
O|R|P|E - A Data Semantics Driven Concurrency
Control Mechanism with Run-time Adaptation

Tim Lessner∗, Fritz Laux†, Thomas M Connolly‡
∗freiheit.com technologies gmbh, Hamburg, Germany

Email: tim.lessner@freiheit.com
†Reutlingen University, Reutlingen, Germany

Email: fritz.laux@reutlingen-university.de
‡University of the West of Scotland, Paisley, UK

Email: thomas.connolly@uws.ac.uk

Abstract—This paper presents a concurrency control mechanism
that does not follow a ’one concurrency control mechanism fits
all needs’ strategy. With the presented mechanism a transaction
runs under several concurrency control mechanisms and the
appropriate one is chosen based on the accessed data. For
this purpose, the data is divided into four classes based on its
access type and usage (semantics). Class O (the optimistic class)
implements a first-committer-wins strategy, class R (the reconcil-
iation class) implements a first-n-committers-win strategy, class
P (the pessimistic class) implements a first-reader-wins strategy,
and class E (the escrow class) implements a first-n-readers-win
strategy. Accordingly, the model is called O|R|P|E. The selected
concurrency control mechanism may be automatically adapted at
run-time according to the current load or a known usage profile.
This run-time adaptation allows O|R|P|E to balance the commit
rate and the response time even under changing conditions.
O|R|P|E outperforms the Snapshot Isolation concurrency control
in terms of response time by a factor of approximately 4.5
under heavy transactional load (4000 concurrent transactions).
As consequence, the degree of concurrency is 3.2 times higher.

Keywords–Transaction processing; multimodel concurrency
control; optimistic concurrency control; snapshot isolation; per-
formance analysis; run-time adaptation.

I. INTRODUCTION

The drawbacks of existing concurrency control (CC) mech-
anisms are that pessimistic concurrency control (PCC) is likely
to block transactions and is prone to deadlocks, optimistic con-
currency control (OCC) may experience a sudden decrease in
the commit rate if contention increases. Snapshot Isolation (SI)
better supports query processing since transactions generally
operate on snapshots and also prevents read anomalies, but de-
pending on the implementation of SI, either pessimistic or opti-
mistic, it is also subject to the previously mentioned drawbacks
of PCC or OCC. Semantics based CC (SCC) remedies some
problems of PCC or OCC. It performs well under contention,
reduces the blocking time, and better supports disconnected
operations. However, its applicability is limited since data and
transactions have to comply with specific properties such as
the commutativity of operations. In addition to the previously
mentioned drawbacks, neither PCC nor OCC nor SCC support
long-lived and disconnected data processing. However, these
properties are essential to achieve scalability in Web-based and
loosely coupled applications. Another challenge is that in real-
life scenarios often the data usage profile changes over time
(e.g. stock refill in the morning, selling goods during business

hours, housekeeping during closing hours) which calls for a
dynamic CC-mechanism.

This paper extends a mechanism presented in [1] and
originally introduced in [2] that combines OCC, PCC, and
SCC and steps away from the ‘one concurrency control
mechanism fits all needs’ strategy. Instead, the CC mech-
anism is chosen depending on the data usage. While the
original O|R|P|E model assigns the appropriate CC-mechanism
statically, this paper addresses a dynamic adaptation of the
CC-mechanism due to sudden changes of the system load. To
address scalability, the mechanism was designed with a focus
on long-lived and disconnected data processing.

Consider, for example, the wholesale scenario as presented
in the TPC-C [3]. With PCC using shared and exclusive locks,
the likelihood of deadlocks increases for hot spot fields such
as the stock’s quantity or the account’s debit or credit. If
transactions are long-lived, PCC is even worse since deadlocks
manifest during write time and a significant amount of work
is likely to be lost [4] [2]. With OCC, deadlocks cannot
occur. However, hot-spot fields like an account’s debit or credit
would experience many version validation failures under high
load causing the restart of a transaction. Like PCC, validation
failures manifest during the write-phase of a transaction and
a significant amount of work is likely to be lost. Both PCC
and OCC cannot ensure that modifications attempted during a
transaction’s read-phase will prevail during the write-phase.
Whereas PCC is prone to deadlocks, OCC is prone to its
optimistic nature itself.

O|R|P|E resolves these drawbacks and data can be classi-
fied in CC classes. For example, customer data such as the
address or password can be controlled by a PCC that uses
exclusive locks only [5]. Such a rigorous measure ensures
ownership of data and should be used if data is modified
that belongs to one transaction. For example, account data or
master data should not be modified concurrently and given the
importance of this data a rigorous isolation is justified. The
debit or credit of an account can be classified in CC class R,
which guarantees no lost updates and no constraint violations.
Such a guarantee is often sufficient for hot-spot fields. Class
E can be used to access an item’s stock, for example. Class
E is able to handle use cases such as reservations. It should
be used if during the read-phase a guarantee is required that
the changes will succeed during the write-phase. Class O is
the default class. It avoids blocking and under normal load it

62

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

represents a good trade-off between commit and abort-rate.
Section II defines these four CC classes with different

data access strategies used by our mechanism. In the case of
a conflict, class O implements a first-committer-wins strat-
egy, class R implements a first-n-committers-win strategy,
class P implements a first-reader-wins strategy, and class E
implements a first-n-readers-win strategy. The number n is
determined by the semantics of the accessed data, e.g., by
database constraints. According to the classes, the mechanism
is called O|R|P|E. The “|” indicates the demarcation between
data.

Section III proofs the correctness of the model. Section
IV briefly describes the prototype implementation. Section V
highlights some advantages of O|R|P|E, because it provides
an application flexibility in choosing the best suitable CC
mechanism and thereby significantly increases the commit
rate and outperforms optimistic SI. The run-time adaptation
mechanism and its adaptation rules are presented in Section
VII. In the following Section V a prototype implementation
is tested with various workloads. The results are discussed
and the behavior is illustrated with time diagrams. Section
VIII summarizes related work and compares it to our model.
Finally, the paper draws some conclusions and provides an
outlook (see Section IX) to future work.

II. MODEL

The model relies on disconnected transactions and 4 CC
classes, which are defined in the following.

A. Transaction
To support long-lived and disconnected data processing,

which both supports scalability, O|R|P|E models a transaction
as a disconnected transaction τ , with separate read- and write-
phase, i.e., no further read after the first write operation (see
Definition 1, taken from [2]). To disallow blind writes, O|R|P|E
guarantees that in addition to the value of a field, the version
of a data field has to be read, too.

DEFINITION 1: Disconnected Transaction:

1) Let ta be a flat transaction that is defined as a pair
ta = (OP,<) where OP is a finite set of steps of the
form r(x) or w(x) and <(⊆ OP ×OP) is a partial
order.

2) A disconnected transaction τ = (TAR, TAW)
consists of two disjoint sets of transactions.
TAR = {taR1 , . . . , taRi } to read and TAW =
{taW1 , . . . , taWj } to write the proposed modifications
back.

3) A transaction has to read any data item x before being
allowed to modify x (no blind writes).

4) If a transaction only reads data it has to be labeled
as read only.

B. CC Classes
Class O is the default class and is implemented by an

optimistic SI mechanism, which is advantageous since reads
do not block writes and non-repeatable or phantom phenomena
do not happen. However, SI is not fully serializable [6] [7].

As stated, the drawback of optimistic mechanisms prevails
if load increases, because many transactions may abort during
their validation at commit time. An abort at commit time is

expensive, because significant amount of work might be lost.
A circumstance particularly crucial for long-lived transactions
(see [2]).

Regarding the strategy, optimistic SI follows a “first-
committer-wins” semantics revealing another drawback of O.
It is the lack of an option allowing a transaction to explicitly
run as an owner of some data. Consider, for example, the pri-
vate data of a user such as its password or address. A validation
failure should be prevented by all means, since it would mean
that at least two transactions try to concurrently update private
data. Although technically this is a reasonable state, for this
kind of data a pessimistic approach that acquires all locks at
read time is more appropriate. Such a mechanism follows a
“first-reader-wins” (ownership) semantics and directly leads
to class P . The acquisition of exclusive locks at read time
prevents deadlocks during write time. To prevent deadlocks
at all, a strict sequential access and preclaiming (all locks
appear before the first read) or sorted read-sets are possible
mechanisms. Which mechanism is chosen to prevent or resolve
deadlocks is unimportant regarding the correctness of O|R|P|E
(see Section III). Preclaiming has its drawbacks concerning
the time a lock has to be acquired. Sorted read-sets may be
unfeasible due to limitations of the storage layer or chosen
index structure. The prototype (see Section IV) uses a Wait-
For-Graph to prevent deadlocks during the read-phase of a
transaction. Also, during our experiments (see Section V) the
number of deadlocks was considerably small, because data
classified in P should have no concurrent modifications by
definition.

