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Abstract: In this article feedback linearization for control-affine nonlinear sys-
tems is extended to systems where linearization is not feasible in the complete
state space by combining state feedback linearization and homotopy numeri-
cal continuation in subspaces of the phase space where feedback linearization
fails. Starting from the conceptual simplicity of feedback linearization, this
new method expands the scope of their applicability to irregular systems with
poorly expressed relative degree. The method is illustrated on a simple SISO–
system and by controlling the speed and the rotor flux linkage in a three–phase
induction machine.
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1. Introduction

The control of affine nonlinear systems has been extensively studied and several
control methods like feedback linearization [13], differential smoothness–based
methods [12, 18], Lyapunov functions and its generalizations [23], including a
backstepping [16] as well as sliding mode control [22] and approximation of

Received: April 2, 2015 c© 2015 Academic Publications
§Correspondence author



254 A. Borisevich, G. Schullerus

smooth dynamic systems by hybrid switching systems and hybrid control [3]
have been developed. Although the applicability and practical implementation
has been repeatedly confirmed in laboratory tests and in commercial hardware,
the improvement of these control techniques is still an active area of research.

The paper presents a homotopy-based variant of feedback linearization in
order to deal with regularity issues that occur if the input/output coupling
matrix looses rank. The problem of ill-defined relative degree is well-known
in literature. For example, most underactuated systems are not fully feed-
back linearizable, and smooth feedback stabilization to a single equilibrium
point is not possible [10, 14, 15, 1]. Another case of the nonlinear system with
ill-defined relative degree consideredm is DC-motor in bidirectional operation
when the armature current approaches to zero [24]. Similar situations occur
in other electrical machines, depending on the operating mode and the model
parametrization [6].

In the case where the input-output decoupling matrix is rank-degenerate,
the controller can be obtained by direct application of the dynamic extension
algorithm [20]. It has been shown, that for a system which is not feedback
linearizable, the addition of integrators in the inputs can result in the higher
order system being feedback linearizable. However such procedure could be
implemented only when decoupling matrix has constant rank. The presence of
singularities is a fundamental limitation of dynamic extension algorithm that
relies on the decomposition of input-output dependence at controller synthesis
stage [17].

One of the main approaches to this problem is to use a switching control
scheme [9], that is, a tracking control law that switches between an approximate
input-output linearization control law when the state is close to the singularities
and an exact input-output linearization control law when the state is far from
the singularities. In one of recent publications [14] the applicability of a com-
posite control scheme consisting of heuristic-based approximate linearization
and backstepping design for a nonlinear system is investigated. Another type
of solution is presented in [1] where inverse Lyapunov approach in conjunction
with the energy shaping technique is applied to ball and beam system. There
are approaches that allow steering through a singular point (loss of regularity)
using a time scaling of the reference trajectory which would allow one to stay
with the standard feedback linearization approach [15].

Interestingly, in the numerical methods for solving systems of nonlinear
equations, the problem of ill-defined relative degree has a similar counterpart,
the singularity of the Jacobian. And one of the most powerful method for
overcoming problems related with singular points and initial solution guess is
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numerical parameter continuation [2]. This paper continues the work of the
authors [8, 7] on the application of homotopy numerical continuation methods
to control problems. The major novelty presented here is a control approach
for driving output to zero which is suitable for MIMO systems with a relative
degree more than one. During control action algorithm switches to feedback
linearization only near the origin, where homotopy continuation stage is over
and system output is close to the desired state.

The immediate motivation for using the parameter continuation method
in control problems is a series of papers [4, 5], where the application of these
methods is described in combination with physical experiments.

In order to illustrate the method, we will first briefly introduce the control
problem and review feedback linearization as a possible solution to the given
problem. Then, an example illustrates the limitation of feedback linearization.
The new method is presented subsequently and its application is illustrated by
examples.

2. Problem Statement

In this paper we consider control-affine nonlinear systems and solve the problem
of designing a controller which drives the system output asymptotically to the
equilibrium point 0.

