
Self-tuning serverless task farming using proactive elasticity control

Stefan Kehrer1 • Dominik Zietlow2
• Jochen Scheffold1 • Wolfgang Blochinger1

Received: 20 January 2020 / Revised: 13 July 2020 / Accepted: 15 July 2020 / Published online: 23 July 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The cloud evolved into an attractive execution environment for parallel applications, which make use of compute resources

to speed up the computation of large problems in science and industry. Whereas Infrastructure as a Service (IaaS) offerings

have been commonly employed, more recently, serverless computing emerged as a novel cloud computing paradigm with

the goal of freeing developers from resource management issues. However, as of today, serverless computing platforms are

mainly used to process computations triggered by events or user requests that can be executed independently of each other

and benefit from on-demand and elastic compute resources as well as per-function billing. In this work, we discuss how to

employ serverless computing platforms to operate parallel applications. We specifically focus on the class of parallel task

farming applications and introduce a novel approach to free developers from both parallelism and resource management

issues. Our approach includes a proactive elasticity controller that adapts the physical parallelism per application run

according to user-defined goals. Specifically, we show how to consider a user-defined execution time limit after which the

result of the computation needs to be present while minimizing the associated monetary costs. To evaluate our concepts, we

present a prototypical elastic parallel system architecture for self-tuning serverless task farming and implement two

applications based on our framework. Moreover, we report on performance measurements for both applications as well as

the prediction accuracy of the proposed proactive elasticity control mechanism and discuss our key findings.

Keywords Cloud computing � Parallel computing � Function-as-a-service � Parallel cloud programming � Elasticity �
Programming model

1 Introduction

Serverless computing can be seen as a natural evolution of

former cloud service models and is heavily influenced by

microservices, container virtualization, and event-driven

programming [53]. Whereas the microservices architec-

tural style propagates the development and operation of

fine-grained services, container virtualization helped to

back this trend from a technological side. Following these

developments, serverless computing enables function-level

elasticity by decoupling compute from storage, which is a

common approach to build cloud-native applications. The

compute tier is represented by stateless Function as a

Service (FaaS) functions1 and the storage tier is given by

backend services (Backend as a Service) such as databases,

message queues, and caching systems [29]. Because FaaS

functions themselves are not individually addressable

(point-to-point communication is not supported), they can

only communicate via shared backend services [24].

& Stefan Kehrer

stefan.kehrer@reutlingen-university.de

Dominik Zietlow

dominik.zietlow@tuebingen.mpg.de

Jochen Scheffold

jochen.scheffold@student.reutlingen-university.de

Wolfgang Blochinger

wolfgang.blochinger@reutlingen-university.de

1 Parallel and Distributed Computing Group, Reutlingen

University, Alteburgstr. 150, 72762 Reutlingen, Germany

2 Autonomous Learning Group, Max-Planck-Institute for

Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen,

Germany

1 We refer to a function in the serverless computing context with the

term FaaS function not to be confused with programming-level

functions.

123

Cluster Computing (2021) 24:799–817
https://doi.org/10.1007/s10586-020-03158-3(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03158-3&domain=pdf
https://doi.org/10.1007/s10586-020-03158-3

Prominent serverless computing platforms include AWS

Lambda2 and Azure Functions3 as well as open source

solutions such as Apache OpenWhisk4. Exemplary appli-

cations of serverless computing include data filtering and

transformation, log file analysis, or object recognition in

images [29]. In all these cases, computations are triggered

by an event or user request and can be executed indepen-

dently of each other. This enables these applications to

benefit from elastic auto-scaling in a straightforward

manner.

More recently, serverless computing platforms have

become of interest for parallel applications, which com-

prise most often complex coordination, communication,

and synchronization patterns [9, 28, 51, 54]. Several

challenges related to the development and operation of

parallel applications arise from the specific characteristics

of serverless computing platforms (e.g., how to implement

communication based on shared backend services). Addi-

tionally, pay-per-use and elasticity are fundamentally new

concepts that have to be considered [23, 32–35]: In tradi-

tional parallel execution environments such as clusters and

grids, users had no visibility of the monetary costs of a

computation and were not able to make use of elasticity by

adapting the number of processing units at runtime.