The decision if a data item is classified as O or P is based
on the following properties [2]:

1) Mostly read (mr): Is the data item mostly read?
If ’Yes’, there is no need for restrictive measures
and the data item should by classified for optimistic
validation. A low conflict probability is assumed.

2) Frequently written (fw): fw is the opposite of mr.
3) unknown (un): It means neither mr nor fw apply,

i.e., it is unknown whether an item is mostly read or
written or approximately even.

4) Ownership (ow): if accessing a data item should
explicitly cause the transaction to own this item for
its lifetime?

EXAMPLE 1: Classify data items in class O and P (taken
from [2]).

This example is based on the TPC-C [3] benchmark and
its “New-Order” transaction. Note that an additional table
Account has been introduced to keep track about a customer’s
bookings (column debit and credit). It also defines an over-
draft limit (column limit). The following tables are used in
our example: Customer (id, name, surname), Stock (StockId,
ItemId, quantity), Account (AcctNo, debit, credit, limit), and
Item (ItemId, name, unit, price). Table I shows an initial
classification.

Attributes name, surname, and id of a customer are ex-
pected to be mostly read, but if modified by a transaction it
should definitively be the owner. The id of a customer, like all
ids, is expected to become modified rarely. If the id becomes
modified, ownership is required. In principal, all business keys
should be classified in P , because they are owned by the
application provider (see Rule 1, 1)).

63

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Stock.quantity is expected to become modified frequently
(fw) and to prevent the situation where an item was marked
as available during the read phase, but at commit time the item
is no longer available due to concurrent transactions, it is also
marked as ow. For the time being, however, quantity will be
classified as an ambiguity (see also Rule 1, 3)), which will be
discussed below.

The Account.credit and Account.debit of a customer’s ac-
count might be accessed frequently depending on a customer’s
activity and un is a good choice. However, since multiple
transactions might concurrently update the balance, and an
owner is hardly identifiable, ¬ow is chosen. So, it is also an
ambiguity (see Rule 1, 3)).

The Account.limit is the overdraft limit of a customer and
expected to be mostly read, hence, mr is a good choice. Since
it is neither owned by the customer nor by others, ¬ow is a
good choice (see Rule 1, 2)).

Assuming the application is a high frequency trading
application, Item.Price might quickly become a bottleneck.
An exact prediction is not possible though, hence, un is a
good choice. Property ow would not be a good choice, because
transactions of different components (dc) might simultaneously
calculate the price (see Rule 1, 3)).

TABLE I. CLASSIFICATION OF EXAMPLE 1

x mr fw un ow CC class
Customer.name 1 0 0 1 P

Customer.surname 1 0 0 1 P
Customer.id 1 0 0 1 P

Stock.StockId 1 0 0 1 P
Stock.ItemId 1 0 0 1 P

Stock.quantity 0 1 0 1 A
Account.debit 0 0 1 0 A
Account.credit 0 0 1 0 A
Account.limit 0 0 1 0 A

Item.name 1 0 0 1 P
Item.unit 1 0 0 1 P
Item.price 0 0 1 0 A

The ambiguities A of Example 1, see class A in Table I,
highlight that classes O and P and their properties are not
sufficient. Particularly, hot spot items such as Stock.quantity
would benefit from a CC mechanism that allows many winners
and resolves the drawbacks of OCC and PCC.

Laux and Lessner [8] propose the usage of a mecha-
nism that reconciles conflicts –class R–. Their approach is
an optimistic variant of O’Neil’s [9] Transactional Escrow
Method (TEM). Both approaches exploit the commutativity
of write operations. If operations commute, it is irrelevant
which operation is applied first as long as the final state can
be calculated (see [8] [2] for further details) and no constraint
is violated.

Unlike TEM, the reconciliation mechanism requires a
dependency function. Consider, for example, two transactions
that update an account and both read an initial amount of
10e , one credits in 20e and the other debits 10e . Once both
have committed, it is relevant that no constraint was violated
at any time and the final amount has to be 20e . Usually, a
database would write the new state for each transaction causing
a lost update. A dependency function would actually add or
subtract the amount (the delta!) and would always take the
latest state as input. In other words, reconciliation replays the
operation in case of a conflict. However, this is only possible

if no further user input is required. In the example above this
means the user wants to credit 20e (or debit 10 e) independent
of the account’s amount as long as no constraint is violated!
Another requirement is that each dependency function has to
be compensatable (see also [2]).

The reconciliation mechanism [8] follows a “first-n-
committers-win” semantics and the number of winners n
is solely determined by constraints. The correctness of the
mechanism is proven in [8], which also introduces “Escrow
Serializability”, a notion for semantic correctness.

TEM grants guarantees to transactions during their read-
phase. For example, a reservation system is able to grant
guarantees to a transaction about the desired number of tickets
as long as tickets are available. The consequence is that
transactions need to know their desired update in advance (see
[9] for further details).

Whereas TEM [9] is pessimistic (constraint validation
during the read phase) and works for numerical data only,
Reconciliation [8] is optimistic (constraint validation during
the write phase) and works for any data as long as a depen-
dency function is known. The proof that E, like R, is escrow
serializable can be found in [2].

The decision if an item is member of R or E is based on
the following properties:

1) con: Does a constraint exist for this data item?
2) num: Is the type of the data item numeric?
3) com: Are operations on this data item commutative?
4) dep: Is a dependency function known for an operation

modifying the data item?
5) in: Is user input independence given for an operation

modifying the data item?
6) gua: Is a guarantee needed that a proposed modifi-

cation will succeed?

RULE 1: Derivation of CC classes for data item x

1) ow → classify x in P (identify P).
2) ¬ow ∧mr → classify x in O (identify O).
3) all other combinations of ow and mr: classify x in

A (ambiguity).
4) com→ classify x in E ∨R

a) (con ∧ num ∧ com ∧ gua) → classify x in
E (identify E).

b) (in∧dep∧ com)→ classify x ∈ R (identify
R).

5) x ∈ A→ item x will be eventually in O.

EXAMPLE 2 (Classification of data items in R and E): The
ambiguities of Table I are the input for this example. Table II
shows the result of the classification of these ambiguities.
Stock.quantity has a constraint value > 0 and is
numeric. The dependency function dep is known too. As
stated above, a dependency function performs a context de-
pendent write. For example, dependency function d would
be d(x, xread, xnew) = x + (xnew − xread). User input
independence in is not given. If placing the order fails at the
end, a replay would also fail. So, class R is not an option.
Since an order requires a guarantee that the requested amount
of items remains available, Rule 1, 4a) applies.

Account.credit and Account.debit are classified
as R. Property dep is known, because operations are either

64

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. ILLUSTRATIVE CLASSIFICATION OF AMBIGUITIES OF
EXAMPLE 1.

x con com num dep in gua CC class
Stock.quantity 1 1 1 1 0 1 E
Account.credit 1 1 1 1 1 0 R
Account.debit 1 1 1 1 1 0 R

Item.price 0 0 1 1 0 0 O

additions or subtractions. Property in is given, because the ac-
count has to be updated if the order is placed and no constraint
is violated. As the updates follow a dependency function they
can be reconciled and should not raise an exception. Again,
only a constraint violation such as an overdraft can cause the
abort. Rule 1, 4b) applies.

Item.price depends on a variety of parameters includ-
ing the last price itself. As a result, a price update might not be
commutative. Item.price remains ambiguous and remains
in O, because O is the default class. Rule 1, 5) applies.

III. CORRECTNESS

A transaction potentially runs under four different CC
mechanisms. Due to the CC classes’ individual semantics, each
class has a different notion for a conflict, too. In any case, two
read operations are never in conflict because read operations
do not alter the database state and hence are commutative [10].

Usually, a conflict is given if two operations access the
same data item and the corresponding transaction overlap in
their execution time, and at least one operation writes the data
item [5]. Whereas for O and P this is a correct definition of a
conflict, for R and E it is not, because both can resolve certain
write conflicts. The resolution of conflicts is a key aspect and
advantage of SCC, and SCC questions the seriousness of a
conflict. In other words, the meaning of a read-write or write-
write conflict is interpreted. For R and E only a constraint
violation is a conflict. Moreover, the state read by an operation
is assumed to be irrelevant, otherwise commutativity is not
given. It follows that any final serialization graph SG−R and
SG − E for class R and E is non-cyclic because potential
conflicts are reconciled (see [2] for a thorough discussion).

For P , the common definition of a conflict is correct. If a
transaction wants to modify item p (let p ∈ P), it has to acquire
a lock on p during its read-phase to become the exclusive
owner. If not, the transaction does a blind write, which is
disallowed according to Definition 1. Hence, every write in
P cannot encounter a concurrent write or read, because if a
transaction writes p it has to be the exclusive owner of P .