Problem 1. Given the control-affine nonlinear system

ẋ = f(x) +
m
∑

i=1

gi(x)ui, y = h(x) , (1)

x ∈ X ⊆ R
n , y ∈ Y ⊆ R

m , u ∈ U ⊆ R
m ,

f : Rn → R
n , gi: R

n → R
n , h : Rn → R

m ,

f , g , h ∈ Ck,

where f, g, h – are sufficiently smooth functions. Find an appropriate state–

feedback control law u(x) the application of which drives the system output y
to 0.

One method for solving this problem is feedback linearization. It is reviewed
in the sequel.
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2.1. Feedback Linearization

The main idea of feedback linearization [13] is to design a control law that leads
to a linear dynamic behavior between inputs and outputs or states, respectively.
When the focus is on the input–output–relation, then the order of this dynamics
is characterized by the relative degree.

Definition 1. A MIMO nonlinear system (1) has relative degree rj for
output yj at point x0 ∈ R

n if following conditions satisfied:
1. LgiL

k
fhj = 0 for k < rj − 1 and any gi in a neighborhood of x0,

2. for at least one function gi

LgiL
rj−1
f hj 6= 0,

where Lfh = ∂h(x)
∂x

f(x) =
∑n

i=1
∂h(x)
∂xi

fi(x) is a Lie derivative of the function h
along a vector field f .

That is, at least one input uk influences the output yj after rj differentia-
tions. The total relative degree r of the system (1) is given by r =

∑m
j=1 rj . If

r = n and the matrix

A(x) =







Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

... · · ·
...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)







has full rank, then the original dynamical system (1) is equivalent near x0 with
respect to the input–/output behavior to the system:

y
(rj)
j = L

rj
f hj +

m
∑

i=1

LgiL
rj−1
f hjui= cTj

(

B(x) +A(x)u
)

,

where cTj is a row vector of zeros except for the j–th column which is equal to
1. The nonlinear feedback

u(x) = A(x)−1[v −B(x)] (2)

converts in the neighborhood of x0 the original dynamical system (1) to a linear
system

y(rj) = vj , (3)
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which can be controlled by conventional linear control system methods. So
feedback linearization methods for nonlinear systems (1) use two feedback loops,
one of which implements a linearizing transformation (2) to (3), while the second
one controls the system (3) using an appropriately designed linear controller.

A significant drawback which limits the applicability of the feedback lin-
earization in practice is the requirement of a constant relative degree r and
full–rank of the matrix A(x) in the whole phase space. This is illustrated by a
simple example in the following section.

2.2. A Simple Example

Consider the following system

ẋ = u , y = h(x) = x(x2 − 1) + 1 , x(0) = 1 (4)

and the task of designing a control law u = u(x) such that y asymptotically
approaches 0.

An analysis of the system illustrates that

A(x) = Lgh =
∂h(x)

∂x
g(x)= 3x2 − 1 (5)

which is invertible in x ∈ R\{− 1√
3
, 1√

3
}. This means however, that feedback

linearization as described in the previous subsection is not feasible in the com-
plete state space. A similar situation is known from numerical methods for
finding roots and optimization of functions with singularities. These so called
homotopy continuation methods modify the search direction in the neighbor-
hood of singularities by augmenting the system with a system with a known
solution. The main idea of the approach presented in the following section is
to adapt this idea to the solution of the control problem 1.

It should be noted that in this work solution proposed is a variant of dy-
namic controller. But compared with dynamic feedback linearization, our ap-
proach applicable to different class of systems because conditions of solution
existence (14) is formulated in terms of augmented system. For the SISO plants
it is known, that if the system is not linearizable by static feedback, then it also
neither differentially flat, neither linearizable by dynamic state feedback [18].
Thus, for the system (4) under consideration such methods are not applicable,
but homotopy-based controller can handle output zeroing problem as it shown
in Section 4.1. Therefore the method proposed is applicable to wider class of
SISO systems than known approach of dynamic feedback linearization. The
question how related are classes of MIMO systems, to which our method is



258 A. Borisevich, G. Schullerus

applicable and flatness-based or dynamic state feedback methods are working
is still open.