In this work, we enable parallel cloud programming by

introducing self-tuning serverless skeletons, which separate

functional application development from non-functional

aspects of the execution. Self-tuning serverless skeletons

are based on the concept of algorithmic skeletons [14, 19],

which has been introduced to structure parallel computa-

tions as a set of higher-level functions that abstract from

complex coordination patterns inherent to parallel pro-

cessing. We argue that by following a skeleton-based

approach, developers are relieved of parallelism and

resource management issues while an elasticity controller

is able to make use of elastic compute resources to auto-

matically handle non-functional requirements related to

parallel processing. For instance, more resources can be

employed to speed up the computation when the results are

required immediately. At the same time, because using

more processing units leads to higher monetary costs, a

moderate number of processing units is automatically

provisioned when the deadline is further away, thus saving

money otherwise unnecessarily spent for additional com-

pute resources.

We specifically focus on the class of parallel task

farming applications because it comprises many applica-

tions of practical relevance and is well-suited for serverless

computing [38]. Parallel task farming applications split the

total workload and distribute multiple tasks across a set of

processing units to speed up the computation [47]. Our

main contributions are a proactive elasticity controller that

employs non-linear regression techniques to control the

number of FaaS functions per application run according to

a user-defined execution time limit as well as a corre-

sponding elastic parallel system architecture for self-tuning

serverless task farming based on a serverless computing

platform. This work is based on previous research contri-

butions presented in [38], where we describe a novel

approach to parallel cloud programming called serverless

skeletons that separates functional application development

from non-functional aspects of parallel execution. We

extend our former work by discussing a proactive elasticity

controller to automatically handle non-functional require-

ments, an elastic parallel system architecture, as well as a

corresponding prototype and new experimental results.

Additionally, we discuss the applicability and requirements

of proactive elasticity control mechanisms and describe our

key findings.

The remainder of this work is structured as follows. In

Sect. 2, we discuss the cost/efficiency-time trade-off

inherent to parallel processing in the cloud. In Sect. 3, we

present our approach to parallel cloud programming with

serverless skeletons. We describe a serverless task farming

framework as well as a corresponding prototypical imple-

mentation in Sect. 4. In Sect. 5, we describe two imple-

mented example applications for serverless task farming.

The proactive elasticity controller and a corresponding

elastic parallel system architecture are described in Sect. 6.

The results of an extensive experimental evaluation are

provided in Sect. 7. In Sect. 8, we discuss the presented

approach, its underlying assumptions, as well as our key

findings. In Sect. 9, we describe related work. Finally, in

Sect. 10, we conclude our work.

2 Parallel processing in the cloud

The consumption of compute resources changed drastically

with the emerging cloud computing paradigm: The cloud

provides metered resources on-demand, which have to be

payed on a per-use basis. Consequently, the monetary costs

of parallel computations have to be explicitly considered

per application run [21, 31, 48]. In this regard, Fig. 1

compares three different application runs with different

numbers of processing units for an (ideal) perfectly scal-

able and two (realistic) non-perfectly scalable parallel

systems. The areas shown for each application run

2 https://aws.amazon.com/lambda.
3 https://azure.microsoft.com/en-us/services/functions.
4 https://openwhisk.apache.org.

800 Cluster Computing (2021) 24:799–817

123

https://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/services/functions
https://openwhisk.apache.org

visualize the numbers of processing units as well as how

long they are employed for the computation. As we can

easily see, the areas shown for the perfectly scalable par-

allel system all have the same size, whereas the sizes of the

areas shown for the non-perfectly scalable parallel systems

increase with an increasing number of processing units.

This can be explained by the parallel overhead that

increases with the number of processing units [31]. The

parallel overhead Opar is defined as the total time collec-

tively spent by all processing units over and above the

sequential execution time Tseq and modeled as

Opar ¼ p � Tpar � Tseq; ð1Þ

where p is the number of processing units employed and

Tpar is the parallel execution time [20].

How much overhead occurs for which number of pro-

cessing units depends on the specific scaling behavior of

the parallel system considered. In cloud environments,

because one pays processing units per time unit, both using

more processing units as well as using processing units for

a longer period of time increases the monetary costs of a

parallel computation Cpar , which can be defined as

Cpar ¼ Tpar � p � cp; ð2Þ

where cp the price of one processing unit per time unit.

As a result, whereas elasticity enables users to control

the number of processing units by means of an elasticity

controller, a cost/efficiency-time trade-off has to be con-

sidered for all but the ideal (perfectly scalable) case [31]:

Whereas adding more processing units effectively reduces

the execution time, a higher number of processing units

also leads to higher monetary costs due to a lower effi-

ciency. This leads to two conflicting optimization goals:

Reduce monetary costs & maximize efficiency vs. shorten

the execution time of an application run.

In this work, we propose an approach to handle the

cost/efficiency-time trade-off in an automated manner.

Therefore, we first introduce the concept of serverless

skeletons to separate functional application development

aspects from non-functional aspects of parallel execution.