Consider the following (incorrect) schedule, for example
(disci and discj denote the disconnect phase of transaction i
(resp. j) and let o ∈ O and p ∈ P):

ri(o), rj(p), rj(o), discj , wj(o), cj , ri(p), disci,

wi(p), ci (1)

In this schedule transaction i reads o before j modifies o
and transaction j reads p (rj(p)) before i writes p (wi(p)).
Usually, the ordering of transaction operations are visualized
by a precedence graph as in Figure 1.

DEFINITION 2 (Serialization Graph (SG)): Let S be a sched-
ule of transactions. The Serialization Graph (aka Conflict
Graph) is a precedence graph where each node represents a

transaction and each directed edge between two transactions
represents a precedence of conflicting operations [11] [12] on
a data item.

It is well known that a transaction schedule is conflict
serializable if and only if the SG is acyclic [11] [13]. If
the SG of a transaction schedule includes a cycle then no
equivalent serial schedule exists and, therefore, this schedule
is not serializable [11].

The above Schedule 1 leads to the following cyclic SG of
Figure 1.

Figure 1. The cyclic serialization graph from Schedule (1).

Transaction i precedes j in class O and j precedes i in P .
Having opposite orders, i.e., i→ j in one, but j → i in another
class violates serializability, because globally i precedes j,
which in turn precedes i.

A transaction that reads a data item in O has to validate
the value at write-time, even if the write is only for an item
p ∈ P . The operation wi(p) causes a validation failure on item
o because transaction i has read a value of o that transaction j
has meanwhile updated. This is a conflict between transactions
i and j in O and produces a validation failure. Commit ci
is wrong in the schedule above and would never happen
in O|R|P|E. Hence, the above schedule looks as follows in
O|R|P|E:

ri(o), rj(p), rj(o), discj , wj(o), cj , ri(p), disci,

wi(p), ai (2)

Even a deadlock in P cannot create a cyclic graph between O
and P , because at least a write is required to create a conflict
in P . However, since all deadlocks can only happen during
the read phase of a transaction, no conflict cycle involving a
deadlock can happen in P .

Based on these initial findings it is possible to state
Theorem 1. The corresponding proof exploits that for R, P ,
and E the corresponding serialization graphs are non-cyclic.

THEOREM 1: Let SG − G be the global serialization graph,
which is the union of SG−O, SG−R, SG−P , and SG−E.
The global serialization graph SG−G is non-cyclic if SG−O
is non-cyclic.

Proof by contradiction:
Given that tai is serialized before taj (i→ j) in SG−O. In

P , no other transaction can access an item in P if transaction
tai has read this item. This is the consequence of x-locks
during the read-phase used in class P. The same argument
applies to taj as well and it is impossible to have a serialization
order j → i in P . Since i and j can be arbitrarily changed
there is a contradiction if i → j exists in one, and j → i in
another class. SG−R and SG−E are negligible because any
conflict is finally reconciled and both serialization graphs are
non-cyclic.

65

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

COROLLARY 1: SG − O sets the global serialization order
for P .

If a ta does not modify data in O, then P sets the order. If
a ta does not modify data in P , then R sets the order, because
it is prone to validation conflicts as opposed to E that already
has a guarantee to succeed.

IV. PROTOTYPE REFERENCE IMPLEMENTATION OF
O|R|P|E

The prototype of O|R|P|E is not a full database system.
From a fully operational database the backup and recovery
functions are missing. Both functions do not functionally
influence the CC mechanism. There is only a negative effect
on the performance during backup or recovery. This applies
in a similar way for any database management system with a
single CC mechanism.

It was implemented using the JAVA programming language
and Figure 2 illustrates its architecture. A client API provides
access to the data and depending on the operation’s type, read
or write, the operation is executed by a dedicated pool. Pools
“Reads” and “Writes” represent an read- and write-lane. In
addition, a pool to handle the termination (commit and abort)
has been implemented. Pools’ reads and writes handle all
incoming and outgoing operations and the classification has
been placed directly into the index. Depending on an item’s
classification the corresponding CC mechanism is plugged in.
This placement allows to decide about the CC mechanism with
a single read operation, which imposes an negligible overhead.
Once an item has been read or written, the additional pools’
“read-callback” and “write-callback” deliver the results back to
the clients. A Pool WFG (Wait-for-Graph) is used to handle
access to the WFG. Deadlocks may occur during the read-
phase of a transaction if the transaction accesses data items
in class P . Deadlocks can only occur in class P during the
read-phase, because lock acquisition is not globally ordered.

Having separate pools and callbacks to handle incoming
and outgoing operations means that the prototype supports
disconnected transactions, because the entire communication
is asynchronous. Figure 3 illustrates the message flow within
the prototype. A read operation is passed to the “Reads” pool.
Each read is executed asynchronously and the complete read
set is sent back to the client via a dedicated callback pool. To
support asynchronous writes, a write operation is passed to the
“Writes” pool and if all writes have been applied the write set
is sent back to the client. Clients always sent their complete
write-set.

Data is kept solely in memory and no data is written to
disk unless the operating system needs to swap data to disk
due to memory limitations. The only output to disk is to write
logging events that are used for performance evaluation. Other
functionality that has been implemented includes:

• CC mechanisms O, R, P and E,

• The prototype supports constraints,

• The prototype supports item selects, range-selects,
updates, and inserts. The deletion of an item is im-
plemented as update that invalidates a data item.

• A WFG implementation.

Figure 2. Architecture of the prototype.

Figure 3. Message flow of the prototype.

V. PERFORMANCE STUDY WITH STATIC DATA CLASS
ASSIGNMENT

The performance study has been carried out based on the
prototype presented in the previous section (Section IV). As
benchmark, the TPC-C++ benchmark [7] has been chosen,
because we also conducted a study comparing O|R|P|E with
Serializable SI, which is beyond the scope of this paper.

The data used for this study is similar to those of Examples
1 and 2. Each data item was statically assigned to a CC-Class
as shown in Table III. Aspects of a dynamic assignment and
its performance effects will be studied in the next section.

The performance study measures the response-time (resp. -
time), the abort rate (ab-rate), the commits per second, and the
degree of concurrency (deg. conc.). The degree of concurrency
is the quotient of the serial estimated execution time over the
elapsed time of the experiment. In addition, the arrival rate λ
of new transactions has been varied to be set to the optimum
(minimized abort rate and response time, maximized degree
of concurrency). This optimum λ has been taken to conduct
fair and calibrated comparisons. Each experiment has been
repeated three times and the mean value is reported. Values
refer to the execution of a transaction mix –deck– (42 New
Order-, 42 Payment-, 4 Delivery-, 4 Credit check-, 4 Update

66

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. TPC-C: CLASSIFICATION OF DATA ITEMS.

Item CC Class operation

Customer P read
CustomerCredit P update

CustomerBalance R read
Customer P read

CustomerBalance R update
Customer P read

CustomerCredit P read
StockQuantity E update

Customer P read
CustomerBalance R update

WarehouseYTD R update
DistrictYTD R update

StockQuantity E read only
StockQuantity E update

Stock Level-, and 4 Read Stock Level - transactions see [7]
[3] [2]).

Figure 4 illustrates the abort rate and degree of concurrency
for SI under full contention and shows the drawbacks of
optimistic SI: the higher the number of concurrent transactions,
the higher the abort rate. Also, the system starts thrashing if
the degree of concurrency drops below one, which is the point
where a serial execution outperforms a concurrent. Table IV
shows that for SI and O|R|P|E with the same λ (tests #1-6
and #10-15) the response-time increases with larger λ, which
is expected and normal behavior. The direct comparison reveals
that O|R|P|E has a 3 − 38 times better response time, which
shows that SI is over-strained for a workload of λ ≥ 200. For
λ = 1000 tas/sec the response time is about 3 times higher
for SI and the degree of concurrency is only half compared to
O|R|P|E. A good degree of concurrency with a low abort rate
is given by λ = 133 (see Table IV #3).

Figure 4. TPC-C++, optimistic SI (class O), abort rate and degree of
concurrency.

Figure 5 shows the response-time and degree of concur-
rency for O|R|P|E for increasing λ. Unlike SI, O|R|P|E has
no aborts caused by serialization or validation conflicts due
to the classification of hot-spot data items in R or E, which
prevents ww-conflicts. As shown by Figure 5, O|R|P|E has its
best degree with λ = 1000 transactions per second achieving
227 commits per second (see Table IV, #15).

The comparison of O|R|P|E and SI uses λ = 133 (Table

Figure 5. Response time and degree of concurrency for increasing λ for
O|R|P|E .

Figure 6. TPC-C++, SI and O|R|P|E : response-time and degree of
concurrency for λ = 133 (SI) and λ = 1000 (O|R|P|E).

IV #3, and #7-9) for SI and λ = 1000 (Table IV #15-18) for
O|R|P|E . For SI, λ = 133 was considered as being the best
trade-off with respect to the degree of concurrency, λ = 1000
was considered as being the best trade-off for O|R|P|E.

