
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 81 (2019) 606–611

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.
10.1016/j.procir.2019.03.163

© 2019 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Procedia CIRP 00 (2019) 000–000 
  

    www.elsevier.com/locate/procedia 

  

 

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems. 

52nd CIRP Conference on Manufacturing Systems 

Implementation of the MIALinx User Interface for Future Manufacturing 
Environments 

Dominik Luckea,c,*, Frank Steimleb, Emir Cuka, Michael Luckerta,  
Matthias Schneidera, Daniel Schela 

aFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, 70569 Stuttgart, Germany, 
b University of Stuttgart, Institute for Parallel and Distributed Systems IPVS, Universitätsstraße 38, 70569 Stuttgart, Germany 

cHochschule Reutlingen, ESB Business School, Alteburgstr. 150, 72762 Reutlingen, Germany  

* Corresponding author. Tel.: +49-711-970-1897; fax: +49-711-970-3603. E-mail address: dominik.lucke@ipa.fraunhofer.de 

Abstract 

The flexible and easy-to-use integration of production equipment and IT systems on the shop floor becomes more and more a success factor for 
manufacturing to adapt rapidly to changing situations. The approach of the Manufacturing Integration Assistant (MIALinx) is to simplify this 
challenge. The integration steps range from integrating sensors over collecting and rule-based processing of sensor information to the execution 
of required actions. This paper presents the implementation of MIALinx to retrofit legacy machines for Industry 4.0 in a manufacturing 
environment and focus on the concept and implementation of the easy-to-use user interface as a key element. 
 
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems. 

 Keywords: manufacturing; smart factory; Industrie 4.0; manufacturing service bus; rules; integration; user interface 

 
1. Introduction  

The increasing personalization of products and shorter 
product life cycles confront manufacturing companies with new 
challenges. To remain competitive, they must constantly 
change and adapt themselves.  

 
Nomenclature 

CMMS  Computerized Maintenance Management Systems 
ERP     Enterprise Resource Planning 
HTTP Hyper Text Transfer Protocol 
IoT  Internet of Things 
IT        Information Technology 
MES    Manufacturing Execution Systems 
MSB  Manufacturing Service Bus 
UI User Interface 

 
Here, the availability of up-to-date information at all levels of 
production is essential to implement a highly effective 
manufacturing. This includes technical processes, individual 
machine components as well as the entire production and 
associated business processes. Using the gathered information, 
the production can be controlled and optimized by workers or 
by self-organizing manufacturing systems. This leads to a 
continuous optimization over the entire life cycle of products, 
factories and processes. 

To turn this vision into reality, the flexible and easy linking 
of information is essential. In the field of production, this 
typically includes various information sources such as MES or 
ERP-systems as well as a wide variety of up-to-date and legacy 
machines and sensors on the shop floor. Especially on the shop 
floor, more and more mobile sensors and sensor networks have 
to be included that are used to retrofit machines e.g. to gather 
more information for machine maintenance or to measure the 

 Procedia CIRP 00 (2019) 000–000 
  

    www.elsevier.com/locate/procedia 

  

 

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems. 

52nd CIRP Conference on Manufacturing Systems 

Implementation of the MIALinx User Interface for Future Manufacturing 
Environments 

Dominik Luckea,c,*, Frank Steimleb, Emir Cuka, Michael Luckerta,  
Matthias Schneidera, Daniel Schela 

aFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, 70569 Stuttgart, Germany, 
b University of Stuttgart, Institute for Parallel and Distributed Systems IPVS, Universitätsstraße 38, 70569 Stuttgart, Germany 

cHochschule Reutlingen, ESB Business School, Alteburgstr. 150, 72762 Reutlingen, Germany  

* Corresponding author. Tel.: +49-711-970-1897; fax: +49-711-970-3603. E-mail address: dominik.lucke@ipa.fraunhofer.de 

Abstract 

The flexible and easy-to-use integration of production equipment and IT systems on the shop floor becomes more and more a success factor for 
manufacturing to adapt rapidly to changing situations. The approach of the Manufacturing Integration Assistant (MIALinx) is to simplify this 
challenge. The integration steps range from integrating sensors over collecting and rule-based processing of sensor information to the execution 
of required actions. This paper presents the implementation of MIALinx to retrofit legacy machines for Industry 4.0 in a manufacturing 
environment and focus on the concept and implementation of the easy-to-use user interface as a key element. 
 