Then, we show how to construct and integrate a proactive

elasticity controller that automatically adapts the number of

processing units (in form of FaaS functions) per application

run according to a user-defined execution time limit while

minimizing the associated monetary costs of the compu-

tation. Parallel applications based on serverless skeletons

provide two essential benefits: Simplified application

development without considering resource management

issues and specific insights into the structure of an appli-

cation that can be exploited by an automated elasticity

control mechanism. This is also the key difference of our

approach and existing work, which is discussed in Sect. 9

in more detail.

3 Serverless skeletons for parallel cloud
programming

A major benefit of using skeletons is that coordination,

communication, and synchronization is transparently han-

dled, which substantially reduces runtime errors (e.g., due

to deadlocks, starvation, and race conditions) when com-

pared to low-level parallel programming models (such as

MPI). Consequently, one can say that each skeleton com-

prises a built-in parallel behavior [17]. In this work, we

specifically address serverless computing platforms - a

novel parallel execution environment with benefits such as

per-function resource accounting. However, in contrast to

other parallel execution environments, the specific char-

acteristics of serverless computing platforms make the

implementation of parallel coordination and communica-

tion across parallel processing units challenging. In the

following, we present several concepts and design princi-

ples to enable parallel cloud programming with serverless

skeletons.

Skeleton-based development with user- and frame-

work functions Algorithmic skeletons make use of the

separation of concerns principle to free developers from

Fig. 1 Whereas the monetary

costs of a perfectly scalable

parallel system are independent

of the number of processing

units employed, for parallel

systems that are not perfectly

scalable, the monetary costs

increase with the number of

processing units

Cluster Computing (2021) 24:799–817 801

123

parallelism aspects: Only the functional code is imple-

mented by developers while code required for parallel

coordination is provided by the skeleton itself. In the fol-

lowing, we refer to a code segment implemented by

developers with the term user function and to a code seg-

ment provided by the skeleton with the term framework

function. A user function essentially captures application-

specific processing logic. Each skeleton declares the user

functions, which have to be implemented by developers. A

framework function implements a certain parallel coordi-

nation task such as task distribution or termination detec-

tion. By following the serverless computing paradigm,

parallel coordination has to be implemented based on

backend services. This requires particular attention because

the required consistency guarantees might not be provided

by all backend services. We discuss several examples of

user and framework functions in more detail for serverless

task farming (cf. Sect. 4.1).

Communication via backend services Whereas user

and framework functions that are executed by the same

FaaS function can communicate via shared memory,

communication across FaaS functions requires additional

effort. Because point-to-point communication is not sup-

ported on serverless computing platforms, communication

has to be implemented based on shared backend services.

To relieve developers of the burden of implementing and

adapting code for communication via backend services, the

required wrapper code can be automatically generated per

FaaS function. By following this approach, the interaction

with backend services as well as the serialization and

deserialization of data is transparent to developers and

provided by the generated wrapper code. The internal

structure of a generated FaaS function is depicted in Fig. 2.

To support different backend services, we introduce a

backend service access layer, which employs the adapter

pattern. Backend services can thus be selected based on

application-specific requirements and easily replaced. The

selection of backend services largely depends on the type

and size of data structures stored by a serverless skeleton

instance as well as their access frequency. In general, fre-

quently accessed, small data structures benefit from in-

memory data stores with low access latency, whereas for

huge communication volumes object storage services are a

good choice. Two exemplary backend services supported

by our prototypical implementation (cf. Sect. 4) are MinIO

and Redis.

Automated delivery and deployment Delivery and

deployment automation are integral concepts related to

cloud programming and have been shown to effectively

shorten software release cycles [37]. A system that auto-

mates the delivery process is called continuous delivery

pipeline [26]. Figure 3 summarizes the integration of the

aforementioned concepts to create a continuous delivery

pipeline for parallel cloud programming with serverless

skeletons. Whereas developers have to implement the user

functions required by a particular skeleton, all other steps

shown in Fig. 3 can be automated including the compila-

tion of a serverless skeleton instance (which includes the

generation of wrapper code) and the deployment to a

serverless computing platform by means of deployment

packages. The specification of a skeleton-specific custom

configuration is optional (zero configuration approach).

