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1. Introduction 

According to the Circular Economy (CE) Report of the Ellen 
MacArthur Foundation, only 8.6 % of the global economy 
implemented circularity for their products and materials [1]. 
One reason for this small number is the embedded nature of the 
linear system in the economy [1]. The problem of the Linear 
Economy is traced back to the high level of material 
consumption [2], which ends up in substantial environmental 
impacts, such as significant energy-related emissions, air 
pollution, climate change, and lots more [3]. Supporting the 
implementation of the CE is an integral approach to reducing 
these unfavourable impacts on the environment since this 
solution aims to maintain the products, equipment, and 
infrastructure to improve resource productivity [4]. 

A vital enabler of the CE is digitisation. Digital solutions 
support the CE digital platforms with technologies such as 
Machine Learning (ML) [5]. The use of ML for implementing 
the CE has become increasingly popular in the last few years. 

ML enables an automatic recommendation of what to do with a 
product at the end of its life based on the CE's capabilities. 
However, the ML approach includes lifetime data and data-
sharing challenges. Therefore, this research paper develops a 
design for a return process based on the CE recommendations 
of a ML algorithm. The ML algorithm is created for a sharing 
economy (SE) that tracks and publishes lifetime data to address 
the challenges of lifetime data and data sharing. 

2. Theoretical background 

2.1. Digital Technologies in the CE 

Based on the results of Antikainen et al. [5], digitalisation is 
a massive enabler for the realisation of CE. The different 
technologies offer opportunities for successful implementation 
[5]. 

According to Pagoropoulos et al. [6], three different 
application fields of Digital Technologies exist in the CE. The 
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first is "Data collection", which includes vital technologies 
such as Radio Frequency Identification and the Internet of 
Things. This builds the basis for the later use of Digital 
Technologies. The second field is "Data integration", with 
Relational Databased Management Systems and Product 
Lifecycle Management. The last is about "Data analysis" and 
includes ML, Artificial Intelligence (AI) and Big Data analytics 
[6]. 

2.2. Machine Learning in the Circular Economy 

Following Pagoropoulos et al. [6], the use of AI for solving 
specific problems in the environmental sector gets increasingly 
important. AI is already used in the CE to get information about 
the correct way to recycle waste based on its material. Sensors 
and AI are reliably used to separate waste into their raw 
materials [7, 8]. In other research, deep learning techniques 
distinguish between products and allocate them to different 
material groups [9]. In the listed use cases, the focus is on 
recycling waste.  

Another AI scope of application is to accomplish reverse 
logistics. In this context, AI solves complex location and 
routing problems. However, there are many application 
possibilities in ML logistics [10]. The focus of this paper is not 
on one specific activity of the CE, but it is more about the 
general efficiency and sustainability in logistics. 

There already exist applications of analytical AI to predict 
the number of returned items. AI provides an optimal monetary 
incentive to increase the willingness of consumers to return the 
product after the usage phase instead of throwing it away [10].  

In conclusion, many approaches already exist for specific 
problems within the CE that use ML and AI.  The following 
research step focuses on what can be done to avoid waste 
generation and how AI can be helpful.  

Besides this selective assistance of AI for implementing the 
CE, AI has the potential for a systematic transformation in the 
CE [11]. Specifically meant is the decision-making of AI 
regarding the different activities within the CE - share, reuse, 
maintain, repair, repurpose, remanufacture and recycle.  

The paper does not focus on the problem of what should be 
done with the waste, but it focuses on generating less waste. It 
presents a solution for maintaining the highest value of 
products on the market. Thus extending the life cycle of the 
product and significantly reducing waste.   

2.3. Sustainable reverse logistics 

In the SE, it is part of the concept that the product is returned 
after its usage phase. That does not include further procedures 
with the product when it is broken or reaches the end of its life. 
This procedure is described in sustainable reverse logistics, 
which consists of the activities included in the CE.  

Reverse logistics is the complete process of efficient and 
effective planning, implementation and control of the flow of 
raw materials [12].  

Despite the enormous cost-saving opportunities, companies 
rarely consider reverse logistics of returned products as their 

most important "value-added" activity [13, 14]. There are 
already several ways to design a reverse logistics process 
sustainably. One option is that the returned product is collected, 
selected, re-processed, shredded and redistributed as recycled 
or remanufactured material [12]. Another reverse logistics 
process focuses more on the principles of the CE. Therefore, 
products that can be reused get a second chance in the 
secondary market. Refurbished products are sold again by the 
distributor. The assembler takes back remanufactured products, 
and recycled products are returned by the fabricator as raw 
material. Everything else ends up in the landfill [15]. The 
reverse logistics framework of Dev et al. [16] considers a 
closed-loop environment to develop its framework. In this case, 
the returned products are collected by a supplier responsible for 
recycled materials. The quantity of the returned products is 
calculated with an innovation theory (Bass) model. The 
supplier performs a typical recycling process which includes 
disassembly, recycling, remanufacturing and reassembly [16]. 