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems. 

 Keywords: manufacturing; smart factory; Industrie 4.0; manufacturing service bus; rules; integration; user interface 

 
1. Introduction  

The increasing personalization of products and shorter 
product life cycles confront manufacturing companies with new 
challenges. To remain competitive, they must constantly 
change and adapt themselves.  

 
Nomenclature 

CMMS  Computerized Maintenance Management Systems 
ERP     Enterprise Resource Planning 
HTTP Hyper Text Transfer Protocol 
IoT  Internet of Things 
IT        Information Technology 
MES    Manufacturing Execution Systems 
MSB  Manufacturing Service Bus 
UI User Interface 

 
Here, the availability of up-to-date information at all levels of 
production is essential to implement a highly effective 
manufacturing. This includes technical processes, individual 
machine components as well as the entire production and 
associated business processes. Using the gathered information, 
the production can be controlled and optimized by workers or 
by self-organizing manufacturing systems. This leads to a 
continuous optimization over the entire life cycle of products, 
factories and processes. 

To turn this vision into reality, the flexible and easy linking 
of information is essential. In the field of production, this 
typically includes various information sources such as MES or 
ERP-systems as well as a wide variety of up-to-date and legacy 
machines and sensors on the shop floor. Especially on the shop 
floor, more and more mobile sensors and sensor networks have 
to be included that are used to retrofit machines e.g. to gather 
more information for machine maintenance or to measure the 



	 Dominik Lucke  et al. / Procedia CIRP 81 (2019) 606–611� 607
2 Dominik Lucke et al./ Procedia CIRP 00 (2019) 000–000 

product quality inline. This integration of all the different 
information sources can be implemented e.g. by point-to-point 
connections or workflow technology. It always requires an 
extensive knowledge of manufacturing workers on the one hand 
and skilled programmers able to adjust the existing solutions on 
the other. This means, once workers identify the need to change 
the environment, they depend on the IT department to 
implement this change. In most cases, this integration process 
is time consuming, expensive and impedes a rapid adaption of 
the manufacturing to the current situation. To overcome this 
challenge, a simplified and flexible integration of sensor-
equipped physical assets (machines, equipment and tools) on 
the shop floor with the IT systems is required.  

Therefore, we developed MIALinx, a lightweight and easy-
to-use IT integration solution, which we introduced in previous 
works [1, 2, 3]. In this paper, we focus on the implementation 
of the user interface of MIALinx. Furthermore, we describe the 
application in a manufacturing environment where MIALinx 
enables worker to easily link and optimize manufacturing 
processes without special programming knowledge. The paper 
is structured as follows. The first sections are dedicated to the 
relevant context of the paper starting with the overall MIALinx 
concept, the implemented use case and the related work. The 
following sections present the aspects related to the 
development of the MIALinx UI.  

2. MIALinx Concept  

In the daily operation within a manufacturing company, 
many situations exist that follow an IF-THEN logic, such as “IF 
the last part of a production order is finished THEN report it to 
the ERP system” or “IF the temperature is higher than 50°C 
THEN turn the ventilator on.” Many parts and systems of 
manufacturing are controlled this way with more or less 
complex IF-THEN rules. The workers, foremen and managers 
are used to think in that logic.  

In order to solve the integration challenge, we apply the IF-
THEN logic to connect flexibly different IT systems, machines, 
sensors and via interfaces, humans. Therefore, all these assets 
are clustered into sensors, providing information about 
something, and actuators, executing something. The sensors 
can be physical such as sensors for electrical current and 
voltage or temperatures measurement but also virtual like 
database events or production orders. Everything that produces 
information in a manufacturing environment can be used as a 
sensor. Actuators can be physical (e.g. linear axis or signal 
lights) but also virtual (e.g. emails or maintenance demand 
message generator for CMMS or ERP systems). In general, an 
actuator can be everything that can consume information. 

An IF-THEN rule links events from the sensors to 
corresponding actions of actuators. Rules can be saved, reused 
and executed automatically. A set of conditions is required to 
specify the circumstances under which the actuator is triggered 
and executed. For the technical implementation a so-called 
action configuration is required It specifies the action that 
should be executed by the actuator when the rule is executed, 
consisting of key value pairs that are send to the involved 
actuator. These four parts can be combined to a rule saying: “If 
the involved sensor sends new information and all conditions 

are met, then send the action configuration to the given 
actuator” [1]. One advantage of these rules is that they can be 
saved and reused and that they can be used to automatically 
react to occurring events. Another advantage of this approach 
is that people are enabled to program new rules or to adapt 
existing ones without any deep programming knowledge.  