4 Serverless task farming framework

In this section, we discuss a serverless version of the well-

known farm skeleton [47]. Many parallel applications can

be implemented based on this skeleton. Prominent exam-

ples include brute-force search in cryptography, frame

rendering in computer graphics, Monte Carlo simulation,

and many machine learning tasks. To validate the concepts

proposed in Sect. 3, we present a Java-based development

and runtime framework for serverless task farming. The

remainder of this section is structured as follows. First, we

describe the serverless computing platform addressed upon

which we built our prototypical implementation. Subse-

quently, we (1) discuss the user and framework functions

of our serverless farm skeleton as well as their imple-

mentations, (2) the communication via shared backend

services, as well as (3) delivery and deployment aspects.

Fig. 2 FaaS functions can be automatically generated by combining

user and framework functions. Generated wrapper code handles the

communication via backend services as well as the serialization and

deserialization of data

802 Cluster Computing (2021) 24:799–817

123

Serverless computing platform The serverless com-

puting platform addressed is Apache OpenWhisk—an open

source serverless computing platform that executes FaaS

functions based on events from external sources or API

calls. Technically, functions are deployed as Docker con-

tainers. The functional logic implemented by developers is

called Action in OpenWhisk jargon and can be written in

one of the following programming languages: NodeJS,

Swift, Java, Go, Scala, Python, PHP, Ruby, or Ballerina. In

addition, we employ two backend services: MinIO and

Redis. MinIO5 is an open source object storage that pro-

vides an Amazon S36 compatible API for data access.

Redis7 is an in-memory data store that can be used as

database, cache, or message broker.

4.1 User and framework functions

In this section, we describe the user and framework func-

tions of the serverless farm skeleton (depicted in Fig. 4)

and discuss related design considerations. Function naming

is inspired by [47]. The signatures of user functions are

declared by Java interfaces, which have to be implemented

by developers. Relevant Java methods are shown in Fig. 5.

Note that framework functions are transparent to

developers.

Predecessor (user) function The predecessor function

receives a set of input key-value pairs and initiates the farm

skeleton by creating a set of tasks. Each task is described

by a set of key-value pairs with the key being a String and

the value being an Object. Also note that serializable

objects are required to enable communication based on

shared backend services. Finally, the predecessor function

returns the tasks that should be processed in parallel.

Dispatcher (framework) function The dispatcher

function is provided by the framework and enacts task

distribution. Therefore, it invokes the implemented worker

function once per task created by the predecessor.

Worker (user) function A worker function receives a

task description, which is defined as a set of key-value

pairs, as input and computes a result value being an Ob-

ject. Developers are free to implement any application-

specific processing logic that maps the input to a result

value.

Termination detection (framework) function To

detect the termination [20] of all worker functions, the

termination detection function is invoked by each worker

function when its computation has been completed.

Because point-to-point communication is not supported by

serverless computing platforms and FaaS functions are

stateless, termination detection has to be implemented

based on a shared backend service. As termination is a

persistent property of the global system state, which means

that once detected it should never be changed again, the

implementation of termination detection based on a back-

end service requires particular attention. False positive or

false negative termination detection signals can compro-

mise the execution by detecting termination more than

once or never. Our implementation is based on Redis. We

employ Redis’ atomic increment operations to implement a

counter, which is incremented atomically once per com-

pleted worker function. Termination is detected when the

counter has reached the total number of worker functions.

In this case, the collector function is invoked.

Collector (user) function The collector function

receives a set of result values, where each result value has

been computed by one worker function. Additionally, we

pass the set of input key-value pairs, originally received by

the predecessor function. This is required by applications

for which the implementation of the collector function

depends on the original input (for an example cf. Sect. 5.1).

Developers implement any application-specific aggregation

Fig. 3 A continuous delivery

pipeline complements our

approach for parallel cloud

programming with serverless

skeletons. User and framework

functions are automatically

compiled into a serverless

skeleton instance, which is then

described in form of

deployment packages and

deployed to a serverless

computing platform

5 https://min.io.
6 https://aws.amazon.com/s3.
7 https://redis.io.

Cluster Computing (2021) 24:799–817 803

123

https://min.io
https://aws.amazon.com/s3
https://redis.io

logic that merges together these result values, e.g., sum-

ming up all values. The aggregated result value computed

by the collector function is an arbitrary Object.

Successor (user) function The successor function

receives the result value computed by the collector func-

tion. Developers are free to implement any application-

specific result handling such as storing the result in a

database or sending an email to inform a user about the

completed computation. A successor function can also

invoke other FaaS functions.

4.2 Communication via backend services

Based on the communication concept described in Sect. 3

and depicted in Fig. 2, our framework transparently

ensures the communication across FaaS functions. Our

prototypical implementation of the backend service access

layer supports two different backend services, namely

MinIO and Redis. More adapters can be easily added.