However, building on the already developed options and 
adjusting them is advantageous. In addition, implementing 
such a sustainable return process in the economy is expandable. 
There are two reasons why companies need to realise functions 
like this. The first is that companies need to see the resulting 
value of the process [17]. The second is about the effort of 
implementation.  

2.4. Sharing Economy 

Sharing is the innermost circle in the CE and describes the 
collaborative use of one product. There are various ways to do 
this, such as online platforms where a product can be offered 
or booked or companies that make the products available for 
short-term use. Thus, a SE is a perfect example of the 
successful implementation of a CE. However, the problem is 
not the sharing process but what happens afterwards. [18 20] 

Most companies dispose of the product without using a CE 
activity, so sustainability is nullified. The reason for the 
minimal implementation of reverse logistics in this sector, as 
mentioned above, is that companies need to see the added value 
or an efficient way to do it. [21] 

3. Development of the Product Return Process 

This study comprises quantitative data analysis in 
developing a ML algorithm. A product return process is created 
based on the results of the data analysis. For one SE provider, 
a published dataset of e-bike rides is used for the ML algorithm. 
The company publishes the data set citibike on its homepage 
citibikenyc.com/system-data. 

The dataset comprises 2.5 billion trips made with 16.5 
thousand e-bikes in 2020. For each trip, the information, which 
is listed in Table 1, is stored in the dataset. First, steps were 
taken to cleanse the data to obtain only relevant and correct 
data. In this context, the following measures were carried out. 
The columns that refer to the user and the location data are not 
relevant in this context and are, therefore, not considered 
further. Furthermore, some dataset data types were adjusted to 
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continue working with them. In the process, date values stored 
as text were converted to datetime and values saved as text 
were changed to floats. The column bike ID is sorted in 
ascending order, while the column start time is sorted to show 
a history per bike ID. The dataset is checked for duplicates and
missing values. The duplicates were deleted, and the average 
values of the entire column were added for the missing values. 
During cleaning, it turned out that January, February and 
March contained erroneous, unrealistic data that doesn't fit the 
remaining months. This can be seen by comparing the average 
trip amount of the months. Between April and December, the 
average is around 28 thousand trips per month, compared to an 
average of over 1 million trips from January to March. As the 
cause of the significant difference in values cannot be 
determined and filtering out incorrect values has not yielded 
successful results, the decision was made to delete the three-
month period entirely. This was done to prevent any potential 
falsification of the data evaluation in subsequent analyses.

Table 1: Information stored in the dataset

Information stored in the dataset
Bike ID End station name
Trip duration Start station GPS coordinates
Start time and date. End station GPS coordinates
Stop time and date User type
Start station id Gender 
End station id Year of birth
Start station name

Additional information is generated, including the duration 
of standing time, trip distance, and trip amount for each e-bike. 
A supervised classification algorithm is then developed to 
predict different activity classes, including sharing, reusing, 
maintaining, repairing, remanufacturing, and recycling. These 
classes and corresponding CE recommendations are added to 
the dataset as a new column. As this study represents a 
preliminary approach, the classes are artificially assigned to the 
values. The values are divided into six classes based on the 
average time it takes for a product to break down. The data is 
divided into a training and test set, with the training set 
comprising 80% of the total dataset.

The classification models Decision Tree Classifier, the 
KNeighbor Classifier, SVC Classifier, the Gaussian NM 
Classifier, and the MLP Classifier are used. All classification 
models are tested with the accuracy score, where the Decision 
Tree obtained the best result of 1.0, which means that the data 
is overfitted. The MLP Classifier obtained an accuracy score of 
0.99, the KNeigbors Classifier obtained 0.96, the SVC 
Classifier obtained 0.95, and the GaussianNB Classifier 0.88.
Therefore, the Multilayer perceptron (MLP) Classifier is used 
for further procedure due to its best accuracy score. When 
running the MLP algorithm on the presented dataset, an 
execution time of 172.144 seconds, a memory consumption of 
1324.61 MB and a CPU consumption of 80.5 % is required. To 
evaluate the performance of the MLP algorithm, cross-
validation is performed. The dataset is divided into ten subsets, 
one of these sets serves as the validation set and the model is 

trained on the remaining sets. After multiple runs, an average 
accuracy of 98.8% was obtained, confirming the algorithm's 
performance. Based on the six CE classes, a primary process to 
get a CE recommendation after each trip is developed with the 
help of the MLP classifier. This provides real-time monitoring 
and, therefore, real-time advice on what should be done with 
the product from a CE perspective.

