 = 𝜑.

Moreover, uniqueness of 𝐴 is given by (i).

Suppose 𝜉 ∈ W2 and 𝜂 ∈ W4. Then two times integrating partially
leads to (extension from smooth functions by Proposition 4.2(b))

⟨𝜉′′|𝜂′′⟩ =
[

𝜉′𝜂′′
]𝓁

0
−
[

𝜉𝜂′′′
]𝓁

0
+ ⟨𝜉|𝜂′′′′⟩ . (6.1)

Recall, W𝑚 ⊆ C𝑘([0,𝓁]) for 𝑚 > 𝑘 and so the boundary terms are well
defined. Inserting 𝜉 ∈ dom(𝑠) and 𝜂 ∈ W4 ∩dom(𝑠) in (6.1), we arrive at

⟨𝜉′′|𝜂′′⟩ = − 𝜉′(0)𝜂′′(0) + ⟨𝜉|𝜂′′′′⟩.

onsequently we arrive at the equivalence

(𝜉, 𝜂) = ⟨𝜉′′|𝜂′′⟩ = ⟨𝜉|𝜂′′′′⟩ ∀𝜉 ∈ dom(𝑠) ⇔ 𝜂′′(0) = 0.

For 𝜂 ∈ W4 ∩ dom(𝑠) satisfying 𝜂′′(0) = 0 we conclude from (iii) of the
first representation theorem that 𝜂 ∈ dom(𝐴) and 𝐴𝜂 = 𝜂′′′′. In other
words,

dom(�̂�) = {𝜂 ∈ W4 ∣ 𝜂(0) = 0 , 𝜂(𝓁) = 0 , 𝜂′(𝓁) = 0 , 𝜂′′(0) = 0} ⊆ dom(𝐴),

and consequently, 𝐴 is an extension of �̂� = 𝛿−−𝛿+−𝛿−+𝛿++.
If conversely, 𝜂 ∈ dom(𝐴) ∩W4, then doubled partial integration for

all 𝜉 ∈ dom(𝑠) compared with (i) of the first representation Theorem 6.1
ensures 𝜂′′(0) = 0. Thus dom(�̂�) = dom(𝐴) ∩ W4.

From example 2.13 of Ref. 9 subsection VI § 2, 4 one concludes that
𝐴 = (𝛿 𝛿 )∗𝛿 𝛿 .
8

−+ ++ −+ ++
So far we have proven Theorem 4.6 up to the stated uniqueness.

Part (b). Let �̂� be one support case. First note that the above form 𝑠 is
a closed extension of the positive form

̂(𝜉, 𝜂) ∶= ⟨𝜉|�̂�𝜂⟩, 𝜉, 𝜂 ∈ dom(�̂�) ∶= dom(�̂�).

For the proof that 𝑠 is indeed the smallest closed extension of �̂� see
part (d). The heuristics behind that is given here: First remember, the
norm ‖.‖𝑠 is equivalent to the second Sobolev norm ‖.‖2 by part (a),
so the ‖.‖𝑠–closure of dom(�̂�) coincides with its closure with respect
o ‖.‖2 within W2. Now take into account the fact that 𝜉 ∈ W2 does
ot possess a boundary evaluation for 𝜉′′ and 𝜉′′′, only for 𝜉 and 𝜉′.
o, when performing the ‖.‖2–closure of dom(�̂�) = dom(�̂�) within W2,
he BV for 𝜉′′ and 𝜉′′′ of 𝜉 ∈ dom(�̂�) are no longer respected, and the
.‖2–closure of dom(�̂�) should agree with

dom(𝑠) = {𝜉 ∈ W2 ∣ 𝜉 fulfills BV for 𝜉, 𝜉′ of �̂�, not for higher derivat.}.

onsequently, 𝑠 is the smallest closed extension, i.e. the closure, of the
ositive form �̂�, and 𝐴 is the Friedrichs extension of �̂�,9 subsection VI
2, 3.