Note that the framework transparently allocates and

releases data stored in backend services and thus ensures

that these services are only used when they are actually

required. In contrast, programming serverless parallel

applications in an ad hoc manner can lead to huge waste of

money: For instance, if developers forget to free allocated

storage resources, which are billed and payed per time unit.

However, note that there are cases in which the framework

cannot transparently release data stored in backend ser-

vices, e.g., when a user-provided program throws an

exception that forces the whole framework to terminate.

4.3 Delivery and deployment

To deliver and deploy a serverless farm skeleton instance,

we implemented a delivery pipeline according to Fig. 3,

which (1) groups user and framework functions to compile

a serverless skeleton, (2) creates the required deployment

packages, and (3) deploys the developed skeleton instance

via the OpenWhisk API. The delivery pipeline is described

in [38] in more detail. However, note that the user and

framework functions depicted in Fig. 4 can be mapped to

FaaS functions in many different ways. For instance, to

execute the application sequentially, all user and frame-

work functions can be mapped to a single FaaS function

thus that no network communication or backend service

access is required (cf. Fig. 2). In this case, all framework

functions are implemented as regular method calls and

executed by a single FaaS function. On the other hand, to

parallelize the application, user and framework functions

can be mapped to more FaaS functions, thus that multiple

worker FaaS functions can be run in parallel to speed up

the computation. Both mappings are also depicted in

Fig. 6. Note that, technically, only a single container is

deployed for mapping (1), whereas several containers have

to be executed by the serverless computing platform to run

a skeleton instance with mapping (2).

5 Implementing serverless parallel
applications

In this section, we present two prototypical applications

that can be easily developed and deployed with our

framework: Numerical integration and hyperparameter

optimization of an artificial neural network. We describe

Fig. 4 User and framework

functions of the serverless farm

skeleton

Iterable<HashMap<String, Object>> predecessor(HashMap<String, Object> input);

Object worker(HashMap<String, Object> task);

Object collector(HashMap<String, Object> input, Iterable<Object> workerResults);

HashMap<String, Object> successor(HashMap<String, Object> input, Object result);

Fig. 5 Signatures of the

serverless farm skeleton user

functions declared by Java

interface methods

Fig. 6 Alternative mappings of the serverless farm skeleton function

topology to FaaS functions for deployment. Mapping (1) represents a

mapping for sequential execution of the skeleton instance and (2)

shows a mapping for a parallel version of the skeleton instance

804 Cluster Computing (2021) 24:799–817

123

the implementation of each application based on our

framework in detail. Both applications are implemented in

Java.

5.1 Numerical integration

Our numerical integration application computes the

numerical value of a definite integral of a user-defined real-

valued function f(x). We employ a commonly used tech-

nique for approximating the definite integral: The trape-

zoidal rule from the closed Newton–Cotes formulas [7].

Therefore, the region under the graph f(x) is approximated

as a trapezoid of which the area can be easily calculated:Z b

a

f ðxÞdx � ðb� aÞ � f ðaÞ þ f ðbÞ
2

ð3Þ

A better approximation can be achieved by partitioning the

integration interval [a, b] and applying the trapezoidal rule

to each subinterval. This procedure is also called the

composite trapezoidal rule. Therefore, the closed interval

[a, b] is partitioned into N equally spaced subintervals,

where each subinterval has a length of Dx ¼ b�a
N . Increasing

the number of subintervals makes the approximation more

accurate. The numerical value of a definite integral can be

calculated based on the composite trapezoidal rule as

follows:

Z b

a

f ðxÞdx � Dx
2

� f ðx0Þ þ f ðxNÞ þ 2 �
XN�1

k¼1

f ðxkÞ
 !

; ð4Þ

where the values x0 and xN are equal to a and b,

respectively.

Implementation A developer has to implement the

partitioning of the integration integral as part of the pre-

decessor function, which is automatically dispatched by the

dispatcher (framework) function. Each subinterval is cal-

culated independently by a worker function. Termination is

transparently detected by the termination detection

(framework) function. Thereafter, the collector function

calculates the final value of a definite integral based on

Eq. (4), which is relayed to the successor function

accordingly.

5.2 Hyperparameter optimization

Many machine learning techniques are configured by

means of parameters that have to be determined. These

parameters are called hyperparameters. A prime example

are artificial neural networks, which can be configured by a

multitude of hyperparameters that influence their network

architecture (number of layers, layer size) or the learning

process (learning rate). The optimal configuration has to be

selected from a (most often) highly multi-dimensional

hyperparameter space. Finding the optimal configuration is

a non-trivial process referred to as hyperparameter opti-

mization [12].