In the development of such a flexible and easy-to-use 
integration solution MIALinx follows the service-oriented 
architecture principle. MIALinx is split into a back-end and a 
front-end. The back-end comprises multiple functions realizing 
the technical integration of the sensors and actuators, the rule 
configuration, storage and execution. In order to simplify the 
integration and communication the implemented architecture 
uses a manufacturing service bus (MSB), presented in [1, 2, 3]. 
The MSB is a scalable service-oriented integration layer 
connecting the sensors and actuators via a multitude of protocol 
interfaces and a so-called integration flow. Simplified, the 
integration flow stores the connected sensors and actuators and 
the transforming operations. To program the integration flows 
a deep programming knowledge is required. To simplify this, 
we introduced a rule configurator, comprising the functions to 
create and edit a rule in a technical abstract form. It transforms 
the rules automatically into executable integration flows. 
Further functions are dedicated to the rule management 
(activation, deactivation, storing), rule checking for conflicts 
and a role-based user management. Technically, the functions 
are encapsulated into a HTTP interface that can be controlled 
by the front-end. 

The front-end is the presentation layer for the rule 
configurator. It implements rule-modeling functions and allows 
the interaction with the user, which is the focus of this paper. 
The challenge is to find the balance between simplicity and 
functionality, hiding the complexity of IT systems on the one 
hand and providing enough functionality to cover most 
problems in manufacturing on the other. Here the UI is key to 
provide guidance and flexibility for users in the rule creation, 
editing and management processes.  

3. Use case of retrofitting of legacy machines 

The advantages of MIALinx are especially on retrofitting 
and upgrading of legacy machines functions, as we have here 
the situation to connect different IT systems and machines with 
different interfaces and protocols. In our use case we focus on 
the maintenance of air filters of machines and equipment in 
electrical cabinets that are often neglected. The electrical 
components inside a cabinet require a sufficient cooling, which 
is implemented with an air-cooling system. With 
predetermined maintenance strategies, the air filters will be 
usually replaced too early to avoid the risk of a failure. The 
potential of reducing unnecessary maintenance work and spare 
parts is high, as on one single shop floor often several hundred 
air filters are installed within the machines. Usually, they have 
no integrated condition monitoring system. Therefore, in this 
use case we upgrade the fan with a low-cost wireless condition 
monitoring system, measuring the air filter condition. The 
applied wireless sensor is IoT-capable, meaning that apart from 
measuring the filter condition, it has capabilities to perform 
simple signal processing techniques for information reduction, 



608	 Dominik Lucke  et al. / Procedia CIRP 81 (2019) 606–611
 Dominik Lucke et al./ Procedia CIRP 00 (2019) 000–000  3 

and for transmitting the processed values to MIALinx. After 
the physical installation of the sensor, the worker can create a 
rule directly at the machine’s location using a mobile device, 
for example his tablet. This rule sends, on a defined level, an 
automatic generated notification email to the maintenance 
planner. Another MIALinx rule creates a maintenance demand 
message for the CMMS. 

4. Related work 

In the area of IoT, many concepts and tools for integrating 
different devices have been developed, which could be used in 
future manufacturing environments to simplify further the 
integration of different systems. Web-automation-platforms 
like IFTTT 1  or Zapier 2  enjoy increasing popularity. These 
platforms can be used for easy and simple definition of IF-
THEN rules. An IF-THEN rule links events to corresponding 
actions. Using these platforms users are able to integrate 
different IT systems and IoT devices without any programming 
skills using a graphical user interface. Some existing platforms, 
like Zapier, are able to integrate, e.g., Customer Relationship 
Management Systems. Nevertheless, they cannot be used on a 
shop floor as they are closed systems, which do not allow 
integrating arbitrary services or devices. Also, the Sensor 
management platforms like OpenMTC3 or FIWARE4 could be 
used for integrating arbitrary devices on the shop floor with any 
IT system. Although these platforms can be used to realize IF-
THEN rules, they are not as flexible or easy-to-use like web-
automation-platforms as they require the rules to be 
implemented either in source code or using a query language. 
While these approaches simplify the integration and 
programming of the immediate IF-THEN rules, they have 
drawbacks in the visualization and simple selection within a 
large number of sensors or actuators as it is required in 
manufacturing environments.  