Figure 6 illustrates the degree and the response-time for
data of class O with SI and O|R|P|E if both use the λ
which reflect the best trade-off. As the figure shows, SI has
a better response-time for 1000, 2000, and 3000 concurrent
transactions, but then suddenly undergoes thrashing and the
response-time grows exponentially. However, O|R|P|E shows
a moderate and stable increase of the response-time even for
4000 concurrent transactions.

With a workload of 2000 transactions the degree of con-
currency is 3.41 for O|R|P|E versus 1.87 for SI. The average
response time is only 388 msec for SI and 1551 msec for
O|R|P|E. It would be wrong to conclude that SI has a better
performance than O|R|P|E because for a comparison λ has to
be taken into account. In the test O|R|P|E had a 7.5 times
higher transaction arrival rate than SI (λ = 1000 as opposed
to λ = 133 for SI). At 4000 concurrent transactions O|R|P|E

67

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. MEASURED VALUES OF EXPERIMENTS #1-18.

tas λ resp.-time ab. rate commits deg.
/second conc.

SI

1 1000 80 43 2% 71 1,39
2 1000 100 84 3% 80 1,57
3 1000 133 309 5% 82 1,63
4 1000 200 1640 20% 62 1,50
5 1000 400 2091 26% 61 1,57
6 1000 1000 2464 27% 62 1,61
7 2000 133 388 9% 90 1,87
8 3000 133 522 8% 91 1,89
9 4000 133 23416 46% 22 0,79

O|R|P|E

10 1000 80 5 4% 69 1,01
11 1000 100 5 4% 85 1,24
12 1000 133 8 4% 108 1,58
13 1000 200 14 4% 150 2,19
14 1000 400 213 4% 217 3,18
15 1000 1000 724 4% 227 3,32
16 2000 1000 1551 4% 234 3,41
17 3000 1000 3704 4% 184 2,69
18 4000 1000 4968 5% 174 2,55

outperforms SI in terms of response time by a factor of 3.7 (see
Figure 6) and the degree of concurrency is 2.6 times better.
Hence, under high contention O|R|P|E has the lowest abort
rate and considering the trade-off between concurrency and
response time, O|R|P|E outperforms SI significantly. Further-
more, its abort rate is nearly independent of the contention.

VI. RUN-TIME ADAPTION

The attempt to manually classify data may finally result
in ambiguous classification where default class O applies
(see Rule 1, 5)). But, high contention can quickly cause
performance issues for data classified in O. Even if class P is
more expensive, because P requires locking during the read-
phase it will lead to a better performance in this situation
as the locking will queue the transactions and process them
successfully.

An automatic and dynamic adaptation of the classification
when transactional load or data usage changes would make the
initial classification less critical and O|R|P|E could choose the
optimal CC-mechanism based on the current situation.

A solution for automatic run-time adaptation is presented
in this section. It re-classifies a data items of default class
O to class P if the commit rate drops below an adjustable
threshold. With this measure the commit rate increases again
for the price of a longer response time. When the transactional
load decreases and after the commit rate exceeds the threshold
again it switches back to its original class O.

Data originally classified in P will not be re-classified
to O when the load is low. This is not feasible, because an
item initially in P has to remain in P due to the item’s
ownership semantics. An adaption at run-time that results in O
would contradict the ownership semantics since a transaction
would no longer request locks during its read-phase. This is,
however, mandatory to comply with the ownership semantics
(see Rule 1, 1)).

At a first glance, an adaption between E → R seems
reasonable if the probability of an invariant violation (PIV)
is low. It would save additional overhead, because invariant
conditions in R have not to be validated at read-time, but in

Figure 7. Arrivals (workload) and time windows.

E. However, this is only a good decision if contention is low.
To take this decision at high workload will result in a much
longer response time because the response time for class R
grows much faster than for class E. With high contention,
the probability of constraint violations increases, but the exact
determination is application dependent. Classifying a data item
in E is only justified if an aborted transaction is more costly
than to retry the transaction, i.e., the transaction needs a
guarantee to succeed which leads to class E from the beginning
(Rule 1, 4a)).

A. Adaptation Criteria

The run-time adaptation is based on the commit rate
cr. To measure and analyze cr a statistical model for the
transactional system is necessary. According to [14] [15]
[16], a transactional system is modeled as an open system
whose transactional arrival rate is a Poisson process. The time
between arrivals of transactions is assumed to be independent
in Poisson, which has the advantage that the conflict rate (the
term conflict is stated more precisely below) can be modeled
around a single variable λ that represents the number of arrivals
in relation to the time window. A Poisson process has a conflict
probability density function PCx(X = k) given by Equation
(3):

PCx(X = k) =
λk

k!
e−λ (3)

For example, if on average 100 transactions arrive within
one Time Window (TW), the probability that k = 50 trans-
actions access item x within a TW is given by Formula (3).
The arrival rate λ is in relation to time, for example, within
one second; i.e., for a transaction that accesses x during that
second, it means that the probability is PCx(X >= 2) =∑∞
k=2 λ

k/k! e−λ to encounter other conflicting concurrent
transactions.

Figure 7 illustrates the usage of TW as well as the arrivals
–workload– in relation to time. The workload is, however, not
constant over the lifetime of a transaction. A constant workload
ignores that the workload, and hence, λ might suddenly change
in particular if transactions are long running. Measuring the
number of transactions terminating or committing during a
time window are means to detect and react to sudden changes
in the workload, which is an idea borrowed from [14]. The
length of the TW defines the sample rate and its sensitivity.

68

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The commit rate cr is used as indicator for the performance
of the optimistic CC-mechanism of class O. If the cr drops
below a threshold, there are more aborts due to validation
failures and that class P would be a better choice to increase
cr.

cr :=
#committed tas/TW

(#terminated tas− #re-class. aborts)/TW
(4)

For each TW the commit rate cr is calculated as fraction of
the committed transaction divided by all terminated transaction
without those that were aborted due to a re-classification. The
commit rate cr is identical to the effective commit rate creff
(see Definition 5) if no adaptation occurs. Formula (4) is
apparently insensitive to the length of the TW. But, a longer
TW tends to compute smoother cr and it saves measuring
overhead. We used a TW of 100 msec which delivered a good
trade off for the prototype implementation.

The adaptation policy is given by Rule 2, which uses a
threshold γ for the target commit rate and an hysteresis δ
to avoid constant switching (thrashing) between both classes.
When a data item is re-assigned during an active transaction,
the transaction is aborted when the change is from O to P .
In the opposite case, the transaction can continue without
conflicts, because the write-phase will succeed since the data
item is already exclusively locked for that transaction.

RULE 2: General Adaptation O → P

Let cr be the commit rate, δ the hysteresis, and γ the target
commit rate. Adaptation is according to the following rules:

1) When cr decreases and O is the current class for an
item x: If cr < γ−δ then P is the new classification
of x

2) When cr increases and P is the current class for an
item x: If cr > γ+δ then O is the new classification
of x.

3) Reclassification during a transaction:
a) If a ta reads at the time when O is the current
class, but will write at a time when P is the current
class, ta is aborted (non-avoidable crash) to maintain
consistency.
b) If a ta reads at a time when the data item is in P
and writes when it is in O, the success of the write
is guaranteed because the data is exclusively locked
since read-time.

Adaptation solely relies on the commit rate cr. The arrival
rate λ and hence the conflict probability are not measured
which would be much more difficult. This leverages the deci-
sion to use a Poisson distribution for the transaction arrivals.

Figure 8 illustrates how the adaptation works if the commit
rate decreases and later increases again. During the first TW
(t2−t1) the commit rate cr drops to 1/8 because only one out
of 8 transactions was successful. Two transactions (ta9, ta10)
have not terminated yet.

At the end of epoch 1 the commit rate is compared to γ−δ
and as cr is below the threshold data x is re-classified to P .
The transaction ta9 will later abort due to a constraint violation
and ta10 has to abort because of the re-classification to P .
Now, for the following transactions the locking mechanism for

P applies. One consequence is that ta11, ta12, and ta13 execute
mostly sequentially. The commit rate grows in the following
TW to 3/4, but, this is not sufficient to switch x back to class
O. During the third TW (t4 − t3) the commit rate rises to
cr = 2/2 > γ + δ and the (initial) optimistic CC (class O) is
re-established.