3. Parameter Continuation for Control-Affine Nonlinear System

Let us associate with the plant (1) a linear dynamic system

ż = Az +Bu, η= Cz,
d(ri)

dt(ri)
η = ui, (6)

z ∈ X ⊆ R
n , η ∈ Y ⊆ R

m , u ∈ U ⊆ R
m,

where each output ηj has the same relative degree rj as the original system
output yj from (1).

In order to solve the control problem 1 we consider a new output variable H
given by the combination of the output variables of (1) and (6):

H = (1− λ)η + λy, (7)

where λ ∈ [0, 1] is a continuous time–dependant parameter, the value of which
determines the relative contribution of the outputs η and y to H. The vector
equation

H = 0 (8)

defines a trajectory (x(t), λ(t)) which begins at (x0, 0) and ends at (x∗, 1) where
y(x∗) = 0. The objective is now the design of a controller which provides a
linear dynamics for H. Note, that in the ideal case when system model (1)
is known exactly and there are no disturbances, the condition (8) is satisfied
automatically due to the nature of the proposed linearization transformation.

The purpose of proposed controller is to hold H = 0 for (7) anywhere, by
adjusting of λ and state variable x simultaneously. As result, the λ cannot
reach value 1 without satisfying of condition h(x∗) = 0.

Similar to conventional feedback linearization each component Hi in (7) is
differentiated ri times with respect to t until one obtains an explicit function
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of some input uj . We obtain after differentiation

H
(ri)
i =−

ri−1
∑

k=1

Ck
ri
η
(ri−k)
i λ(k) + (1− λ)ui

+ (yi − ηi)λ
(ri) +

ri−1
∑

k=1

Ck
ri
y
(ri−k)
i λ(k)

+ λ

(

Lri
f hi +

m
∑

k=1

LgkL
ri−1
f hiuk

)

, (9)

where Ck
n are binomial coefficient. Now, the following notation is introduced:

Λi = (λ, λ̇, λ̈, ..., λ(ri−1))

Ai,1(x, λ) =
(

λLgkL
ri−1
f hi

)T

+ (1− λ)cTk

Ai,2(x, z) = yi − ηi (10)

Bi(x, z,Λi) = −

ri−1
∑

k=1

Ck
ri
η
(ri−k)
i λ(k) +

ri−1
∑

k=1

Ck
ri
y
(ri−k)
i λ(k) + λLri

f hi ,

where cTk is a row vector of dimensionm, where all components except for the k–
th component are equal to 0. With the variables introduced in (10) equation (9)
can be written more compactly:

H
(ri)
i = Ai,1(x, λ)u+Ai,2(x, z)λ

(ri) + Bi(x, z,Λ) . (11)

Considering all of the components Hi after differentiation according to the
relative degrees ri the result is a differential equation in matrix form

H(r) = A1(x, λ)u+A2(x, z)λ
(rmax) + B(x, z,Λ) (12)

= A(x, z, λ)

(

u

λ(rmax)

)

+ B(x, z,Λ), (13)

where

rmax = max{ri}, Λ = (λ, λ̇, λ̈, ..., λ(rmax−1)),

H(r) = (H
(r1)
1 , H

(r2)
2 , ..., H(rm)

m )T .

Now we are ready to formulate the main result of the paper given by the
following theorem:
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Theorem 1. Suppose

rankA(x, z, λ) = m, (14)

then for state feedback equation
(

u

λ(rmax)

)

= ατ +A+(v − B), (15)

where v is the new bounded input and the vector τ is calculated to satisfy

constraints

Aτ = 0, ‖τ‖2 = 1, det

(

A
τT

)

> 0 (16)

and α = const ∈ R+, z(0) = 0, Λ(0) = 0 the following statements hold:

1. There exists a smooth control trajectory (u(t), λ(t)) generated by (15)
which leaves the point (u(0), 0).

2. The system (13) is transformed by the control law (15) to linear control-

lable form

H(r) = v . (17)

3. The trajectory of (u(t), λ(t)) either passes through the point λ = 1 or

diffeomorphic to a circle.