For the proof of uniqueness of 𝐴, assume that �̆� ⊇ �̂� is a posi-
ive, selfadjoint extension of �̂�. Then the corresponding positive form
�̆�(𝜉, 𝜂) = ⟨𝜉|�̆�𝜂⟩, 𝜉, 𝜂 ∈ dom(�̆�) ∶= dom(�̆�), is closable, its closure
e denoted by the same symbol �̆�. The operator �̆� is the operator
ssociated to �̆� by the first representation theorem, corollary 2.2 of
ef. 9 subsection VI § 2, 1, that is,

�̆�(𝜉, 𝜂) = ⟨𝜉|�̆�𝜂⟩ , ∀𝜉 ∈ dom(�̆�) , ∀𝜂 ∈ dom(�̆�) ⊆ dom(�̆�).

ince 𝑠 is the smallest closed form extending �̂�, one concludes �̂� ⊆ 𝑠 ⊆ �̆�.
f dom(�̆�) ⊆ dom(𝑠) ⊆ dom(�̆�), then by restriction to dom(𝑠),

(𝜉, 𝜂) = �̆�(𝜉, 𝜂) = ⟨𝜉|�̆�𝜂⟩ , ∀𝜉 ∈ dom(𝑠) , ∀𝜂 ∈ dom(�̆�) ⊆ dom(𝑠).

ccording to the uniqueness stated in (i) in the first representation
heorem, it follows �̆� = 𝐴 and �̆� = 𝑠. So, 𝐴 is the unique positive,
elfadjoint extension of �̂�, which fulfills the stated property dom(𝐴) ⊆
om(𝑠).

art (c). We prove here Theorem 4.8. The identical embeddings W2 ↪
1 ↪ L2 are compact by Proposition 4.2(d). The equivalence of norms

nsures (dom(𝑠), ‖.‖𝑠) ↪ L2 to be compact. So (a) and (b) of Theorem 4.8
ollow from Ref. 15 proposition 43.5-11, a result outlined also in many
urther textbooks.

We turn to Theorem 4.8(c). 𝜂 contained in the kernel of 𝐴 means
∈ dom(𝐴) with 𝐴𝜂 = 0 (kernel = eigenspace to eigenvalue zero), which

eads to 0 = ⟨𝜂|𝐴𝜂⟩ = 𝑠(𝜂, 𝜂) = ‖𝜂′′‖2. Thus 𝜂′′ = 0. This is a vanishing
econd distributional derivative, so we may conclude 𝜂(𝑥) = 𝑎+ 𝑏𝑥. Up
o (a)–(c), (c)–(c), and add-(i), the other support BV possibilities imply
= 𝑏 = 0 and consequently 𝜂 = 0. Inserting the BV (a)–(c), (c)–(c),

r add-(i) into 𝜂(𝑥) = 𝑎 + 𝑏𝑥 finally proves (c). For (a)–(c) and add-(i)
he eigenspace to the eigenvalue zero is one-dimensional, whereas for
c)–(c) the kernel is two-dimensional.

art (d). We use the Poincaré estimate, see Ref. 12 section 2.3,

𝜉‖ ≤ 𝑘
(

‖𝜉′‖ + |⟨1|𝜉⟩|
)

, ∀𝜉 ∈ W1 , (6.2)

ith a constant 𝑘 > 0. Here ⟨1|𝜉⟩ = ∫ 𝓁
0 𝜉(𝑥) 𝑑𝑥 is the inner product of

with the constant unit function 1(𝑥) = 1 for all 𝑥 ∈ (0,𝓁). Applying
6.2) to 𝜉′ yields

𝜉′‖ ≤ 𝑘
(

‖𝜉′′‖ + |⟨1|𝜉′⟩|
)

, ∀𝜉 ∈ W2 . (6.3)

ecall, 𝜉 ∈ W2 ⊆ C1([0,𝓁]) is continuously differentiable, and 𝜉′′ is
efined in the distributional sense. Then for all 𝜉 ∈ W2,

𝜉‖2𝑠 = ‖𝜉‖2 + ‖𝜉′′‖2
(6.2)
≤ 𝑘2

[

‖𝜉′‖ + |⟨1|𝜉⟩|
]2 + ‖𝜉′′‖2

(6.3)
≤ 𝑘2

[

𝑘
(

‖𝜉′′‖ + |⟨1|𝜉′⟩|
)

+ |⟨1|𝜉⟩|
]2 + ‖𝜉′′‖2

( 2 ′ 2 ′′ 2) 2
≤ ⋯ ≤ 𝑑 ‖𝜉‖ + ‖𝜉 ‖ + ‖𝜉 ‖ = 𝑑‖𝜉‖2
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with some constant 𝑑 > 0. For the latter inequality one has to use the
stimate |⟨1|𝜂⟩| ≤ ‖1‖‖𝜂‖ and inequalities like 2𝑎𝑏 ≤ 𝑎2+𝑏2 as in part (a).