A commonly used approach for hyperparameter opti-

mization is grid search, which we employ in our case study.

However, note that also other approaches such as random

search [11] can be easily implemented based on our

serverless task farming framework because hyperparameter

configurations can be evaluated independently of each

other and can thus be farmed out for distributed compu-

tation. Random and grid search are discussed more thor-

oughly in [11].

Our hyperparameter optimization application considers

a simple artificial neural network following the multilayer

perceptron (MLP) architecture and is designed to optimize

the layer size of a hidden layer. The goal is to find the layer

size with the highest prediction accuracy (for the data set

employed). The network architecture comprises three lay-

ers: An input layer, a hidden layer, and an output layer. To

train the network we use the well-known MNIST8 data set,

a large collection of handwritten digits that is commonly

used to benchmark classification techniques. The input

layer of the network has a fixed size of 784, which corre-

sponds to the number of pixels of MNIST images

(28 � 28 ¼ 784). The output layer has a fixed size of 10

(representing the 10 possible numbers of the MNIST data

set). The learning algorithm employed is stochastic gradi-

ent descent.

Implementation A developer has to implement (1) the

generation of hyperparameter configurations as part of the

predecessor function, (2) the training and evaluation of an

artificial neural network based on a hyperparameter con-

figuration for the worker function, and (3) the aggregation

of results for the collector function. In this case, the col-

lector function selects the hyperparameter configuration

that produced the best accuracy. The successor function

writes the output to the console. Task distribution and

termination detection are transparently handled by frame-

work functions. Our implementation of hyperparameter

optimization is based on Deeplearning4j9—a deep learning

framework for the Java Virtual Machine (JVM). We

employ the ND4J10 scientific library for linear algebra

operations. Whereas we do not use specific hardware

accelerators in this work, ND4J also supports graphics

processing units (GPU).

8 http://yann.lecun.com/exdb/mnist.
9 https://github.com/deeplearning4j/deeplearning4j.
10 https://github.com/deeplearning4j/nd4j.

Cluster Computing (2021) 24:799–817 805

123

http://yann.lecun.com/exdb/mnist
https://github.com/deeplearning4j/deeplearning4j
https://github.com/deeplearning4j/nd4j

6 Proactive elasticity control

Up to this point, serverless skeletons have been introduced

as a novel approach to parallel cloud programming that

separates functional and non-functional aspects. On this

basis, this section shows how to make them self-tuning,

i.e., how to integrate a proactive elasticity controller, which

handles the cost/efficiency-time trade-off (cf. Sect. 2)

based on user-defined settings in an automated manner.

6.1 Automating the cost/efficiency-time trade-
off

A user that employs the serverless task farming framework

to implement and execute an application has to select the

number of processing units (i.e., the number of worker

FaaS functions) per application run. This is implicitly

accomplished by the predecessor function that generates a

specific number of tasks, each of which is processed by an

independent worker FaaS function (cf. Sect. 4.1). As an

additional feature, we present a proactive elasticity control

mechanism that is able to predict the number of processing

units required to meet a user-defined execution time limit

after which the result of the computation needs to be pre-

sent while minimizing the associated monetary costs. This

is an important scenario, e.g., when parallel processing is

embedded in existing workflows. To minimize the mone-

tary costs of the computation, one has to select the mini-

mum number of processing units with which the

computation still finishes within the user-defined execution

time limit. With this approach, a user does not have to

understand the scaling behavior of the application. Rather,

the number of processing units is selected by the elasticity

controller according to the user-defined execution time

limit and thus the cost/efficiency-time trade-off is handled

in an automated manner. To this end, the elasticity con-

troller requires a prediction model that captures the appli-

cation-specific scaling behavior and is able to estimate the

required number of processing units upfront. We discuss

how to generate such a model by following a supervised

learning approach that considers monitoring data obtained

from previous runs of the application.

Finding the required number of processing units can be

considered a regression problem. As opposed to classifi-

cation problems, which require predicting a discrete class

label output, regression problems require predicting a

continuous quantity output. The output in this case is the

number of processing units, which should be provisioned

for the computation. Note that, to employ regression

techniques, the number of processing units is modeled as

continuous quantity, but it can easily be rounded to a (non-

negative) integer value for provisioning. Regression

techniques can be used to fit a model that explains a

response variable based on one (or more) explanatory

variables by estimating the model parameters from data.

Therefore, often the method of least squares is used to

minimize the sum of the squares of the differences between

the observed response variable in a given data set and the

predicted response variable. The resulting model can be

used to make a prediction of the response variable if values

of the explanatory variable(s) are known.