Proof. 1. The initial statement of the theorem guarantees that the starting
point (u(0), 0) of the control trajectory (u(t), λ(t)) is not attractable. It is easy
to see from (9) that B = 0, A1 = Im (m×m identity matrix) and A2 = y(0) at
t = 0. From B = 0 and (15) follows that the control vector (u(0), λ(rmax)(0)) = τ
is fully determined by the conditions (16). By direct calculations it is easy to
see that there are only two values for the τ , satisfying the first two equations
in (16), namely

τ = ±
1

N

(

−y(0)
1

)

, (18)

where N = ‖(y(0), 1)T ‖2. In addition, it is possible to rewrite the last inequality
in (16) as follows:

det

(

A
τT

)

= det

(

A1 A2

u(0) λ(rmax)(0)

)

= λ(rmax)(0)|A1| − u(0)TA2

= det

(

Im y(0)

±−y(0)
N

± 1
N

)

= ±
1

N
(1 + y(0)T y(0)).
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In order to satisfy this inequality in (16), it is necessary to choose the positive
sign in (18) such that τ = 1

N
(−y(0), 1)T .

Since α > 0, the condition λ(rmax)(0) > 0 holds as well and the point
(u(0), 0) is not locally stable. The existence and smoothness of the trajec-
tory (u(t), λ(t)) follows from Lipschitz continuity of the right side (15) and
boundedness of v(t).

2. The proof of this statement is straightforward. Note that AA+ = Im.
Thus, from (13) one obtains

H(r) = A
(

ατ +A+(v − B)
)

+ B

= αAτ +AA+(v − B) + B

= (v − B) + B

= v . (19)

3. This part of the proof will be based on topological arguments used
in numerical continuation methods [2]. We will first prove the assertion for
the case of relative degree ri = 1. Note, that in this case we can represent
the output H of the augmented system defined in (7) by the following static
mapping H : Rm × R× R+ → R

m

H = H(ξ, λ, t) , ξ(t̄) =

∫ t̄

0
u(t)dt . (20)

Differentiating (20) with respect to t results in

Ḣ =
∂H

∂t
+

∂H

∂λ
λ̇+DξHξ̇

=
∂H

∂t
+

∂H

∂λ
λ̇+DξHu, (21)

where DξH is the Jacobian matrix of H with respect to the state variable ξ.
On the other hand, from (12) we obtain for ri = 1

Ḣ = A1(x, λ)u+A2(x, z)λ̇+ B(x, z, λ) . (22)

Comparing (21) and (22) we find that A1 = DξH, A2 =
∂H
∂λ

. The concatenation
of A1 and A2 gives A = Dξ,λH. Thus, the condition (14) can be interpreted as
follows

rankDξ,λH = m . (23)
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Because of the condition (23) the implicit function theorem can be applied as
follows: For any time t there exists a curve γ(t) = (ξ(t), λ(t)) defined by the
implicit function H(ξ, λ, t) = 0. The curve γ(t) is an one–dimensional manifold
and therefore can be either diffeomorphic in coordinates (ξ, λ) to a line or to a
circle. If γ(t) started at λ = 0, then it will intersect λ = 1 if it is diffeomorphic
to a line. Alternatively γ(t) will turn back before reaching λ = 1 in the case of
a circle or turn back when λ > 1 which is also sufficient for the existence of a
solution.

Consider now the case ri > 1. We introduce the integral of λ(rmax) as
λ̄(t) =

∫ t

0 λ
(rmax)(s)ds and the static map

Ψ : Rm × R× R+ → R
m

H(r−1) = Ψ(ξ, λ̄, t) . (24)

By analogy with (20), differentiation of (24) gives

∂Ψ

∂t
= B , DξΨ = A1 ,

∂Ψ

∂λ̄
= A2 .

Applying condition (14) to (24), we obtain that rankDξ,λ̄Ψ = m. Hence,
according to the implicit function theorem, arguments similar to the case ri = 1
can be made for the curve γ(t) = (ξ(t), λ̄(t)), which is defined implicitly by the
equation Ψ(ξ, λ̄, t) = 0.