Thus the norm ‖𝜉‖2𝑡 ∶= ‖𝜉′′‖2 + |⟨1|𝜉′⟩|2 + |⟨1|𝜉⟩|2 is a third norm on
W2 being equivalent to ‖.‖𝑠 and the second Sobolev norm ‖.‖2. The
associated inner product reads

⟨𝜉|𝜂⟩𝑡 = ⟨𝜉′′|𝜂′′⟩ + ⟨𝜉′|1⟩⟨1|𝜂′⟩ + ⟨𝜉|1⟩⟨1|𝜂⟩ , ∀𝜉, 𝜂 ∈ W2.

Suppose that the closure �̂� of the form �̂�(𝜉, 𝜂) = ⟨𝜉|�̂�𝜂⟩, 𝜉, 𝜂 ∈
om(�̂�) = dom(�̂�), from part (b) does not agree with the closed, positive
orm 𝑠 from part (a). That means, we have the proper form inclusion
�̂� ⊂ 𝑠, or equivalently, dom(�̂�) is a proper closed subspace of dom(𝑠)
with respect to the equivalent norms ‖.‖𝑡 ∼ ‖.‖𝑠 ∼ ‖.‖2 on W2. Then
there exists a 𝜗 ∈ dom(𝑠), which is orthogonal to dom(�̂�) with respect to
he inner product ⟨.|.⟩𝑡, meaning

= ⟨𝜉|𝜗⟩𝑡 = ⟨𝜉′′|𝜗′′⟩ + ⟨𝜉′|1⟩⟨1|𝜗′⟩ + ⟨𝜉|1⟩⟨1|𝜗⟩ , (6.4)

for all 𝜉 ∈ dom(�̂�), or equivalently, for all 𝜉 from its form core dom(�̂�) =
om(�̂�).

emma 6.2. Let 𝜙 ∈ L2. The following assertions are valid:

(a) If 0 = ⟨𝜉′|𝜙⟩ for all 𝜉 ∈ C∞
𝑐 ((0,𝓁)), then 𝜙 = 𝑎 in (0,𝓁) with an

𝑎 ∈ C.
(b) Suppose a 𝛽 ∈ C such that 0 = ⟨𝜉′′|𝜙⟩ − 2𝛽⟨𝜉|1⟩ for all 𝜉 ∈

C∞
𝑐 ((0,𝓁)). Then there exist constants 𝑎, 𝑏 ∈ C with 𝜙 = 𝑎+𝑏𝑥+𝛽𝑥2

in (0,𝓁).

n the context of distribution theory, (a) is well known as Hilbert’s
emma.

roof. Fix a 𝜑0 ∈ C∞
𝑐 ((0,𝓁)) with −1 = ⟨1|𝜑0⟩ = ∫ 𝓁

0 𝜑0(𝑦) 𝑑𝑦. For each
𝜉 ∈ C∞

𝑐 ((0,𝓁)) define 𝜓(𝑥) ∶= ∫ 𝑥0
(

𝜉(𝑦)+⟨1|𝜉⟩𝜑0(𝑦)
)

𝑑𝑦 for 𝑥 ∈ (0,𝓁). Then
𝜓 ∈ C∞

𝑐 ((0,𝓁)) with compact support contained in supp(𝜑0) ∪ supp(𝜉).
It holds 𝜓 ′(𝑥) = 𝜉(𝑥) + ⟨1|𝜉⟩𝜑0(𝑥) and 𝜓 ′′(𝑥) = 𝜉′(𝑥) + ⟨1|𝜉⟩𝜑′