The following procedure describes the execution process for 
obtaining the results. For each bike ID, a loop is performed. By 
sorting the trips chronologically, it is possible to determine how 
many trips have already been made with the bicycle, which is 
added to the dataset. All the other information about this trip is 
stored in a new data frame. Based on this information, the 
previous MLP algorithm assigns this trip to the suitable class. 
In the second step, the given class is checked because other 
considerations depend on the class. Nothing special must be 
considered if the class share, reuse, maintain, or repair appears. 
If the class recycle or remanufacture appears, the bike ID will 
be deleted after this trip because it is no longer part of the 
ecosystem. Figure 1 visualises the return process based on the 
CE. Since the process can be added to existing SE with already-
used transportation objects, the products may be in every class. 
Figure 1 also shows from the literature the adapted sustainable 
return process used in this concept.

In the third step, the loop looks for the second shortest start 
time, trip number two. The trip distance is cumulated with the 
trip distance of the previous trip and the standing time with the
standing time of the previous trip. The trip's start time is also
stored in the new dataset. The MLP algorithm is applied to the 
suitable class based on this information. This procedure is 
repeated several times until no trip of the same bike ID is left. 
In this case, it is moved to the following bike ID and the whole 
process is repeated until all trips are included in the new data 
frame with the information. For each class, a different process 
for further product usage is developed. The products' return 
gets more predictable based on the classes' information. The 
result section shows how the return process is adapted to the 
information that resulted through the ML Classification. 

Figure 1: Product return process
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4. Results

The product return process can be supplemented with the 
resulting information of the ML algorithm. Therefore, the 
product return process is more reliable and predictable, and the
enterprise's business can be adjusted, resulting in higher 
efficiency and a higher probability of sustainable 
implementation of CE. 

Based on the results of the ML algorithm, the different bike 
IDs are added to the six classes, with their characteristics, after 
a year of usage. Figure 2 shows the distribution of the six 
activity classes after applying the ML algorithm.

The diagram shows that the significant part is repair with 45 
%, followed by share with 35 % and reuse with 19 %. The 
classes maintain, remanufacture and recycle are significantly 
smaller. This is because the product is not returned to the 
sharing economy after the remanufacturing and recycling 
activities have been carried out.

A closer look at the individual products is necessary to learn 
more about the cycle a means of transport goes through in a 
year. The following part shows how often a product passes 
through the respective CE activity in a year. As is already clear 
from the distribution, the sharing part is the second largest. 
Since the reuse area in connection with the SE can be classified 
in the same class as share, it will be included in the sharing part 
in the following. Therefore in 53 % of the trips in one year,
sharing is the algorithm's recommendation. On average, each 
product gets this recommendation 47 times. Based on the 
Return Process, the following CE activities are intriguing: 
maintain, repair, remanufacture and recycle. Because with the 
recommendations, maintain, repair, remanufacture and recycle, 
the product is physically withdrawn from the SE so that the SE 
provider can carry out the recommendation. However, after the 
remanufacture and reuse activities, the product is no longer 
returned to the market, as already explained. Therefore, a 
product can receive a maximum of one remanufacturing or 
recycling recommendation per product. These two activities 
still increase the lifetime of the components of the product 
rather than the lifetime of the product itself. That is, the lifetime 
is increased based on a lower value. 

The activities maintain and repair increase the product's 
lifetime, as the same product is fed into the economic cycle 

several times at the same value creation level. Accordingly, 
these two CE activities can occur any number of times. The 
evaluation of the ML Algorithm showed that between 1 and 2
maintenance is performed on a product per year. Repairs occur 
much more frequently, averaging 39 per product per year. The
reason for this difference is that a repair is necessary because 
the means of transport are broken. In contrast, maintenance 
only improves performance and extends the life cycle, but it is 
not mandatory because there is no explicit fault.

Since the frequency and purposes of returning a product are 
known, it is significant when and for what reason it is returned. 
In the following, it is first shown how the usage behaviour of 
the means of transport changes seasonally over the entire year.