Remark 1. As a result of the feedback control law (15) the augmented
system with the output variable (7) is transformed into a linear system (17),
which can be controlled by a conventional linear controller. In addition to
achieving the desired dynamic behavior this linear control loop can be designed
in a robust manner to cope with plant model parametric uncertainty [21].

Remark 2. In general, the dynamics of λ generated by (15) is unbounded.
The state trajectory (λ(t), x(t)) starts from the point (0, x0) and passes the
point (1, x∗) where y = h(x∗) = 0. In order to keep the system in x∗, in some
neighborhood of (λ, x) = (1, x∗) the control law (15) is replaced by λ(rmax) = 0
and u(x) is calculated by an appropriate conventional control law near the point
x∗.

Remark 3. The parameter α in (15) is an additional degree of freedom
in controller design. The larger this constant, the faster the solution arrives to
λ = 1, but numerical integration becomes more stiff.
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Remark 4. The condition (14) is a standard assumption in the application
of parameter continuation methods, which corresponds to the possible existence
of limit points of trajectories (u(t), λ(t)) at which A1 /∈ imA2, and the absence
of bifurcation points. At the same time in some regions of phase space X × Z
may be a situation where rankA1(x, λ) < m. In this case, the system with
output (7) cannot be directly linearized by the feedback, but the proposed
method is still applicable.

Remark 5. Condition (14) can be relaxed a little, but we do not consider
this here. In fact, the proposed method allows the existence of the phase space
of simple bifurcation points where dimkerA = 2. When the control trajectory
passes through a simple bifurcation point the sign of vector τ is flipped. A more
detailed analysis is given in [2].

Overcoming the bifurcation points where A1 ∈ imA2, is also possible within
the known approaches for the numerical parameter continuation (e.g., using the
Lyapunov–Schmidt decomposition [2]).

Remark 6. Meaning of the parameter α can be demonstrated as follows.
Let’s consider alone the parameter continuation, putting for external control
v = 0. The function H can be written in the coordinates (ξ, λ̄, t) of the control
variables integrals, where ξ(t) =

∫ t

0 u(s)ds, λ̄ =
∫ t

0 λ
(rmax)(s)ds.

Overall solution trajectory (ξ(t), λ̄(t), t) for the function H(ξ, λ̄, t) = 0 in-
herits the properties of each particular solution trajectory for stationary con-
tinuation problems Ht=t0(ξ, λ̄) = H(ξ, λ̄, t0) = 0 for every fixed t0 if everywhere
the direction of change for λ̄ is collinear with the corresponding component in
τ :

sign(λ(rmax)) = sign(τλ), (25)

or α|τλ| > |τ̄λ|, which gives the condition for α

α > max
t

∣

∣

∣

∣

τ̄λ
τλ

∣

∣

∣

∣

, (26)

where τλ is component for λ in vector τ = (τu τλ)
T given by (16) and τ̄λ is

variation component for λ in τ̄ = −A+B = (τ̄u τ̄λ)
T .

Remark 7. The statement 3 of Theorem 1 is given in the traditional
manner, by analogy with Theorem (2.1.14) in [2]. It allows that the trajectory
could be diffeomorphic to a circle and never reaches λ = 1. We can impose the
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additional condition for initial point:

rankA1(x0, 0) = n. (27)

If this condition satisfied, then the Implicit Function Theorem gives x in
terms of λ in a neighborhood of (x0, 0). This implies that solution curve is not
diffeomorphic to a circle.

4. Applications

4.1. One Illustrative Example

In order to illustrate the method we first consider the system (4) and solve the
problem 1 starting from x(0) = 1.

From (4) we obtain

ẏ = (3x2 − 1)u .

We now associate with (4) the linear system

ż = u , η = z (28)

with the initial condition z(0) = 0. From (9) we obtain for the calculation of
Ḣ with (12) the following matrices

A1 = λ(3x2 − 1) + 1− λ, A2= y − η, B = 0 .