0(𝑥) for all
𝑥 ∈ (0,𝓁).
(a) Inserting 𝜓 ∈ C∞

𝑐 ((0,𝓁)) with 𝑎 ∶= −⟨𝜑0|𝜙⟩ yields 0 = ⟨𝜓 ′
|𝜙⟩ =

⟨𝜉|𝜙 − 𝑎⟩. 𝜉 may be chosen arbitrarily and C∞
𝑐 ((0,𝓁)) is dense in L2,

thus 𝜙 − 𝑎 = 0.
(b) Double partial integration (PI) leads to 0 = ⟨𝜉′′|𝜙⟩ − 2𝛽⟨𝜉|1⟩

𝑃𝐼
=

⟨𝜉′′|𝜙 − 𝛽𝑥2⟩. Inserting 𝜓 ∈ C∞
𝑐 ((0,𝓁)) and defining �̃� ∶= 𝜙 − 𝛽𝑥2 yields

0 = ⟨𝜓 ′′
|�̃�⟩ = ⟨𝜉′|�̃�⟩ + ⟨𝜉|1⟩⟨𝜑′

0|�̃�⟩ = ⟨𝜉′|�̃�⟩ + ⟨𝜉|𝑏⟩
𝑃𝐼
= ⟨𝜉′|�̃�⟩ − ⟨𝜉′|𝑏𝑥⟩

= ⟨𝜉′|�̃� − 𝑏𝑥⟩, where 𝑏 ∶= ⟨𝜑′
0|�̃�⟩

So by (a) it follows �̃� − 𝑏𝑥 = 𝑎, so 𝜙 = 𝑎 + 𝑏𝑥 + 𝛽𝑥2. ■

Restricting the orthogonality (6.4) to test functions 𝜉 ∈ C∞
𝑐 ((0,𝓁)),

we get

0 = ⟨𝜉′′|𝜗′′⟩ + ⟨1|𝜗′⟩ ⟨𝜉′|1⟩
⏟⏟⏟

=0

+⟨1|𝜗⟩⟨𝜉|1⟩ = ⟨𝜉′′|𝜗′′⟩ + ⟨1|𝜗⟩
⏟⏟⏟

−2𝛽

⟨𝜉|1⟩,

since ⟨1|𝜉′⟩ = ∫ 𝜗0 𝜉′(𝑥) 𝑑𝑥 = 𝜉(𝓁) − 𝜉(0) = 0 because of the compact
support of 𝜉. Then part (b) of the previous lemma implies

𝜗′′ = 𝑎 + 𝑏𝑥 −
⟨1|𝜗⟩
2

𝑥2 , in (0,𝓁), (6.5)

an identity being valid in the distributional or L2–sense, since 𝜗 ∈ W2.
In terms of test functions with their compact supports, it is not possi-

le to specify 𝜗 in further details, one has to take BV into account. Let us
educe the orthogonality relation (6.4) to boundary terms. This has to
e done for every case of �̂� or �̂� separately. Moreover, for convenience
e set from now on 𝓁 ∶= 1 without restriction of generality. As example
e choose case (b)–(c) with the BV for all 𝜉 ∈ dom(�̂�):

(0) = 0, 𝜉′(0) = 0, 𝜉′′(1) = 0, 𝜉′′′(1) = 0.

For the above 𝜗 ∈ dom(𝑠): 𝜗(0) = 0 and 𝜗′(0) = 0. Inserting (6.5)
′

9

leads with the BV 𝜉(0) = 0 and 𝜉 (0) = 0 for 𝜉 and doubled partial i
integration (PI) to

⟨𝜉′′|𝜗′′⟩ = ⟨𝜉′′|𝑎 + 𝑏𝑥 −
⟨1|𝜗⟩
2

𝑥2⟩

𝑃𝐼
=

[

𝜉′(𝑥)
(

𝑎 + 𝑏𝑥 −
⟨1|𝜗⟩
2

𝑥2
)

]1

0
−
[

𝜉(𝑥)
(

𝑏 − ⟨1|𝜗⟩𝑥
)

]1

0
− ⟨𝜉|1⟩⟨1|𝜗⟩

= 𝜉′(1)
(

𝑎 + 𝑏 −
⟨1|𝜗⟩
2

)

− 𝜉(1)
(

𝑏 − ⟨1|𝜗⟩
)

− ⟨𝜉|1⟩⟨1|𝜗⟩ .

