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Abstract

Background: Conventional methods for lung cancer detection including computed

tomography (CT) and bronchoscopy are expensive and invasive. Thus, there is still

a need for an optimal lung cancer detection technique.

Methods: The exhaled breath of 50 patients with lung cancer histologically proven

by bronchoscopic biopsy samples (32 adenocarcinomas, 10 squamous cell

carcinomas, 8 small cell carcinomas), were analyzed using ion mobility

spectrometry (IMS) and compared with 39 healthy volunteers. As a secondary

assessment, we compared adenocarcinoma patients with and without epidermal

growth factor receptor (EGFR) mutation.

Results: A decision tree algorithm could separate patients with lung cancer

including adenocarcinoma, squamous cell carcinoma and small cell carcinoma.

One hundred-fifteen separated volatile organic compound (VOC) peaks were

analyzed. Peak-2 noted as n-Dodecane using the IMS database was able to

separate values with a sensitivity of 70.0% and a specificity of 89.7%. Incorporating

a decision tree algorithm starting with n-Dodecane, a sensitivity of 76% and

specificity of 100% was achieved. Comparing VOC peaks between

adenocarcinoma and healthy subjects, n-Dodecane was able to separate values

with a sensitivity of 81.3% and a specificity of 89.7%. Fourteen patients positive for

EGFR mutation displayed a significantly higher n-Dodecane than for the 14 patients

negative for EGFR (p,0.01), with a sensitivity of 85.7% and a specificity of 78.6%.

Conclusion: In this prospective study, VOC peak patterns using a decision tree

algorithm were useful in the detection of lung cancer. Moreover, n-Dodecane

analysis from adenocarcinoma patients might be useful to discriminate the EGFR

mutation.
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Introduction

Recently the National Lung Screening Trial team reported that screening with low

dose computed tomography (CT) reduced the mortality of lung cancer by about

20%. Low dose CT is an important screening test; however, it is expensive and

there are risks associated with radiation exposure. On the other hand, breath

analysis is easy-to-use and radiation-free. Gas chromatography and mass-

spectrometry (GC/MS) [1–2] and chemical sensor matrices: quartz microbalance

[3], surface acoustic wave [4], carbon-polymer array [5], colorimetric sensor [6],

single-walled carbon nanotube [7] and gold nanoparticles [8], can detect volatile

organic compounds (VOCs) in lung cancer from human breath. In addition,

canine scent has focused on the diagnosis of lung cancer [9–10].

Ion mobility spectrometry (IMS) with multi-capillary column (MCC), a breath

analysis device, can detect specific VOCs in patients with lung cancer [11]. IMS/

MCC can detect a very low concentration of VOCs (normally in the ppbv- to

pptv-range, pg/L to ng/L-range) in less than 8 minutes total analysis time and is

superior to GC/MS as it can be applied at the bed-site and direct sampling can be

taken without preparation [11–21]. In Europe, 550 MBq b-radiation sources are

acceptable; however, for the Japanese market, regulations restrict 63Ni b-radiation

sources to under 100 MBq. Therefore in this study, a 95 MBq ß-ionization source

was used. The initial aim of this study is to confirm the reproducibility of IMS/

MCC results (using BioScout: B&S Analytik, Dortmund, Germany) for a Japanese

population.

Chemotherapy of lung cancer patients depends upon performance status,

histological features, tumor staging, and molecular characteristics. Previously, 2

drugs combination chemotherapy including platinum has been performed as a

first-line treatment for patients with advanced non-small cell lung cancer

(NSCLC) considered as a single disease despite of its histologic and molecular

heterogeneity. However, recently, the discovery of molecular abnormalities such

as epidermal growth factor receptor (EGFR) mutation, and new agents such as

EGFR tyrosine kinase inhibitor changed treatment of NSCLC. These led NSCLC

treatment to the personalized therapy. Differences of histologic type and genetic

alterations are the most important factors in decision of current lung cancer

treatment. The second aim of this study is to confirm whether VOC patterns are

able to detect histologically confirmed lung cancers, and driver mutations such as

EGFR mutation.