Using this result and the feedback equation (see Remark 1)

v = −kH,

the control action can be calculated from (15) as follows

(

u

λ̇

)

= ατ +A+(v − B)

= ατ − k
(

λ(3x2 − 1) + 1− λ y − η
)+

H . (29)

Complete stabilization problem for this particular example could be real-
ized accordingly to Remark 2 as follows. If control trajectory approached a
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neighborhood of λ = 1, then fix λ := 1 and stabilizing controller could be im-
plemented via feedback linearization with decoupling term obtained earlier in
(5):

u =
v

3x2 − 1
=

−kx

3x2 − 1
. (30)

Thus we have following one-step control rule: if λ < 1−ǫ then apply control
(29), if λ > 1− ǫ then fix λ = 1 and apply control (30), where ǫ > 0 sufficiently
small positive constant.

The simulation results obtained with this Simulink model for k = 10 and
α = 5 are given in Figure 1 and illustrate the transition of the output y to 0
while λ moves from 0 to 1.

Additional simulations were conducted to demonstrate performance of the
method in case of model parametric uncertainty. The control was synthesized
using approximate plant model in form

˙̄x = u , ȳ = x̄(x̄2 −
1

2
) +

1

2
, x̄(0) = 1. (31)

The simulation results indicated that outer loop robustifies control perfor-
mance and the desired output value y = 0 was asymptotically reached due
to external proportional feedback v = −kH even in case of model parameter
uncertainty.

Finally, the simulations illustrate the change in the dynamic behavior at the
points x = 1√

3
and x = − 1√

3
marked by the red dotted lines where conventional

feedback linearization is not feasible.

4.2. Three Phase Induction Motor Control

Consider the application of the proposed method for controlling the speed and
flux linkage of an induction machine. As described in [6] the three–phase in-
duction machine is an example of a system that cannot be linearized by state
feedback as the decoupling matrix of the feedback transformation is singular if
the rotor flux linkage is zero which occurs at the startup of the motor. In this
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Figure 1: Simulation results for the simple system control.
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design procedure we use the system model given in [11]:

ω̇ = µφrisq −
pTm

J

φ̇r = −τ−1
r φrd + τ−1

r Msrisd

i̇sd = βτ−1
r φr − τ−1

1 isd + ωsisq +
usd
L1

(32)

i̇sq = −βωφr − τ−1
1 isq − ωsisd +

usq
L1

.

The state variables are the rotor angular speed ω, the rotor flux linkage φr

and the stator current projections on the dq–axis reference frame isd, isq. Con-
trol variables are the stator voltages usd and usq. Tm is the load torque and
is considered as disturbance. The model parameters are given based on the
stator and rotor resistances and self–inductances Rs, Ls and Rr, Lr, the mutual
inductance Msr and the number of pole pairs p:

τr =
Lr

Rr
, µ = p2

Msr

JLr
, β =

Msr

LrL1
,

L1 = Ls −
M2

sr

Lr
, R1 = Rs +Rr

(

Msr

Lr

)2

, τ1 =
L1

R1
.

Due to rotor flux orientation the synchronous rotor angular speed ωs is given
by

ωs = ω +
Msrisq
τrφr

.

The control objective is to control the mechanical rotor speed ω/p and the rotor
flux linkage φr.

We will use the approach from [19] for controlling the system given by (32)
based on two feedback loops. The internal loop controls the currents isd, isq
using two PI–controllers and decoupling of the two current component dynamics
by

usd = L1(νsd − ωsisq) (33)

usq = L1(νsq + βωφr + ωsisd) . (34)

As a result we obtain a linear dynamics for the currents given by

i̇sd = νsd + βτ−1
r φr − τ−1

1 isd (35)

i̇sq = νsq − τ−1
1 isq . (36)
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The controllers for the current dynamics given by (35) and (36) are de-
signed such that the controlled current dynamics can be neglected in the design
process of the outer loop [19]. The external loop controls the mechanical rotor
speed and the rotor flux linkage. We use PI–controllers such that the structure
of the system resembles a classical FOC–control with the only difference that
the output of each PI–controller in the outer loop is passed through an appro-
priate nonlinear coordinate transformation. For applying the new method we
consider as output variables the deviation from the given reference value of the
mechanical speed and the rotor flux linkage, respectively

y1 =
ω − ωRef

p
y2 = φr − φr,Ref .