Several research projects have dealt with creating easy-to-
use platforms that enable users with little programming 
knowledge to create IF-THEN rules to customize the behavior 
of environments. One of the first approaches was iCAP [4], 
which supports personalization of home appliances. They 
present a user interface where the user can create if-then rules 
by dragging items from a repository for user-defined objects, 
(activities, locations, people, time) into the situation area, 
which consists of a situation-part (if) and an action-part. iCAP 
does not support the user in picking a sensor or actuator based 
on his context. It also does not show the relations between 
existing rules. CharIoT is an end-user programming 
environment for the Internet of Things [5]. It allows the 
definition of so-called virtual sensors that can be used to define 
higher-level events over raw data. Virtual sensors can then be 
used in an IFTTT-like user interface to define if-then rules. The 
combination of the IFTTT-like interface and the hidden 
complexity of the virtual sensors should enable any user to 
easily create if-then rules. TARE is framework that allows end-
users to customize the context-dependent behavior through the 

 
 

1 http://www.ifttt.com 
2 http://www.zapier.com 

specification of trigger-action rules [6]. It splits the 
development process of rule-based environments in three 
phases. In the first phase professional developers set up the 
infrastructure of the environment. The second step consists of 
the definition of available triggers and actions based on the 
available environment on the one hand and the requirements of 
the end users on the other hand. Domain experts who are 
familiar with the application domain perform this step. In the 
third phase end-users use a web-based authoring tool to create 
trigger-action-rules. EFESTO is a tool to enable users to 
express rules for smart object composition [7]. The main idea 
is that users who want to specify customized behavior can do 
so by answering five questions: Who did it? What happened? 
When did it take place? Where did it take place? Why did it 
happen? (5W model). The authors of EFESTO also build a 
web-based authoring tool to guide the user through the rule 
creation process based on their model. HomeBlock is a tool 
created to use an Event-Condition-Action language to create 
intelligent scenarios, and constraints that prevent scenarios 
with undesirable behaviors to be applied [8]. Although this 
project mainly focuses on verification of scenarios, the authors 
also build an authoring tool to verify their approach.  

After examining all the presented user interfaces, we find 
that none of them provides the combination of a simple rule 
creation process, an overview of rules and relations between 
them, and a user interface that can be used on every device. 

5. Requirements to the MIALinx user interface 

Based on the main ideas of MIALinx presented in section 2 
the following derived requirements need to be addressed in the 
development of the MIALinx UI. The requirements to the UI 
have been captured during a workshop with experts of our 
target user group and during other industrial projects. The 
target user groups of the MIALinx system are skilled workers, 
foremen and plant managers with a high range of age, technical 
and social backgrounds. This defined target user group has also 
been used for the development of the so-called mental model 
of the MIALinx UI, presented in the following section. The 
mental model represents the logic of the UI. The captured 
requirements range from basic functionality over usability to 
organizational categories. 

5.1. Basic functions 

The basic functions are essential functions for a working 
MIALinx system comprising the creation, editing, deleting as 
well as activation and deactivation of rules. Also, a basic 
requirement is to provide an overview of existing sensors, 
actuators and rules.  

5.2. Usability requirements 

One of the main ideas of MIALinx and therefore one major 
requirement is to abstract the technically complex integration 

3 http://www.openmtc.org 
4 https://www.fiware.org 



	 Dominik Lucke  et al. / Procedia CIRP 81 (2019) 606–611� 609
4 Dominik Lucke et al./ Procedia CIRP 00 (2019) 000–000 

processes of sensors and actuators. It is the key for simplifying 
the programming of the rules. The reason is that the target user 
group, such as workers, foremen or plant managers, usually has 
knowledge about their machines and sensors on a natural 
language level, such as “machine 5532”, “temperature sensor 
34”. However, they do not want to deal with the technical 
details such as the communication protocol or data format that 
are required to build an integration process. 