Methods

Breath analysis using an ion mobility spectrometer (IMS) was randomly

performed in healthy volunteers and patients with lung cancer at St. Marianna

University School of Medicine from 1 September 2011 to 14 January 2013. In all

patients with lung cancer, breath samples were collected before bronchoscopy.

The Ethics Committee of St. Marianna University School approved this study and

written informed consent was obtained from all subjects (No1820). This study was
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registered with the University Hospital Medical Information Network Clinical

Trial Registry (UMIN-CTR) (UMIN000006696, 000008328).

The exhaled breath of 50 patients (31 men, 19 women), with lung cancer

confirmed histologically by bronchoscopic biopsy specimen was compared with

39 healthy volunteers (25 men, 14 women). Smoking histories of subjects were

measured using pack-years.

Ion mobility spectrometry (IMS)

IMS (BioScout, B&S Analytik, Dortmund, Germany) combined with a multi-

capillary column (MCC, type OV-5, Multichrom Ltd, Novosibirsk, Russia) and

coupled to a spirometer (Ganhorn Medizin Electronic, Niederlauer, Germany), as

a CO2-controlled sample inlet unit was utilized. Table 1 shows the characteristics

of ion mobility spectrometer.

The major parameters of breath analysis have been previously summarized [11–

21] and will be discussed here in brief. IMS refers to the detection of ions formed

from analysis at ambient pressure within a drift tube. The term ion mobility

spectrometry refers to the method characterizing analysis in gases by their gas

phase ion mobility. Normally, the drift time of ion swarms, formed using suitable

ionization sources then passing through electrical shutters, are measured. Ion

mobility for analysis can provide a means for detecting and identifying vapors.

The drift velocity is related to the electric field strength by the mobility. Therefore,

the mobility is proportional to the inverse drift time, which will be measured at a

fixed drift length. IMS combines both high sensitivity and relatively low technical

expenditure with a high-speed data acquisition. The time to acquire a single

spectrum is in the range of 10 ms to 100 ms. Thus, IMS is an instrument suitable

for process control, but due to the occurrence of ion-molecule reactions and

relatively poor resolution of the species formed, it is generally not for

identification of unknown compounds. Compared with mass spectrometry, the

mean free path of the ions is much smaller as the dimensions of the instrument.

An ion formed has a high number of collisions with carrier gas molecules on the

drift way towards the Faraday-plate. However, because of the high vacuum

conditions in mass spectrometry, an ion formed there will normally have no

collision with other molecules during the drift. In the small time gap between the

collisions the ion will gain energy from the external electric field and lose the

energy by the next collision process. Consequently, a rather constant drift velocity

will be reached. Therefore, an ion swarm drifting under such conditions

experiences a separation process that is based on different drift velocities of ions

with different masses or geometrical structures. Collection of these ions on a

Faraday-plate delivers a time dependent signal corresponding to the mobility of

the arriving ions. Such an ion mobility spectrum contains information on the

nature of the different compounds present in the sample gas.

Compared to other analytical methods, IMS has a significantly large

information density with comparative low burden in weight, power and size.

Naturally, there are other analytical techniques, which contain much greater
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information density like mass spectrometry. Other techniques are smaller and

more economical on power like surface acoustic wave sensors. IMS shows its

specificity depending on ion size, chemistry and nature of the sample. It can be

very high, through a combination of drift time and ionization properties. When it

is always possible, hyphenated GC-IMS are preferred. By itself IMS is superior to

MS and GC with respect to utilities, gas consumption, no vacuum is required and

relatively low power requirements.

For spectrometry, a 95 MBq 63Ni ß-radiation source was applied for the

ionization of carrier gas (synthetic air). Generally, the total number of ions

formed is slightly lower using 95 MBq compared to 550 MBq. As a result, the

total number of ions with the reactant ion peak in synthetic air will decrease the

linear range marginally. For application cases like breath analysis mostly working

on detection limits of analysis, the occurrence of analysis plays a more important

role than the linear range. As shown later in this paper, the discrimination power

and the detectability of the analyses in exhaled breath are not affected by the

difference in the activity of the ionization source.

The spectrometer was connected to a polar MCC that functioned as a pre-

separation unit. For MCC, the analyses of exhaled breath were sent through 1000

parallel capillaries, each with an inner diameter of 40 mm and a film thickness of

200 nm. The total diameter of the separation column was 3 mm.