The following history describes the example of Figure 8
more formally:

H = (r1(x), r2(x), r3(x), . . . , r10(x), w1(x), c1︸ ︷︷ ︸
commit rate decreases

w2(x), a2, w3(x), a3, . . .︸ ︷︷ ︸
commit rate decreases

, adapt to P, a10, a9,

l11(x), r11(x), w11(x), c11, l12(x), r12(x),︸ ︷︷ ︸
commit rate increases

w12(x), c12, l13(x), r13(x), w13(x), c13 . . .︸ ︷︷ ︸
commit rate increases

The history H shows in the first phase 10 trans-
actions ta1, ta2, . . . , ta10 accessing x. They first read x
(r1(x), r2(x), r3(x), . . . , r10(x)) and then try to write x
(w1(x), w2(x), . . .). In the given scenario only ta1 can commit
(c1), all others have to abort (a2, a3, . . .) because too many
transactions try to concurrently update x. This leads to a
sudden decrease in the commit rate cr = 1/8 because only
ta1 was successful and ta9 and ta10 have not yet updated x,
i.e., it is still pending. If we assume a threshold γ of 0.8 and
an hysteresis δ of 0.1, then cr < γ − δ which triggers the
adaption according to Rule 2, 1).

After adaptation has been carried out, ta10 has to abort
(Rule 2, 3a)) if it tries to update x. The abort a10 appears in
the history after the adaptation even though the item x is now
classified in P . Transaction ta10 has to abort, because it has
not locked x before reading x (r10(x)). If ta10 would not abort
it would risk a lost-update, because ta10 would overwrite the
last committed state since P does no version validation. Even
with version validation, ta10 is very likely to abort, because
the probability for a validation failure is high in this situation.

Let assume that transaction ta9 accesses other data beside x
and validation fails due to a constraint violation. This leads to
an abort of ta9. The distinction of the abort reason is important
here as it will be counted for the commit rate.

After the adaptation to P newly arriving transactions
apply a locking scheme for data x which is indicated by
l11, l12, The commit rate increases again because transac-
tions ta11, ta12, ta13 succeed and commit c11, c12, c13. In fact,
all following transaction succeed except those which violate a
constraint.

If we choose the Time Window TW to start just before
ta11 arrives the commit rate cr rises with each committed
transaction. Class O is not reestablished at the end of this
TW despite that the next 3 transactions succeed because cr =
3/4 ≤ γ + δ = 0.9. The class assignment remains unchanged
and the following TW (t4−t3) will reestablish class O because
cr = 2/2.

The adaptation mechanism proposed in Rule 2 maximizes
the commit rate as seen in the previous example. But due
to the restrictive locking policy the response time increases

69

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Example run-time adaptation scenario with decreasing cr in TW (t1, t2), reclassification at t2 to P and increasing cr in TW (t2, t3) and (t3, t4)
and switch back to class O at t4.

as the execution tends to be serial. In the worst case, endur-
ing contention, the growth is exponential. But, what if the
maximum response-time is limited, for example, by Service
Level Agreements (SLA) and penalties apply for exceeding
the maximum acceptable response-time? The SLA penalties
may outweigh the costs for aborts.

In this case maximizing the commit rate as only criteria is
not a good strategy since it increases costs. To prevent unac-
ceptable response times a barrier (denoted as β) is used that
regulates the adaptation; i.e., once β is reached re-classification
to O takes place despite a low commit rate and the abort
rate starts to increase which in turn leads to shorter response
times for the remaining successful transactions. The concrete
value of β is application dependent. Its general purpose is to
minimize costs, i.e., if the abort costs are lower than the costs
for exceeding the response-time, more aborts are acceptable
until the ratio turns over.

Application specific requirements that set β are out of the
paper’s scope, but to allow applications to limit the adaptation,
β is incorporated in O|R|P|E (see Rule 3). Applications
can now set β to limit the response time and, at run-time,
continuously monitor and adapt the achieved commit rate as
well as the response time as measured by the applications
themselves. Further, applications can increase β at run-time
appropriately. This way, applications can determine their own
equilibrium between commit rate and response-time.

The challenge is the estimation of the expected mean
response-time rtest, which implies to predict the workload.
As stated in the previous section, this is complicated if not
impossible in a general and dynamic way. O|R|P|E circum-
vents this problem and measures the time between a read
and the corresponding write if the current classification is P .
Furthermore, adaptation does no longer calculate cr at the
end of the current TW, instead each termination (commit and
abort) triggers the adaptation. A useful fixed TW is difficult to
choose. If TW is too short, the overhead is considerable and
degrades performance. If the TW is too long the adaptation is
too slow.

To estimate the future workload the terminating transaction

snapshots the lock queue’s size if P is the current class. The
current queue size together with the average time between read
and write give a good indication for the expected workload.
Because the transaction has to notify all waiting transactions
about the ongoing unlock and already is the current owner of
the lock-queue, there is no need for further synchronization
and the overhead is considerably low, but of course exists. It
is a price that has to be paid to get run-time adaptation.

Finally, the number of notified transactions multiplied by
the average time distance between a read and write is used as
an approximation for rtest. The rationale is that if q transactions
are waiting to execute and the mean time between read and
write is ø(mt) then for newly arriving transactions rtest is
expected to be rtest = ø(mt)× (q + 1) because of the mostly
sequential execution. Following this approach O|R|P|E can
balance commit rate and response time.

Transaction termination triggers adaptation, however, it is
important to note that the adaptation is not executed as part
of a transaction. This prevents the situation where a failed
adaptation would cause the transaction to abort, too.

RULE 3: Adaptation O → P with barrier
Let cr be the commit rate, δ the hysteresis, γ the target commit
rate, and β the response time barrier. Adaptation is according
to the following rules:

1) (O → P): If O is the current class for an item x
and cr < γ − δ and rtest < β then P is the new
classification of x.

2) (P → O): If P is the current class for an item x and
cr is low (cr < γ − δ) and rtest > β
then O is the new classification of x.

3) (P → O): If P is the current class for an item x and
cr is high (cr > γ + δ)
then O is the new classification of x.

4) Reclassification during a transaction:
a) If a ta reads at the time when O is the current
class, but is about to write at a time when P is the
current class, ta is aborted (non-avoidable crash) to
maintain consistency.

70

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) If a ta reads at a time when the data item is in P
and writes when it is in O the success of the write
is guaranteed because the data is exclusively locked
since read-time.

Rule 3, 1) takes care that the commit rate is sufficiently
high as long as the response time is low. If the response time
exceeds the limit β and cr is (still) low then Rule 3, 2)
switches back to O. Rule 3, 3) ensures that when the commit
rate is high the default CC-mechanism of class O is chosen.
For all other situations the classification remains unchanged.

Rule 3, 4) is the same as before. It ensures that a reclassi-
fication can take place during ongoing transactions. Reclassi-
fication is now triggered by two parameters, the commit rate
cr and the mean response time mrt.

VII. PERFORMANCE UNDER ADAPTATION

The performance study uses the implementation of O|R|P|E
described in Section IV. Even if it is not a full database
implementation with all features (no backup and no recovery
functionality) it is sufficient for measuring the performance of
O|R|P|E under different situations. Since backup and recovery
are normally inactive there is no impact on the concurrency
mechanism. Therefore, the performance measurements would
also be valid for a fully featured database system. Clearly, if
backup or recovery are active, this would impair performance.
This would also apply to our prototype.

The study analyzes different workload profiles indicated by
a sequence of workloads with a total life-span of one second
each. The workload is held constant for one second (called
epoch). The arrival rate λ for the workload ranges from 6.66
tas/sec up to a heavy overload of over 300 tas/sec. These values
have been chosen, to show the behavior of the overloaded
system with frequent aborts and the behavior under moderate
workload with a stable commit rate.

During one epoch (1 sec) the commit rate is measured 10
times (sample rate sr = 10/sec). For simplicity, all transactions
read and write only one data item, i.e., the worst case is
simulated where an item in O suddenly becomes a bottleneck.
The time unit in all simulations is milliseconds if not stated
otherwise.

To obtain a preliminary understanding the first experiments
study short living transactions with no disconnect time during
three epochs. Afterwards long living transactions with a ran-
dom disconnect time dt between 100 and 1000 milliseconds
are analyzed over seven epochs. A disconnect time dt within
these bounds simulates typical situations.

Finally, barrier β is enabled for the next set of experiments.
The set up of long living transactions and seven epochs is
always the same except for the response time barrier β which
varies between 1000 and 15000 msec. We study the effects on
commit rate cr and response time rt. Each experiment was
executed three times.

A. Short Living Transactions with Three Epochs
Table V lists our test scenarios and summarizes the result.

The right column of the table refers to the corresponding
figures for a detailed analysis. The four tests use a different
arrival rate λ for each epoch (one second interval) as marked
in the Epochs column. The first two test scenarios do not

require a concurrency control adaptation to demonstrate the
base performance without adaptation. In Tests #3 and #4 the
workload is increased to trigger adaptation.

TABLE V. RESULTS FOR THREE EPOCHS WITH DIFFERENT
WORKLOAD, γ = 0.9, δ = 5% AND dt = 0.