For the acceptance of a software in a shop floor context the 
UI shall provide a flexibility in the rule creation and editing 
process, because there are existing situations in which it is 
easier to start with the configuration of the actuator instead of 
the sensor. In addition, this flexibility in programming gives 
the user the feeling that MIALinx adapts and assists to him and 
not vice versa. In parallel, the created rules have to be checked 
for validity and the user has to be guided if something is 
missing or not valid. Another derived requirement of the 
acceptance is that already created rules have to be 
understandable within a short time. Implementation examples 
can be an IF-THEN natural language sentence or in a clear 
visualization.  

Other requirements for the UI result from the intended use 
of MIALinx. The MIALinx system shall be accessible 
everywhere in the shop floor e.g. in front of a machine as well 
as in the office. Therefore, the MIALinx UI shall be usable on 
different devices such as PCs, tablets or smart phones. As these 
devices have usual different operation systems, the UI should 
be accessible without the installation of additional software. In 
addition, the UI should automatically adapt to different display 
sizes and resolutions (responsive user interface). Here, further 
requirements have to be considered: best practice of interface 
design, such as a sufficient contrast of fonts and elements, and 
different sizes of font and UI elements.  

5.3. Organizational requirements 

Organizational requirements result from the typical 
organizational structures or processes within a factory. One 
basic rule of security is to restrict the access of information to 
a minimum necessary to perform the work. Therefore, the 
MIALinx UI shall be able to restrict the access to sensors, 
actuators and rules according to the user’s role. In same context 
for security reasons, a reviewing process of created rules has to 
be established. Therefore, newly created rules are at first in a 
disabled condition, by default. They have to be activated as the 
last step of a revision process.  

6. Concept of the MIALinx user interface 

The UI is one of the key elements in the MIALinx concept 
to implement the simplicity feature resulting in the requirement 
of a high abstraction of programming from technically complex 
integration processes. In the overall concept we mainly use the 
idea of IF-THEN rules to solve this in the direct user 
interaction, but in the development of the UI we also need to 
address the other previously stated requirements.  

For the development of the UI we use the approach of 
mental models. Mental models are not focused on modelling 
details and the complex mechanisms behind something, they 

model things or processes more from an overall end user 
perspective [9] and based on incomplete facts and 
simplification [10]. The mental model in our case represents 
the logic and the user interaction of the UI. With this approach, 
we enable envisioned users in the development phase to focus 
on the logic and interaction of the UI and not the technical 
details behind it. 

Later, the mental model and the technical conceptual 
decisions such as the implementation as a web application, the 
programming language or frameworks are merged in the 
implementation phase in a so-called represented model. This 
final represented model is implemented using so-called UI 
design patterns (see section 7).  

Based on the analysis of the captured demands and 
requirements of our envisioned target user group we identified 
three mental models for our MIALinx UI. The first model 
represents the hierarchy and principle layout of rules, sensors, 
actuators and parameters. The second one represents the 
interactions on creating a rule. The third mental model 
represents the interactions to search and select the desired 
sensor or actuator.  

6.1. Rule, sensor and actuator model 

Each rule has two underlying main components, a sensor and 
an actuator. Both have the same structure and contain one or 
more parameters of different types [2]. Therefore, we propose 
a clear layout with sensors on the left column and actuators on 
the right column (Figure 1). This has the reason, that usually in 
western culture people read from the left to the right and 
therefore we decided to arrange the sensor selection and 
configuration on the left as it is usually the first step of a rule 
creation process. 

 In addition, to address further the requirement for an easy 
understanding of the rules, our mental model contains a clear 
hierarchy, showing the direct dependencies of involved sensors, 
actuators and parameter in a rule.  

6.2.  Rule creation model 

The user starts with prior knowledge of the idea to connect 
sensors and actuators to one IF-THEN rule with certain 
conditions. He has also the mental model of the rule in mind. 
This is the moment where the user has to interact with the 
MIALinx UI. Often assistants are implemented following a 
static process flow providing a good guidance through the 
process (Figure 2a). In our case the user has to select the sensor 
at first, set all the sensors parameters and then do the same for 
the actuator. During our development phase in tests and talks 

 

Fig. 1. Mental model of rule, sensor, actuator and parameter nesting. 