The exhaled breath of subjects was taken directly through the spirometer using

a standard mouthpiece containing an ultrasonic sensor without registering the

500 mL of dead volume on expiration. The contents of a 10 mL sample loop were

added to the inlet of the MCC and transported to IMS, which was directly

connected to the ionization region after pre-separation. The MCC and drift tube

were held at 40 C̊. The carrier and drift gas used was synthetic air (Nippon

Megacare, Tokyo, Japan).

Table 1. Characteristics of ion mobility spectrometer (BioScout).

Parameters BioScout

Ionization source 63Ni (95 MBq)

Electric field strength 320 V/cm

Length of drift region 12 cm

Diameter of drift region 15 mm

Length of ionization chamber 15 mm

Shutter opening time 300 ms

Shutter impulse time 100 ms

Drift gas Synthetic air

Drift gas flow 100 … 300 mL/min

Temperature Room temperature

Pressure 101 kPa (ambient pressure)

MCC OV-5, polar

Column temperature 40˚C isotherm

doi:10.1371/journal.pone.0114555.t001
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Statistical analysis

The peaks were characterized using Visual Now 2.2 software (B&S Analytik,

Dortmund Germany) [14],[22–25]. All peaks found were characterized by their

position with drift time (corresponding 1/K0-value) and retention time, and their

concentration related to the peak height (table 1). Details of the data analysis

procedure were realized based on the methods described in detail previously

[15],[22–26] and summarized here [27–31].

For the different groups and each of the peaks, Box-and-Whisker plots were

generated. The rank sum was provided by Wilcoxon-Mann-Whitney test using

Bonferroni correction. Visual Now 2.2 was used to rank the peaks with the highest

difference between groups.

The relation between the peaks found in BioScout and the analysis was realized

by comparison using the Visual Now Version 110801 database (B&S Analytik,

Dortmund, Germany), obtained by measurements described previously [11], [32–

34]. In the present paper, peaks were correlated with the nearest analysis from the

reference database and compared to the actual position of the peak.

Results

All lung cancers were histologically proven by bronchoscopic biopsy samples. In

28 patients, transbronchial biopsy in peripheral pulmonary lesions using both

endobronchial ultrasonography with guide-sheath and virtual bronchoscopic

navigation was confirmed. In 22 patients, centrally located tracheobronchial

lesions could be directly confirmed. The types of lung cancer were: 32

adenocarcinomas, 10 squamous cell carcinomas and 8 small cell carcinomas. Of

32 patients with adenocarcinoma, 14 were found to be positive for the EGFR

mutation, 14 were negative for the EGFR mutation and 4 patients were positive

for anaplastic lymphoma kinase (ALK) fusion. Lung cancer TNM staging showed:

stage 1513 patients, stage 256 patients, stage 358 patients and stage 4523

patients. Seven of 39 healthy volunteers and 33 of 50 patients with lung cancer had

smoking histories (table 2).

A total of 115 different peaks were compared with respect to the separation

power in patients with lung cancer and healthy volunteers (Fig. 1). Ten VOC

peaks were identified with significance higher than 95% (p,0.01) in patients with

lung cancer. Of these, peak-2, which has the strongest VOC peak, is noted as the

n-Dodecane using the IMS database and was able to separate values with a

sensitivity of 70.0% and a specificity of 89.7%. The 9 other VOC peaks were also

identified using the database (table 3). In addition, using a decision tree algorithm

with n-Dodecane as starting point, a sensitivity of 76%, specificity of 100%, PPV

of 100% and NPV of 76.4% were recorded (Fig. 2).

Comparing VOC peaks between adenocarcinoma and healthy subjects, 11 VOC

peaks were found to have significance higher than 95% (p,0.01) and n-Dodecane

(peak-2) was able to separate values with a sensitivity of 81.3% and a specificity of

89.7% (Fig. 3). In addition, 14 lung adenocarcinoma patients positive for EGFR

Lung Cancer Detection by IMS
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Table 2. Characteristics of patients.