In the following, we discuss how to build a model that is

able to capture the non-linear scaling behavior related to

parallel applications based on regression techniques and

can be employed to predict the required number of pro-

cessing units to meet a user-defined execution time limit.

6.2 Constructing a prediction model

To meet a user-defined execution time limit Tlimit, the

elasticity controller has to select the required number of

processing units p that speeds up the processing such that

the parallel execution time Tpar � Tlimit. The speedup S is

defined as S ¼ Tseq
Tpar

[20]. However, due to the non-linear

scaling behavior, the speedup does not increase linearly

with respect to the number of processing units p. This

behavior can be explained based on Amdahl’s law [6]

which says

Tseq ¼ ts þ tp ð5Þ

and

Tpar ¼ ts þ
tp
p
; ð6Þ

where ts is the execution time of the inherent sequential

program part and tp is the execution time of the paral-

lelizable program part.

According to Amdahl’s law, the increase in speedup

with each additionally added processing unit decreases for

an increasing total number of processing units p thus

leading to a non-linear scaling behavior.

In the context of serverless task farming, the paral-

lelizable program part tp can be considered as the execution

time of the worker FaaS functions. The execution time of

the sequential program part ts can be considered as the

execution time of all other functions, which are inherently

sequential (cf. Fig. 4).

Based on Eq. (6), the number of processing units can be

expressed as

p ¼ tp
Tpar � ts

: ð7Þ

According to Eq. (5), the execution time of the paral-

lelizable program part can be expressed as tp ¼ Tseq � ts.

806 Cluster Computing (2021) 24:799–817

123

Consequently, the number of processing units p can also be

described as

p ¼ Tseq � ts
Tpar � ts

: ð8Þ

As a result, the number of processing units can be

explained by means of the sequential execution time Tseq,

the execution time of the sequential program part ts, and

the parallel execution time Tpar.

As the goal is to find the required number of processing

units to meet a user-defined execution time limit Tlimit, one

can set Tpar ¼ Tlimit. However, to determine the sequential

execution time Tseq and the execution time of the sequential

program part ts additional measurements and program

analyses are required, which are not profitable in a practical

scenario. To deal with this issue, we propose the use of

regression techniques to estimate Tseq and ts from labeled

performance measurement data, i.e., monitoring data

obtained from previous application runs. In the following,

we explain how to construct a corresponding regression

model that allows the prediction of the required number of

processing units. As input for the model, i.e., as explana-

tory variables, we consider the input size Isize, which sim-

ply describes the size of a given input in form of a numeric

value, and the user-defined execution time limit Tlimit,

which are both known initially.

To enable predictions of the number of processing units,

it is required that the sequential execution time Tseq and the

execution time of the sequential program part ts can be

described as a function of the input size Isize, which can be

fitted based on labeled performance measurement data.

Note that, according to Amdahl’s law, both the sequential

execution time Tseq and the execution time of the sequential

program part ts are independent of the number of pro-

cessing units. Here, we model the sequential execution

time Tseq as nth degree polynomial of Isize, i.e.,

Tseq ¼
Xn
i¼0

ai � ðIsizeÞi; ð9Þ

where a ¼ a0; a1; . . .; anð Þ is a parameter vector and

n controls the size of this vector.

Similarly, we model the execution time of the sequential

program part ts as mth degree polynomial of Isize, i.e.,

ts ¼
Xm
j¼0

bj � ðIsizeÞj; ð10Þ

where b ¼ b0; b1; . . .; bmð Þ is a parameter vector and

m controls the size of this vector.

Polynomials are commonly used in curve fitting due to

their flexibility of shapes [1, 13]. This modeling also covers

linear and quadratic relations depending on how n and m

are selected. In Sect. 7, we show that this modeling is

sufficient to enable accurate predictions for task farming

applications. However, in the context of other application

classes, other models might be used for Tseq and ts (e.g.,

logarithmic or exponential models).

Based on Eqs. (8), (9), and (10), a non-linear regression

model that enables the prediction of the required number of

processing units can be constructed as

p̂ ¼
Pn

i¼0 ai � ðIsizeÞ
i �
Pm

j¼0 bj � ðIsizeÞ
j

Tlimit �
Pm

j¼0 bj � ðIsizeÞ
j ; ð11Þ

where a ¼ a0; a1; . . .; anð Þ and b ¼ b0;b1; . . .; bmð Þ are the

parameter vectors of the model and n and m control the

sizes of these vectors.

To instantiate a concrete prediction model by means of

supervised learning, n and m have to be defined and the

parameter vectors a and b have to be estimated from data.