610	 Dominik Lucke  et al. / Procedia CIRP 81 (2019) 606–611
 Dominik Lucke et al./ Procedia CIRP 00 (2019) 000–000  5 

with experts of our target user group, the demand to a more 
flexible way of programming arose, resulting in the 
corresponding requirement. To meet this requirement, we use 
a rule creation model with a dynamic process flow (Figure 2b). 
In this dynamic process flow, the creation of the rule can start 
with choosing either a sensor or an actuator. Once a sensor or 
actuator has been selected, any parameter can be configured 
without a fixed order. Combined with the mental model of the 
rule, a progress or status of the creation process can be realized. 
Overall, with that concept the user is encouraged to play and 
interact with the system instead of following rigidly the steps.  

6.3. Search sensors and actuators model 

Another challenging part of creating a rule is the search for 
the right sensor and the matching actuator. A usual method is 
to use a plain list, which is either alphabetically sorted or a full 
text search function is provided. During our development 
phase, in tests and talks with experts of our target user group, 
the wish to a better searching process arose, to provide also a 
hierarchical and location-based searching possibility, as the 
search and selection out of a plain list is to be uncluttered. 
Therefore, in our mental model for searching and selecting of 
sensors, actuators and rules, we use the approach of a 
hierarchical factory structure model behind, a free text search 
and a faceted search. The factory structure model can be 
visualized in a nested view and give a first orientation. A 
faceted search uses attributes to filter the overall list or the result 
list of a free text search in several steps. Examples for possible 
attributes are the machine type, the sensor or actuator type, or 
their location. A spatial filtering as a major filtering ability as a 
special feature of a faceted search can be achieved using a 
graphical map-based filter and selection as another view. An 
example of the top-down location structure could be the 
following: from building to floor to room to machine to process. 
Also, this searching process follows a dynamic process flow. 
The user can start with the nested view, free text search or 
faceted search and switch to the other views during the search 
and selection process to refine the search criteria further.  

 
 

5 http://www.angular.io 

7. Implementation of the MIALinx user interface 

For the implementation of the MIALinx UI concept we use 
the approach of UI design patterns. They are widely in use in 
UI design and already consider the usability requirements 
related to form, size, contrast and layout of UI elements and 
fonts. On a technical level the UI is realized as a web-based 
application developed using Angular.io5. By using Angular, we 
meet the requirement of device and operating system 
independency. The implemented design is focused but not 
limited to a landscape tablet format. The earlier presented 
mental model is the blueprint for the design of the UI. The 
interaction derives from the other two mental models.  

In our implementation the sensors and actuators (in the 
following referred to as devices) are initially displayed in a list 
view next to each other. The user is free to change the view to 
a nested view of the factory structure, or to a map, which shows 
the location of the devices. Additionally, the user can use a text 
field to filter the devices e.g. by name or type. This gives the 
user a high degree of freedom when searching for the right 
device. Once the right device is selected, the selection interface 
disappears and the devices’ parameters get visible. At this point 
the user still has all interaction options available. He can select 
the missing device, or deselect the device again, or set a 
parameter, as shown in the rule creation process in Figure 2b. 
The UI also supports user and role management in order to 
meet the requirements to restrict the access on information. 

Applied to our use case, a typical rule creation process 
presents as follows. As stated earlier, the worker wants to create 
a rule, which automatically sends an email if a filter gets 
clogged. The worker decides to start by selecting the actuator 
first. Therefore, he uses the list, which shows devices based on 
the workers privileges, to find the “Send Email” Actuator, 
selects it and configures its parameters (address, subject and 
content). After selecting and configuring the actuator, the 
worker has to select the right sensor. Since there are many 
monitored filters in the factory and he does not know the name 
of the sensor, he switches to the map view to select the sensor 
(background of Figure 3). In order to reduce the items visible 

  

a) Static flow                                                                    b)      Dynamic flow 

Fig. 2. Static and dynamic flow of the rule creation model. 



	 Dominik Lucke  et al. / Procedia CIRP 81 (2019) 606–611� 611
6 Dominik Lucke et al./ Procedia CIRP 00 (2019) 000–000 

in the map, he uses the provided filter function and filters by 
“Condition Filter” to find the right sensor. After the sensor 
selection using the map, the worker has to set the sensor 
parameter. He wants so specify that the rule should be 
executed, if the contamination of the sensor is bigger than 75%. 
Therefore, he has to select the parameter named 
“Contamination”. The “bigger than” is selected by a drop-down 
menu and the “75%” has to be entered in a text field. If sensor 
and actuator are selected and configured, the user has to 
provide a name and a description for the rule in order to save it 
(Figure 3). The rule is then visible in the rule overview and can 
be activated. The activation is done by a different person, who 
has a supervising role and accounts for the rule consistency.  