Summary

Test# Epochs ø(cr) σ(cr) ø(rt) Figure
1 9,14,19 1,00 0,00 3,6 9 (a)
2 153,176,176 0,89 0,16 2 9 (b)
3 10,19,178 0,96 0,06 3,7 9 (c)
4 168,310,309 0,90 0,05 2824 9 (d)

The average response time ø(rt) is very high for test
scenario #4. This is the result of an increasing overload, which
quickly triggers adaptation at the beginning of the second
epoch (see Figure 9 (d)). This leads to a mostly sequential
execution of the transactions, which explains the very high
ø(rt) and the high ø(cr) at the same time. This increase of cr
is typical for scenarios after adaptation to P has taken place.
It continues until the upper bound γ + δ is reached. Then the
adaptation switches back to class O.

As the tests indicate later, it would be better to add an
additional criteria for the re-adaptation from P → O. If the
workload is still high (wait queue > 1) the data should remain
in P until the workload is low again before going back to O.
This measure could avoid multiple re-adaptations that produce
an unstable system behavior during a sudden transition of the
workload from heavy overload to low workload.

Figure 9 shows the commit rate cr, lower and upper bounds
(set by γ ± δ), and the accumulated number of aborts and
commits of the four test scenarios.

Test #1 has a low workload in all three epochs. The load
starts with 9 tas/sec, continues in epoch #2 with 14 tas/sec
and in the last epoch the workload rises to 19 tas/sec. The
transactions are executed as they arrive and no concurrent
interleaving transactions occur. As expected, no adaptation
takes place. From the corresponding Figure 9 (a) it can be
seen that the commit rate is 1 and no aborts occur. After 3.1
sec (31 time units) all transactions have successfully terminated
and the number of commits remain constant. Test #1 is the only
scenario without contention but surprisingly not the shortest rt.
The reason for this is that a commit is more expensive than an
abort for an optimistic CC. Compared to the other tests, Test
#1 has no aborts and a commit rate of 100%.

For Test #2 the load is high (≈ 160 tas/sec) and nearly
constant for three seconds. The load is heavy and contention
is present as can be seen from the number of aborts and
the decreasing commit rate. Figure 9 (b) shows that the
commit rate does not fall below the re-classification limit,
hence no adaptation occurs. The data remains in class O and
the optimistic CC has low overhead which results in a short
response-time of only 2 msec.

Part (c) of Figure 9 (Test #3) shows the results for an
increasing workload where finally in the third epoch the
adaptation is triggered. The workload starts with 10 − 19
tas/sec for two seconds and continues with 178 tas/sec for
the third epoch. The commit rate drops under the minimum
threshold (γ − δ) at the blue vertical line (2.2 sec after
start). The CC-mechanism immediately switches to locking
and the number of aborts decreases (the accumulated abort

71

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Various short workloads to demonstrate Run-time Adaptation; (a) low 9− 19 tas/sec , (b) high ≈ 160 tas/sec, (c) increasing load 10− 180 tas/sec,
(d) increasing overload 170− 310 tas/sec, γ = 90%, δ = 5%, sr = 10/sec, and dt = 0.

graph makes a sharp bend to a lower gradient). During the
third epoch the workload is slightly higher than the system
can immediately execute. This can be seen from the slowly
growing gap between the accumulated transaction arrival (tas)
and the accumulated committed transactions (co). The average
response time ø(rt) stays low since during the first two seconds
the transactions were executed under O with short rt.

It is interesting to compare Tests #2 and #3. Test #2 has
a constant high workload, but not high enough to trigger the
adaptation, hence, the data remains in O. This is the reason
for the very short response time. Test #3 has initially a low
workload, but in Epoch #3 the workload just exceeds the
threshold and adaptation to P applies. This leads to a higher
rt even if the average workload is below the workload of Test
#2.

Also, a start with low load (Tests #1 and #3) reduces the
response-time because all transactions of the first epoch are
executed under optimistic CC with a short rt.

Test #4 produces a heavy and increasing overload which
triggers adaptation at the end of epoch 1. The gap between
committed and arrived transactions grows until the arrival ends
after 3 seconds. The adaptation to P allows to increase the
commit rate until after 10 sec all queued transactions have
terminated. The system needs 7 sec to process the queued
transactions after the arrival of transactions has stopped before
it becomes resilient. This explains the high mean response time
ø(rt).

It can be noted that run-time adaptation under heavy work-

load achieves an average commit rate ø(cr) of approximately
90%, which was preset by γ. The price for improving cr is
clearly a longer response-time rt which grows to 2.8 seconds
for continuous overload in test-case #4.

The commit rate cr is the basis for adaptation. When cr
drops below the lower bound γ− δ the adaptation is triggered
and cr increases again. The commit rate cr increases until
the upper bound γ + δ is reached which again triggers re-
classification.

Summarizing, for sudden increases and decreases of cr,
adaptation ensures a good response-time and a high commit
rate if transactions are short lived (dt = 0) and the system is
not permanently overloaded. If contention constantly remains
high, adaptation has severe effects on the response-time.

B. Long Living Transactions, Seven Epochs, and β disabled
Long living transactions are characterized by a certain time

interval between the read phase and the write phase where no
data access occurs. Some authors [17] [18] [19] [20] [21] [22]
call this interval ”think time” when a typical transaction reads
and displays data, then the user thinks about it, and finally
modifies or adds some values. We prefer to call this time
”disconnect time”, because Web based transactional systems
tend to logically disconnect from the database during this
period.

For the tests a disconnect time dt from 100 - 1000 msec
was randomly chosen. Each test consisted of seven epochs
with different workloads. Workload W1 starts with λ = 7−14

72

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tas/sec and rises the workload in epochs 3− 7 from 80 tas/sec
continuously to 106 tas/sec. Workload W2 stresses the system
with an increasing overload from 66− 460 tas/sec.

The detailed workload profiles are as follows:

• W1=(7,14,80,87,93,100,106) and
• W2=(66,132,200,265,332,400,460).

Each number denotes the transactions arriving during the
respective Epoch of one second each. The tests were executed
with two target commit rates γ = 0.9 and 0.7. Table VI shows
a summary of the results.

TABLE VI. RESULTS OF SEVEN EPOCHS WITH WORKLOAD
W1= (7, 14, 80, 87, 93, 100, 106),

W2= (66, 132, 200, 265, 332, 400, 460), γ = (0.9, 0.7), RANDOM
DISCONNECT TIME dt = 100− 1000 MS, AND BARRIER β DISABLED.

Workload γ ø(rt) #Tas ø(creff) Figure

W1 90% 4561 487 82% 10
W2 90% 24104 1845 82% 11
W1 70% 927 483 57%
W2 70% 18957 1845 46% 12

Adaptation from O → P causes a systematic abort of
pending transactions originating in O. To take these aborts
into account the effective commit rate is defined as:

creff :=
committed tas
terminated tas

(5)

The effective commit rate creff measures -as the name suggests-
the performance of the system as shown to the user and the
previously defined commit rate cr is used to trigger adaptation,
because this indicator is more sensitive to the workload. The
effective commit rate creff reached our tests 82% for the first
and ≈ 50% for the second value of γ. Note that without
adaptation all experiments would have a commit rate between
1 and 3 percent only due to the long living nature of the
transactions and the higher conflict potential. This is also the
reason why the performance in this test scenario is lower than
in the previous subsection without disconnect time.

W1 has the shortest response-time due to the comparatively
low workload. In Epoch 3 with high workload (80 tas/sec)
quickly lets cr drop under the lower boundary γ − δ = 0.85
(see Figure 10). The adaptation to P is triggered and in the
following epochs cr rises again until the upper boundary is
reached. The data is reclassified in O after 11 epochs and
again the cr drops, but recovers faster as before, because the
arrival of new transactions stopped after 7 epochs and after 12
epochs all pending transaction have terminated.

The adaptation profile for workload W2 (permanent con-
tention) shown in Figure 11 is similar to W1. Due to the
heavy workload starting in Epoch 1, the adaptation is already
triggered at the end of Epoch 1. The permanent overload leads
to a significantly longer mean response-time due to locking and
queuing in P .

For workload W2 (permanent contention, second row), the
mean response-time is significantly longer due to the queuing
effect under P . Taking the same workload with a target commit
rate of γ = 70% the adaptation behavior shows an instability
(Figure 12). After adaptation to P , the upper boundary for
cr is reached very quickly during the third epoch (time =
27 units = 2.7 sec) and the data is reclassified again in O

(Rule 2, 2)) with the result that the commit rate cr drops
to 40%. After this decrease, the system recovers slowly and
reaches the upper boundary in epoch 14 again. At this point
the arrival of transaction has already stopped but the remaining
(queued) transactions cause another jitter for cr.

The reason for this oscillating effect is that Rule 2, 2)
does not look at the number of queued transactions it only
takes criteria cr > γ + δ to re-classify the data in O again.
But in this situation all pending transactions except one will
fail due to concurrency violation. This lets the commit rate cr
drop as low as 40%.