The first differentiation of the outputs y1 and y2 yields

ẏ1 =
µφrisq

p
(37)

ẏ2 = −τ−1
r φr + τ−1

r Msrisd . (38)

Let us associate with (37) and (38) a linear system of a form

η̇1 = u1 = isq , η̇2= u2 = isd , η(0) = (0, 0)T .

Using (9) and (11), we can write the following equation for the augmented
system:

H = (1− λ)η + λy

Ḣ = λẏ + u(1− λ) + λ̇(y − η)

Ḣ1 = λµφrisq/p+ isq(1− λ) + λ̇(y2 − η2) (39)

Ḣ2 = λ(−τ−1
r φr + τ−1

r Msrisd) + isd(1− λ) + λ̇(y1 − η1). (40)

According to Theorem 1, the augmented plant (39)–(40) can be transformed
into Ḣ = v by the feedback (15)

(

u

λ̇

)

= ατ +A+(v − B), (41)

A = λ







µφr

p
0 y1 − η1

0
Msr

τr
y2 − η2






+ (1− λ)

(

1 0 0
0 1 0

)

, (42)

B = λ





0

−
φr

τr
,



 (43)
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where isq = u1, isd = u2.
After transforming the system (39)–(40) to Ḣ = v it is necessary to imple-

ment an external linear control loop, which keeps y at the desired setpoints for
λ = 1 when H = y. The variables v1 and v2 correspond to the output of the
two PI–controllers in the outer loop.

Note that for λ = 1 the linearizing transformation (41) reduces into follow-
ing form

isd =
τr
Msr

(v1 + τ−1
r φr)

isq =
p

µφr
v2

which is conventional feedback linearization applied for motor control after
fixing λ := 1 according to Remark 2.

During the simulation Gaussian noise with variance 0.005 obtained from
a source of pseudorandom numbers was added to the stator current compo-
nents isd and isq which corresponds to 15 mA random error of current mea-
surement. The parameter α was set to α = 20 and stator voltages usd, usq are
limited to the interval [-200, 200 V].

P 4 kW rated power
Msr 0.175 H mutual inductance
Rs 1.2 Ω stator resistance
Rr 0.873 Ω rotor resistance
Ls 0.195 H stator inductance
Lr 0.195 H rotor inductance
J 0.013 kgm2 motor and load inertia
p 2 pole pairs

Table 1: Motor parameters.

The simulation results shown in Figures 2 illustrate the performance of the
control algorithm during the first second after startup. The control objective
is to follow the reference acceleration ramp ωRef(t) = 65t rad/s and maintain
φr at the level of φr,Ref(t) = 0.31 Vs. The motor operates under a load torque
Tm = 2 Nm. Initial undershoot in speed ω is caused by external disturbance
application of load torque.

From the simulation results we observe the smooth transition from λ = 0 to
λ = 1 in the interval t ∈ [0 0.15 s]. While the rotor flux linkage φr reaches the
reference value, the mechanical rotor speed first moves in the opposite direction
due to the applied load torque Tm and then reaches the desired trajectory.
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Figure 2: Simulation results for the induction motor control.
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5. Conclusion

In this paper we propose a new method for controlling affine nonlinear sys-
tems. Starting from the conceptual simplicity of feedback linearization this
new method expands the scope of their applicability to irregular systems with
poorly expressed relative degree. The main idea is to augment the system in
such a way that the augmented system can be controlled by feedback lineariza-
tion. Currently, the dynamics of the parameter λ is unbounded, such that in
the neighborhood of the desired output value a switch of the control law is
necessary.

The method is illustrated on a simple SISO–system and by controlling the
speed and the rotor flux linkage in a three–phase induction machine.

Future work will focus on methods to eliminate the need for this switching.
In addition, the modeling of the influence of uncertainties in an explicit form
will be investigated and transient performance of the augmented system will
be analyzed formally as well. Also generalization for case r < n and impact of
zero dynamics will be investigated.
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