Consequently, it can be observed in Figure 3 that the use 
increases in the summer months and decreases during the 
winter. Accordingly, it can be deduced that the returns also 
increase over the summer and decrease in the winter. The 
following graphs check whether this hypothesis is true. The 
charts in Figure 4 show that the already suspected number of 

Figure 3: Annual distribution of the trips

Figure 4: Annual distribution of the trips for each class

Figure 2: Distribution of the frequency of the classes

supplemented
Therefore,

efficiency higher probability of sustainable 

Distribution of the frequency of the classes 

Share Reuse Maintain Repair Remanu Recycle
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returns during summer is higher than in winter. However, it 
must be mentioned that in the Maintain area, the values in
August dropped more significantly than in the other three 
activities. This, in turn, can also be traced back to the necessity 
of the activity, which is not guaranteed in maintenance. Based 
on the distribution throughout the year, the following 
recommendation can increase the value of the CE activities. In 
summer, the concentration lies on the necessary CE activities, 
such as repair, remanufacture, and recycle. During the winter, 
when there are fewer returns due to broken products, the focus
is on the activity maintain. This makes the currently 
underappreciated action maintain more efficient. To show the 
second aspect, the return reason, the input values and the 
algorithm's results must be analysed in more detail. Because,
based on the introduced values, the algorithm can only create 
predictions. Based on the values of standing time, driven 
meters and the number of trips made, the algorithm generates 
its results, which include the activities. Table 2 shows the Data 
Quality Report values of the features per activity. The values 
don't offer a significant difference between each activity class. 
Therefore, a more detailed analysis of the classes of the 
activities is necessary. Accordingly, the differences and the 
lower quartile significantly impact the classification in this 
algorithm.

Table 2: Data Quality Report of the activity classes

To visualise this data, boxplots were used. In Figure 5, it is 
clear how the activities are distributed in the case of the trip 
distance feature. The same applies to the standing time feature, 
shown in Figure 6, and the trip amount in Figure 7.

A summary of why a product is sorted out lies in the context 
of the three different features. In this case, a more detailed 

explanation cannot be provided, as two features, trip amount 
and trip distance, refer to the trips themselves, while the 
standing time feature refers to the time between trips. This also 
explains the classes that are close to each other. While a product 
is in use, the number of trips and the distance travelled
increases, but the standing time cannot be increased. The 
service life is a significant factor that can also influence the 
product's condition due to service damage. An unused product
can cause the same failures as a product used always. The 
difference is in the cause of the loss. In conclusion, the 
following points can be summarised to create a return process 
according to the best possible implementation of the CE. In this 
case, each product is returned for maintenance one to two times 
per year, 39 times for repair, one time for remanufacturing and 
one time for recycling. 0.05 % of all recommendations in one
year are to do maintenance, almost half recommend repair, 0.84 
% recommend remanufacture, and 1.15 % recycle. The rest is 
assigned to sharing. The annual distribution shows that more 
product returns occur over the summer months, the only 
exception lies in the activity maintain.

5. Conclusion and discussion

In conclusion, this is a first practice-oriented creation of a 
Product Return Process which aims to implement the CE in the 

Figure 5: Visualisation of the range of the activity classes of the feature Trip 
Distance

Figure 6: Visualisation of the range of the activity classes of the feature 
Standing time

Figure 7: Visualisation of the range of the activity classes of the feature Trip 
amount
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SE in the transportation sector. Nevertheless, it is helpful to 
implement the CE in the SE to get actual values of when and 
why the product was returned. This makes the 
recommendations that the ML algorithm creates more reliable.
In addition, it must be noted that the product's service life
increases when a repair or maintain activity is performed. This 
still needs to be taken into account in this development process.
Another valuable addition to optimising the ML algorithm 
would be the implementation of whether the product still works 
in the input data. These results are related to the presented 
problem but can also be generalised under certain conditions 
and thus applied to diverse data sets. In the following, the 
prerequisites must be fulfilled to successfully transfer machine 
learning applications to create a return process based on the CE 
activities. 

First, it must be a company that provides SE for 
transportation and records the data of its products. A suitable 
classification method with the most accurate results must be 
selected for this data set. Furthermore, this approach can be
transferred to various other products and businesses. The 
classification process is generally valid because the classes are 
created based on the individual dataset. In addition, this is 
supervised learning, which means that the classes for learning 
must already be available in the dataset. Since the result of this 
paper is a return process, the procedure can be easily applied to 
companies that want to implement CE in their organisation.

The following adjustments must be made to apply the 
procedure to companies not offering SE. Outside of an SE, it 
must first be precisely defined who is responsible for the CE 
activities as the ownership rights are transferred to the buyer. 
Furthermore, the recommendations Share and Reuse must be 
differentiated. In the case of share, the product remains with the 
same owner and is lent out. The product is passed on with reuse, 
but the owner is changed.

This raises challenges outside the SE because the company 
no longer owns the product. Hence, the responsibility of the 
product needs to be determined and recording the data is more 
complicated. Suppose the SE is for a product that is not used in 
transportation. This solution can be transferred, and it is only 
necessary to note that the data set contains the character traits 
responsible for the product's wear.
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