It takes now longer for the adaptation mechanism to reach
the upper boundary because many transactions have already
aborted and accordingly more transaction have to commit to
rise cr. The upper boundary is reached after 14 sec when the
arrival of transaction has already stopped.

Summarizing, despite a sudden increase in contention,
adaptation keeps the commit rate stable even if transactions
are long living. If contention remains high, the response-
time is getting longer since P queues transactions. With
a low γ the mechanism tends to become unstable and an
oscillating behavior can be noticed. Having γ close to 100% is
recommended since adaptation is triggered earlier. To prevent
an excessive increase in response-time, β has to be enabled as
discussed in the next section.

C. Long Living Transactions, Seven Epochs, and β enabled
The following experiments study the effects on the work-

loads of the previous subsection if barrier β is enabled and γ
is high (=90%) as recommended before. Table VII summarizes
the results and shows barrier β, mean creff, and the mean
response-time ø(rt) for workloads W1 and W2. It further links
to Figures 14 and 15 showing sample graphs of one run of an
experiment at a time.

TABLE VII. RESULTS OF SEVEN EPOCHS WITH WORKLOAD
W1= (7, 14, 80, 87, 93, 100, 106),

W2= (66, 132, 200, 265, 332, 400, 460), γ = (0.9), RANDOM
DISCONNECT TIME dt = 100− 1000 MS, AND BARRIER β ENABLED.

Workload β ø(rt) ø(creff) Figure

W1 1000 187 17% Figure 14 (a)
W1 3000 343 18% Figure 14 (b)
W1 5000 355 29% –
W1 8000 1960 36% Figure 14 (c)
W1 15000 3758 39% –
W2 1000 136 3% Figure 15 (a)
W2 3000 248 16% Figure 15 (b)
W2 5000 1219 18% –
W2 8000 1172 25% Figure 15 (c)
W2 15000 2625 31% –

As Table VII shows, each workload was executed with
different values (1000, 3000, 5000, 8000, 15000) for β. All
experiments show that the mean response-time is bounded by
β and the effect of a very long response-time of 19 or 24
seconds (see Table VI of the previous section’s experiments)
with workload W2 no longer occurs. The table also shows
that the value of β does not allow to infer the actual mean
response-time. However, it shows that for an increasing β, the
response-time and the commit rate increase and β correlates
with these values.

Barrier β does not directly match with the maximum
response-time as given, for example, by Service Level Agree-
ments (SLA). The response time depends on the workload

73

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Run-time adaptation for W1 = (7, 14, 80, 87, 93, 100, 106), γ = 0.9, random disconnect time dt = 100− 1000 ms, and barrier β disabled.

Figure 11. Run-time adaptation for W2 = (66, 132, 200, 265, 332, 400, 460), γ = 0.9, random disconnect time dt = 100− 1000 ms, and barrier β disabled.

and is directly influenced by the transactions’ arrival rate. The
distribution of the response time depends additionally on the
concurrency model. For a queuing system like the concurrency
model of class P a Poisson arrival process is assumed. The
response time rt is calculated as wait time wt in the queue plus
transaction processing pt time. Even in the simplest queuing
system, the P/P/1, with Poisson arrival and one service process,
only statements about the mean response time ø(rt) can be
made. To estimate the expected response time rtest, the arrival
and service rate is necessary. But in the present case both rates
are heavily changing. If the arrival rate would only change due
to statistical variation no adaptation would be necessary. But

if a systematic change happens, e.g., because the data access
type changes, the original class assignment is not any more
suitable. Adaptation changes the service time and hence the
service rate as well. The service time st in the case of P is
the time between read and write. The only indicators for the
estimated response time are the wait queue length |Qw| and
the past average ø(st). This leads to Formula (6):

rtest := ø(st)× (|Qw|+ 1) (6)

The calculation takes into account the transactions that are
already queued for execution and the average time to process

74

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Run-time adaptation for W2 = (66, 132, 200, 265, 332, 400, 460), γ = 0.7, random disconnect time dt = 100− 1000 ms, and barrier β disabled.

a transaction. The processing time includes a possible waiting
time due to locking.

The SLA defines a limit for the response time rt and
in the case of an SLA violation, a penalty has to be paid.
There is a trade off between loosing transactions or having
excessive response time. Assuming an average price of r for
each lost transaction and a penalty of p for every transaction
exceeding the response time limit β the trade-off is given at the
intersection of two cost functions that depend on the commit
rate cr and the number of transactions tas:

ca := r × (1− cr)× tas (7)
cp := p× tasrt>β(cr)× tas (8)

If the functions are normalized with the number of trans-
actions tas then Figure 13 shows the principal graph for this
trade off. The break even point for this normalized example
is given at commit rate cr = 0.72. In practice, the database
system will measure the actual and number of aborts and
the application should monitor these values and calculate the
break even based on the costs for SLA violation and failed
transactions.

In the case of a fast changing workload it is difficult to
estimate the workload profile. If the calculation is based on
the past workload, the system may not react fast enough to
sudden changes of the arrival rate.

The situation is more promising if a workload profile is
known in advance. This is often the case if employees have
clear routines during their workday. Assume, for example,
the following tasks: order processing in the morning, stock
administration after lunch, and master data management from
5 pm to 6 pm. In this scenario data access to product data
in the morning and afternoon will be classified O while the
product data will be re-classified to P from 5 - 6 pm.

Figures 14 and 15 illustrate the run-time adaptation profile
if β is set. The time of the estimated response time rtest is

Figure 13. Example trade off between aborts and response time in terms of
costs.

shown on the right vertical axis. The left ordinate shows the
commit rate and the target boundaries. The horizontal axis
shows the transactional time which is given by a sequence of
time ordered events. The time interval from one event to the
next is not constant and hence the time scale is not linear.

In Figure 14 (a) the commit rate cr is 1 during the first two
seconds when the workload is low. When the overload begins
after two seconds the commit rate cr drops quickly below the
lower bound γ − δ = 0.85 and adaptation to P takes place.
The effective commit rate creff (green line in Figures 14 and
15) always stays below cr because cr does not count aborts
due to the adaptation O → P , but creff does. After adaptation
to P the system stabilizes the commit rate cr as shown by the
red graph. This appears in all test runs and can be seen more

75

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Run-time adaptation profile for target commit rate γ = 0.9: (a) workload W1 with β = 1000, (b) Workload W1 with β = 3000, and (c) Workload
W1 with β = 8000.

76

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Run-time adaptation profile for target commit rate γ = 0.9: (a) workload W2 with β = 1000, (b) Workload W2 with β = 3000, and (c) Workload
W2 with β = 8000.

77

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

clearly when we have a higher response time limit β as in part
(b) and (c) of Figure 14.

In the case of β = 8000 (part (c)) the commit rate increases
until the estimated response time exceeds the preset limit β.
If rtest > β the re-adaptation to O is triggered by Rule 3, 2)
because cr is still below the lower bound. The result is that
pending transactions abort and in the following the commit
rate decreases. Run time estimation works for P only because
a wait queue Qw is needed for Formula (6). If there is no wait
queue then the number for rtest is set to 0. Hence, as soon as
rtest exceeds β the systems switches to O and the rtest drops
to 0, which explains the saw tooth figure of rtest.

A low limit for the response time as in Figure 14 (a) causes
a low cr and many transactions run in O, which can only be
observed indirectly by the low rtest. If β increases (Figure 14
(b) and (c)), the number of aborts reduces because the system
remains longer in P , which causes more waiting transactions
which in turn cause more and higher peaks in the rtest.

For workload W2, Figures 15 (a) - (c) illustrate the
workload profiles for β = 1000, β = 3000, and β = 8000.
The graph of rtest for β = 1000 shows regularly appearing
peaks of longer duration caused by the permanent contention.
This effect nearly disappears for larger values of β (≥ 8000)
because after adaptation to P much more transactions are
allowed to queue up and commit later. This is indicated by
higher and shorter rtest peaks, which move to the beginning
of the test run. As a result the creff is slightly higher if β is
high.

When the workload ends after 7 seconds and the rtest drops
below β Rule 3, 1) applies and the concurrency class switches
to P which lets cr and creff rises until all transactions have
terminated.

Part (c) of Figures 14 and 15 show an effect of instabil-
ity. This happens after the arrival of transactions has ended
and before all transactions have terminated. The system has
switched to P because rtest was below the limit β and now
the high number of remaining transactions in the queue leads
to rtest> β = 8000 and the re-adaptation to O lets rtest drop
below β, which again triggers Rule 3, 1) and forces the data to
class P . The oscillation between P and O continues until most
transactions have terminated and the queue is short enough to
keep rtest below the limit β.

In part (a) and (b) this effect shows up in a moderate form
during the workload but not after its termination because the
lower β does not allow many transactions to be queued and
delayed for a longer time.