oting ⟨𝜉′|1⟩ = ∫ 1
0 𝜉′(𝑥) 𝑑𝑥 = 𝜉(1) and ⟨1|𝜗′⟩ = ∫ 1

0 𝜗
′(𝑥) 𝑑𝑥 = 𝜗(1) by the

V, now the orthogonality relation (6.4) reads as

= 𝜉′(1)
(

𝑎 + 𝑏 −
⟨1|𝜗⟩
2

)

+ 𝜉(1)
(

𝜗(1) − 𝑏 + ⟨1|𝜗⟩
)

, ∀𝜉 ∈ dom(�̂�).

he expressions in the round brackets vanish because of the following
eason: By the boundary extension theorem, e.g. Ref. 16 § 14, 6.6, to all
iven BV 𝜅(𝑚)(0) and 𝜅(𝑛)(1) there exists a function 𝜅 ∈ C∞([0, 1]) ⊂ W4

atisfying the specified BV. That means, when varying 𝜉 in dom(�̂�), then
′(1) and 𝜉(1) take arbitrary values independently of each other, and so

these expressions have to vanish,

2𝑎 + 2𝑏 − ⟨1|𝜗⟩ = 0 , −𝑏 + ⟨1|𝜗⟩ + 𝜗(1) = 0 . (6.6)

n the other hand, (6.5) implies with the BV 𝜗(0) = 0 and 𝜗′(0) = 0
hat

(𝑥) = 𝑎
2
𝑥2 + 𝑏

6
𝑥3 −

⟨1|𝜗⟩
24

𝑥4 . (6.7)

s a first consequence we get for 𝑥 = 1,

− 12𝑎 − 4𝑏 + ⟨1|𝜗⟩ + 24𝜗(1) = 0 . (6.8)

nd when integrating (6.7) and factor out ∫ 1
0 𝜗(𝑥) 𝑑𝑥 = ⟨1|𝜗⟩ one arrives

t

− 20𝑎 − 5𝑏 + 121⟨1|𝜗⟩ = 0 . (6.9)

ogether (6.6), (6.8), and (6.9) build the system of linear equations

2 2 −1 0
0 −1 1 1

−12 −4 1 24
−20 −5 121 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑎
𝑏

⟨1|𝜗⟩
𝜗(1)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

,

hich is uniquely solvable because of a nonzero determinant, and thus

= 𝑎 = 𝑏 = ⟨1|𝜗⟩ = 𝜗(1)
(6.7)
⇒ 𝜗 = 0.

his means, there does not exist a vector 0 ≠ 𝜗 ∈ dom(𝑠), which is
rthogonal to dom(�̂�) with respect to ⟨.|.⟩𝑡. This is a contradiction to
ur above assumption that the closure �̂� of the form �̂� of part (b) does

not agree with the closed, positive form 𝑠 from part (a). In other words,
̂ = 𝑠 with dom(�̂�) = dom(𝑠).

The other support cases work analogously. But for (a)–(b), (b)–
b), and (c)–(c) one may arrive faster at the aim 𝜗 = 0 with the
ollowing argumentation: Remark first that for (a)–(b) and (b)–(b) it is
1|𝜗′⟩ = ∫ 1

0 𝜗
′(𝑥) 𝑑𝑥 = 𝜗(1) − 𝜗(0) = 0 because of the BV 𝜗(0) = 0 = 𝜗(1)

or the orthogonal 𝜗 ∈ dom(𝑠). Then find all polynomials 𝑝(𝑥) up to
egree 4, which fulfill the associated 4 BV. Of course 𝑝 ∈ dom(�̂�), and
𝑝′′|𝜗′′⟩ = ⟨𝑝′′′′|𝜗⟩ by double partial integration analogously to (6.1).
nserting 𝑝 into the orthogonality relation (6.4) yields 0 = ⟨𝑝′′′′|𝜗⟩ +
𝑝′|1⟩⟨1|𝜗′⟩+⟨𝑝|1⟩⟨1|𝜗⟩. Noting that ⟨𝑝′′′′|𝜗⟩ = 𝑐⟨1|𝜗⟩ with some constant
∈ C, then one arrives at ⟨1|𝜗′⟩ = 0 = ⟨1|𝜗⟩, simplifying (6.5) to

′′(𝑥) = 𝑎 + 𝑏𝑥, and thus we end up with a simpler system of linear
quations.
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