Healthy Lung cancer

Sex

Male 25 31

Female 14 19

Age 32¡8 68¡10

Pathological type

adenocarcinoma 32

EGFR mutation (+) 14

EGFR mutation (2) 14

ALK fusion (+) 4

squamous cell carcinoma 10

small cell carcinoma 8

Tumor stage

I (IA, IB) 13 (7, 6)

II (IIA, IIB) 6 (3, 3)

III (IIIA, IIIB) 8 (4, 4)

IV 23

Tumor Location

Central 22

Peripheral 28

Smoking in pack-years 4.0¡9.4 31.7¡28.3

doi:10.1371/journal.pone.0114555.t002

Fig. 1. IMS chromatogram in a healthy volunteer. One hundred-fifteen VOC peaks were detected with ion
mobility spectrometry in patients with lung cancer and healthy volunteers.

doi:10.1371/journal.pone.0114555.g001
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mutation displayed a significantly higher n-Dodecane VOC peak than for 14 lung

adenocarcinoma patients negative for the EGFR mutation without 4 patients

positive for ALK fusion (p,0.01), with a sensitivity of 85.7% and a specificity of

78.6% (Figs. 4 and 5).

Comparing VOC peaks between squamous cell carcinoma and the healthy

group, 11 VOC peaks were found to have significance higher than 95% and peak-

69 was able to separate the best value with a sensitivity of 97.4 and a specificity of

Table 3. Detection of VOC peaks using Visual Now database.

Peak Description 1/K0 RT P value

2 n-Dodecane 0.891 128.9 ,0.001

6 3-Methy1-15Butanol 0.737 11.0 ,0.001

11 2-Metylbutylacetat or 2-Hexanol 0.631 12.4 ,0.001

22 Cyclohexanon 0.564 11.6 ,0.01

23 Iso-propylamin 0.587 3.0 ,0.01

37 n-Nonal or Cyclohexanon 0.716 10.4 ,0.001

76 Ethylbenzol 0.564 9.8 ,0.01

86 Hexanal 0.633 7.0 ,0.01

109 Heptanal 0.671 13.6 ,0.01

110 3-Methyl-1-butanol 0.608 14.0 ,0.01

Lung cancer vs. healthy subjects.

doi:10.1371/journal.pone.0114555.t003

Fig. 2. Decision tree algorithm to discriminate between healthy and lung cancer patients.

doi:10.1371/journal.pone.0114555.g002
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Fig. 3. Box-and-whisker plots of peak-2 between healthy and lung adenocarcinoma patients. Peak 2
was significantly higher in patients with lung cancer (p,0.001). The box represents the 25th and 75th
percentiles, the whiskers represent the range, and the lined box represents the median, whereas circles
represent the mean. Lung adenocarcinoma patients revealed a significantly higher n-Dodecane VOC peak
than healthy volunteers and the n-Dodecane VOC peak could separate values with a sensitivity of 81.3% and
a specificity of 89.7%.

doi:10.1371/journal.pone.0114555.g003

Fig. 4. Box-and-whisker plots showing the IMS signal intensity of peak-2 in adenocarcinoma patients
positive and negative for EGFR. Fourteen patients with EGFR mutation displayed a significantly higher n-
Dodecane peak with a sensitivity of 85.7% and a specificity of 78.6% (p,0.01) than in 14 adenocarcinoma
patients without the EGFR mutation.

doi:10.1371/journal.pone.0114555.g004
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60.0% (p,0.001). Comparing VOC peaks between small cell carcinoma and

healthy subjects, peak-6 was found to be significantly higher than 95% (p,0.01)

with a sensitivity of 97.4% and a specificity of 50.0%. In addition, a decision tree

algorithm could separate histological types of lung cancer and healthy volunteers

(Fig. 6).

Discussion

In this prospective study, VOC peak patterns using a decision tree algorithm were

useful in the detection of lung cancer. We found that some VOC peaks displayed

significant differences between patients with adenocarcinoma, squamous cell

carcinoma, small cell carcinoma and healthy volunteers. In addition, some VOC

peaks positive for the EGFR mutation displayed significant increases, especially

the n-Dodecane peak, which was the most valuable biomarker. VOC analysis

using IMS is expected to be an important detection test for lung cancer. To our

knowledge, this is the first study to show that n-Dodecane analysis from

adenocarcinoma patients might be useful to discriminate for the EGFR mutation.