Summarizing, the usage of β keeps the mean response-time
bounded, but compared to having β =∞, a higher abort rate
is the price that has to be paid. The exact determination of β
demands a continuous adjustment and has to be carried out by
applications. In particular in the case of a mixed workload a
greater β causes short peaks in the rtest since more transactions
are allowed to commit in P . A lower β causes longer peaks
since many transactions wait and their abort is not yet known.
They continue in O and abort at write-time at the earliest.

Generally, it is important to know that O|R|P|E classifies
hot spot items (HSIs) in classes R and E, if possible. This
is the better choice if the semantic of the data allows this
classification. Adaptation is only provided to handle a sudden,
but impermanent increase of the contention for items classified

in default class O. Permanent contention is likely to cause
any system to become overloaded. O|R|P|E is at least able to
protect itself by trading off response-time and commit rate.

VIII. RELATED WORK

This paper extends the findings of [1] and is based on the
Ph.D. thesis [2] of the main author, which introduces O|R|P|E.
A vast amount of work [5] [11] has been carried out in the
field of transaction management and CC, but so far no attempt
was undertaken to use a combination of CC mechanisms
according to the data usage (semantics). Most authors use the
semantics of a transaction to divide it into sub-transactions,
thus achieving a finer granularity that hopefully exhibit less
conflicts. Some authors [23] use the semantics of the data to
build a compatibility set while others try to reduce conflicts
using multiversions [24] [25]. The reconciliation mechanism
was introduced in [8] and is an optimistic variant of “The
escrow transactional method” [9]. Escrow relies on guaranties
given to the transaction before the commit time, which is only
possible for a certain class of transactions, e.g. transactions
with commutative operations. Optimistic concurrency control
was introduced by [26], which did not gain much consideration
in practice until SI, introduced by [27], has been implemented
in an optimistic way. SI in general gained much attention
through [6] [7], and also in practice [28]. Its strength lies in
applications that have to deal with many concurrent queries
but has only a moderate rate of updating transactions. O|R|P|E,
however, is designed for high performance updating transac-
tions processing, especially with data hot spots.

IX. CONCLUSION AND OUTLOOK

The paper presented a multimodel concurrency control
mechanism that breaks with the one concurrency mechanism
fits all needs. The concurrency mechanism is chosen according
to the access semantic of the data. Four concurrency control
classes are defined and rules guide the developer with the
manual classification. When the access semantic is unknown
the default class O with an optimistic snapshot isolation
mechanism is chosen. For those data the model is extended to
dynamically change the class assignment if the performance
suggests a pessimistic mechanism P . The simulations with
the prototype demonstrated that the mechanism is working
and tests with the TPC-C++ benchmark resulted in a 3 to
4 times superior performance. The adaptation mechanism
provides a response time guaranty to comply with Service
Level Agreements for the price of a lower commit rate.

The tests revealed an instability in the form of an oscil-
lating adaptation. This occurs only under an abrupt change
of the workload from overload to inactive system. However,
a refinement of the adaptation rule could possibly avoid the
oscillation when the re-classification from P → O is executed.
This could be achieved if the re-classification is only triggered
when the wait queue is small or empty.

A dynamic algorithm for an automatic classification of
data would be desirable and would relief the developer from
manual classification. The same mechanism could then be used
to dynamically adapt the data according to a changed usage
profile.

Also, comprehensive performance tests that consider repli-
cation, online backup and a study of run-time adaptation under
real-life conditions is still missing.

78

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] T. Lessner, F. Laux, and T. M. Connolly, “O|R|P|E - a data semantics

driven concurrency control mechanism,” in DBKDA 2015, The Seventh
International Conference on Advances in Databases, Knowledge, and
Data Applications, 2015, pp. 147 – 152.

[2] T. Lessner, “O|R|P|E - a high performance semantic transaction model
for disconnected systems,” Ph.D. dissertation, University of the West of
Scotland, 2014.

[3] TPC BENCHMARK C, Standard Specification, Revision 5.11, Transac-
tion Processing Performance Council Std., February 2010.

[4] A. Thomasian, “Concurrency control: methods, performance, and anal-
ysis,” ACM Comput. Surv., vol. 30, no. 1, pp. 70–119, Mar. 1998.

[5] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[6] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Trans. Database Syst., vol. 30,
no. 2, pp. 492–528, Jun. 2005.

[7] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for
snapshot databases,” ACM Trans. Database Syst., vol. 34, no. 4, pp.
20:1–20:42, Dec. 2009.

[8] F. Laux and T. Lessner, “Transaction processing in mobile computing
using semantic properties,” in Proceedings of the 2009 First Interna-
tional Conference on Advances in Databases, Knowledge, and Data
Applications, ser. DBKDA ’09. IEEE Computer Society, 2009, pp.
87–94.

[9] P. E. O’Neil, “The escrow transactional method,” ACM Transactions
On Database Systems, vol. 11, pp. 405–430, December 1986.

[10] M. Kifer, A. Bernstein, and P. M. Lewis, Database Systems: An Appli-
cation Oriented Approach, Complete Version (2nd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

[11] G. Weikum and G. Vossen, Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.

[12] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems - the
complete book (2. ed.). Pearson Education, 2009.

[13] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database
System Concepts (sixth edition). McGraw-Hill, 2011.

[14] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: pay only when it matters,” Proc. VLDB
Endow., vol. 2, pp. 253–264, August 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1687627.1687657

[15] D. Gómez Ferro and M. Yabandeh, “A critique of snapshot isolation,”
in Proceedings of the 7th ACM european conference on Computer
Systems, ser. EuroSys ’12. New York, NY, USA: ACM, 2012, pp. 155–
168. [Online]. Available: http://doi.acm.org/10.1145/2168836.2168853

[16] R. Osman and W. J. Knottenbelt, “Database system performance
evaluation models: A survey,” Performance Evaluation, vol. 69, no. 10,
pp. 471 – 493, 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0166531612000442

[17] F. Laux and M. Laiho, “Sql access patterns for optimistic concurrency
control,” in Proceedings of the 2009 Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content,
Patterns, ser. COMPUTATIONWORLD ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 254–258. [Online]. Available:
http://dx.doi.org/10.1109/ComputationWorld.2009.63

[18] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, “Efficient
optimistic concurrency control using loosely synchronized clocks,” in
Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May 22-25, 1995., M. J.
Carey and D. A. Schneider, Eds. ACM Press, 1995, pp. 23–34.
[Online]. Available: http://doi.acm.org/10.1145/223784.223787

[19] B. Ding, L. Kot, A. J. Demers, and J. Gehrke, “Centiman: elastic,
high performance optimistic concurrency control by watermarking,”
in Proceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29, 2015,
S. Ghandeharizadeh, S. Barahmand, M. Balazinska, and M. J.
Freedman, Eds. ACM, 2015, pp. 262–275. [Online]. Available:
http://doi.acm.org/10.1145/2806777.2806837

[20] J. Huang, J. A. Stankovic, K. Ramamritham, and D. F. Towsley,
“Experimental evaluation of real-time optimistic concurrency control
schemes,” in 17th International Conference on Very Large Data Bases,
September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings.,
G. M. Lohman, A. Sernadas, and R. Camps, Eds. Morgan Kaufmann,
1991, pp. 35–46. [Online]. Available: http://www.vldb.org/conf/1991/
P035.PDF

[21] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control
performance modeling: Alternatives and implications,” ACM Trans.
Database Syst., vol. 12, no. 4, pp. 609–654, 1987. [Online]. Available:
http://doi.acm.org/10.1145/32204.32220

[22] F. Laux, M. Laiho, and T. Lessner, “Implementing row version
verification for persistence middleware using sql access patterns,”
International Journal on Advances in Software, issn 1942-2628,
vol. 3, no. 3 & 4, pp. 407 – 423, 2010. [Online]. Available:
http://www.iariajournals.org/software/

[23] H. Garcia-Molina, “Using semantic knowledge for transaction process-
ing in a distributed database,” ACM Trans. Database Syst., vol. 8, no. 2,
pp. 186–213, Jun. 1983.

[24] S. H. Phatak and B. Nath, “Transaction-centric reconciliation in dis-
connected client-server databases,” Mob. Netw. Appl., vol. 9, no. 5, pp.
459–471, 2004.

[25] P. Graham and K. Barker, “Effective optimistic concurrency control in
multiversion object bases,” in ISOOMS ’94: Proceedings of the Inter-
national Symposium on Object-Oriented Methodologies and Systems,
ser. Lecture Notes in Computer Science, E. Bertino and S. D. Urban,
Eds., vol. 858. London, UK: Springer-Verlag, 1994, pp. 313–328.

[26] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213–226, Jun.
1981.

[27] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ansi sql isolation levels,” SIGMOD Rec., vol. 24, no. 2,
pp. 1–10, May 1995.

[28] D. R. K. Ports and K. Grittner, “Serializable snapshot isolation in
postgresql,” Proc. VLDB Endow., vol. 5, no. 12, pp. 1850–1861, Aug.
2012.

79

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