The MIALinx system is currently installed and tested in a 
plant of an industrial partner as well as in a permanent 
demonstrator in the future work lab, which is dedicated to the 
future of working places, has high visitor frequency, and the 
visitors themselves can get hands-on experience with future 
manufacturing environments. First results of the ongoing tests 
there show that it usually takes less than 30 seconds to create a 
rule after a short introduction of less than 5 minutes.  

8. Conclusion and future work   

In this paper, we present the concept and implementation of 
the user interface of the MIALinx system. MIALinx in general 
is a lightweight and easy-to-use IT integration solution. The 
user interface is one of the key elements to realize the simplicity 
feature. The user interface is designed for a target group of 
skilled workers, foremen and plant managers with a high range 
in age and technical and social background. In three so-called 
mental models we describe the logic concepts of the user 
interface. Theses mental models comprise the main aspects of 
visualization of the if-then rules, the processes to rule creation 
and the search and selection of sensors and actuators. The user 
interface is implemented as a web-based application user 
interface. As future work, we plan to deploy MIALinx in the 
domain of production information acquisition. Furthermore, the 
goal in future is to provide a catalog of different sets of rules 
for different use-cases and domains.  

Acknowledgements 

MIALinx is a joined research and implementation project 
between the Fraunhofer Institute for Manufacturing 
Engineering and Automation IPA and Institute for Parallel and 
Distributed Systems of the University of Stuttgart. It is funded 
by the Baden-Württemberg Stiftung gGmbH. 

References  

[1]  Wieland M, Hirmer P, Steimle F, Gröger C, Mitschang B, Rehder E, et al. 
Towards a Rule-based Manufacturing Integration Assistant. Procedia 
CIRP 2016; 57: 213–218. 

[2]  Wieland M, Steimle F, Mitschang B, Lucke D, Einberger P, Schel D, et 
al. Rule-Based Integration of Smart Services Using the Manufacturing 
Service Bus. Proc. 14th IEEE Int. Conf. Ubiquitous Intell. Comput. 
UIC2017, Fremont, USA: 2017, p. 1–8. 

[3]  Lucke D, Einberger P, Schel D, Luckert M, Schneider M, Bauernhansl T, 
et al. Implementation of the MIALinx Integration Concept for Future 
Manufacturing Environments to Enable Retrofitting of Machines. In 
Proceedings of the CIRP-ICME 2018, Gulf of Naples, Italy, 2018. 

[4]  Dey AK, Sohn T, Streng S, KodamaJ. iCAP: Interactive Prototyping of 
Context-Aware Applications. In: Fishkin KP, Schiele B, Nixon P, Quigley 
A (eds) Pervasive Computing. Pervasive 2006. Lecture Notes in Computer 
Science 2006; 3968: 254-271. 

[5]  Tomlein M, Boovaraghavan S, Agarwal Y, Dey AK. CharIoT: An End-
user Programming Environment for the IoT. In proceedings of the Seventh 
International Conference on the Internet of Things IoT 2017, New York,  
USA: ACM; 2017. 

[6]   Ghiani G, Manca M, Paterno F, Santoro C. Personalization of Context-
Dependent Applications Through Trigger-Action Rules. In ACM Trans. 
Comput.-Hum. Interaction 2017: 24 (2):14:1-14:33. 

[7]   Desolda G, Ardito C, Matera M. End-User Development for the Internet 
of Things: EFESTO and the 5W Composition Paradigm. In: Daniel F., 
Gaedke M. (eds) Rapid Mashup Development Tools. RMC 2016. 
Communications in Computer and Information Science 2016; 696: 74-93. 

[8]   Guilly TL, Smedegård JH, Pedersen T, Skou A. To Do and Not to Do: 
Constrained Scenarios for Safe Smart House. In proceedings of 
International Conference on Intelligent Environments 2015, Prague, 2015, 
p. 17-24. 

[9]   Cooper A, Reimann R, Cronin D, Noessel C. About Face: The Essentials 
of Interaction Design, Indianapolis, USA: Wiley; 2014. 

[10] Johnson-Laird PN. Mental models and human reasoning. Proceedings of  
 the National Academy of Sciences 2010; 107 (43): 18243-18250. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Rule creation user interface. 