VOC analysis of lung cancer using GC/MS has been used extensively since 1985.

In GC/MS, some VOC models were used to analyze significance, with a sensitivity

and specificity of 54 to 100% and 67 to 100%, respectively [35]. Westhoff et al.

was the first to report VOC analysis for lung cancer using IMS. He reported that

23 VOC peaks from exhaled breath could separate lung cancer and a healthy

control, unaffected by smoking history [11]. However, spectrometry technologies

using breath sampling were affected by ambient conditions, oral odor and

nutrition. Direct airway sampling under bronchoscopy was negligible for oral

odor and some VOC peaks displayed significant differences between the lung

tumor site and the normal site. Moreover, some VOC peaks, 2-Butanol,

Fig. 5. IMS chromatogram in patients with lung adenocarcinoma positive for EGFR mutation (A) and negative for EGFR mutation (B).

doi:10.1371/journal.pone.0114555.g005
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2-Methylfuran and n-Nonanal, proved useful to separate adenocarcinoma and

squamous cell carcinoma [36–37]. For lung adenocarcinoma, n-Dodecane was

found to be an important VOC peak for both breath analysis and bronchoscopic

sampling and was reported to be associated to patients with lung cancer [36–37].

It is known that East Asian NSCLC patients have higher instances of EGFR

mutation [38–40]. Driver mutations, including EGFR, have focused on lung

cancer and other malignant tumors [41–43]. The EGFR mutation has a higher

instance than other driver mutations in lung cancer and is sensitive to the EGFR

tyrosine kinase inhibitor. The results of this study show that lung adenocarcinoma

positive for the EGFR mutation tends to increase the intensity of some VOC peaks

using IMS. EGFR may have a specific metabolism that may produce various

VOCs. The detection of EGFR mutation needs surgical specimen, bronchoscopic

or CT-guided needle biopsy tissue, bronchial lavage fluid and pleural effusion

with tumor cell. A previous study reported exhaled breath condensate could

evaluate EGFR mutation. However it was still difficult to detect EGFR mutations

in exhaled breath condensate because cellular components presented in exhaled

breath condensate are not representative of the tumor [44–45]. The analysis of

VOC patterns including a decision tree algorithm may be useful to detect EGFR

mutation emitted from lung cancer cell lines in the future.

This study had some limitations. First, the sample size was small and larger

sample studies are required. Although more patient breath samples are needed to

overcome potential problems with statistical investigations, in previous literature

sample sizes for breath analysis had been smaller when compared to the present

study [36–37]. Beside the major question to have more breath samples of patients

Fig. 6. A decision tree algorithm could separate small cell carcinoma, squamous cell carcinoma and
adenocarcinoma.

doi:10.1371/journal.pone.0114555.g006
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than peaks to overcome potential problems with statistical investigations in

general, here 89 samples were investigated and 115 peaks were found. Second,

VOCs in patients with lung cancer may be affected by smoking history. It should

be noted, if the differences were not related to tobacco smoking in lung cancer

patients, which was considered in detail by Westhoff et al. [11] showing, that in

both groups including a higher number of smokers and non-smokers the

differentiation using ion mobility spectrometry was successful. For the molecules

investigated by IMS in this study, the differences were independent of smoking

status and significant for both groups. In the study of Westhoff et al. [11]. there

was no database available to identify the analysis. Recently, Darwiche et al. [36]

showed by comparison of measurements taking samples of air from the same

patient at the cancer site and non-cancer site during bronchoscopy, differences

found were related to the place the sample was taken, directly over cancer cells or

on the other lung site. Third, in accordance with Japanese regulations, restrictions

of 63Ni b-radiation sources of under 100 MBq have been set for this Japanese pilot

study, which is lower than European restrictions. However, the current study

results show that IMS with a 95 MBq b-radiation source could discriminate

between healthy volunteers and patients with lung cancer successfully. Therefore,

creating a database for the Asian population in relation to VOC peaks and

substances may be required. In future studies, multi-center trials using IMS are

needed to analyze lung cancer.
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