Note that increasing n and m increases the number of

parameters of the model. However, a general design goal of

regression models is to keep the number of model param-

eters small. This has several reasons: simple models are

easier to understand, avoid the curse of dimensionality, and

reduce the risk of overfitting [1, 13]. Therefore, the pre-

diction model is generated for different, increasing values

of n and m (cf. Eq. 11) until the accuracy of the resulting

model in terms of the root-mean-squared-error (RMSE)

cannot be significantly increased anymore. Technically,

this can be evaluated by comparing the increase in accu-

racy to a defined threshold. A prototypical implementation

is discussed in more detail in Sect. 6.3.

The resulting model provides the required number of

processing units p̂ based on a given input size and a user-

defined execution time limit. After estimating the model

parameters from measurement data, an elasticity controller

is able to employ such a model for predictions. An elastic

parallel system architecture based on the concept of

serverless skeletons as well as its implementation, which

also integrates such an elasticity controller, is described in

the following.

6.3 Serverless elastic parallel system
architecture

To enable proactive elasticity control for serverless skele-

tons, several additional functions have to be introduced,

which are described in the following. Figure 7 shows the

resulting serverless elastic parallel system architecture in

the context of serverless task farming. Whereas this

architecture is independent of the technologies and pro-

gramming languages used, a Java-based prototypical

implementation that employs Redis as monitoring and

model backend service is described accordingly.

Cluster Computing (2021) 24:799–817 807

123

Monitoring (framework) function The monitoring

function extracts relevant monitoring data of previous

application runs from the serverless computing platform

and stores them in the monitoring backend service. Alter-

natively, monitoring data can also be generated by the

skeleton framework, e.g., by storing custom time stamps in

the monitoring backend service. This can be easily

accomplished by adding instrumentation code to the

wrapper code of a skeleton instance’s FaaS functions (cf.

Sect. 3) and enables the consideration of custom metrics.

The monitoring (framework) function is triggered

periodically.

Model generation (framework) function The model

generation function generates a prediction model by using

the monitoring data stored in the monitoring backend ser-

vice. Also preprocessing steps can be integrated, e.g., to

only consider recent data. The model generation process

itself is performed according to the concepts discussed in

Sect. 6.2. Therefore, the model is fitted to the data records

by adjusting the model parameters. The underlying non-

linear least squares problem is solved by employing the

Levenberg-Marquardt algorithm [40, 43], or more specifi-

cally a Java-based implementation11, which uses JAMA12

version 1.0.3 for basic linear algebra operations. As dis-

cussed in Sect. 6.2, the number of parameters is increased

until the accuracy of the resulting model in terms of the

RMSE cannot be significantly increased anymore. This is

accomplished by comparing the increase in accuracy to a

defined threshold. In this regard, our prototypical imple-

mentation employs a default threshold of 0.01. The pro-

duced prediction model is stored in the model backend

service. Note that the model backend service and moni-

toring backend service can also be the same entity. The

model generation (framework) function is triggered

periodically.

Controller (framework) function The controller

function uses information on the application’s input as well

as the user-defined execution time limit as input variables

for the prediction model, which it loads from the model

backend service. The outcome of the model is a predicted

number of processing units, which is employed to group

user-defined tasks (i.e., tasks generated by the predecessor

function). These task groups are finally passed to the dis-

patcher function. The dispatcher function invokes the

worker function once per task group. Each worker function

executes the received group of tasks sequentially. To

enable flexibility with respect to task grouping, developers

should provide fine-grained tasks by making use of

overdecomposition. Note that the maximum number of

atomic tasks limits the maximum number of processing

units that can be efficiently employed for the computation.

All these functions are managed by the serverless

skeleton framework to relieve the user. The controller

function is mapped to the FaaS function that hosts the

dispatcher function. The monitoring function and the

model generation function can be mapped to the same FaaS

function for deployment. In this case, the corresponding

FaaS function is triggered periodically to obtain new

monitoring data and to generate new models. If a single

FaaS function is employed, monitoring data has not to be

stored separately.

7 Experimental evaluation

Our self-tuning skeleton framework is evaluated as fol-

lows. First, it is measured how the backend service used

affects the execution time by comparing the two different

backend services supported by the prototypical imple-

mentation (namely MinIO and Redis). Second, the scala-

bility of both example applications described in Sect. 5 is

evaluated. Finally, the proposed proactive elasticity control

mechanism is evaluated by assessing the accuracy of

potential prediction models, which have been generated

based on labeled performance measurement data, i.e.,

monitoring data obtained from previous application runs.

All our measurements were executed based on an

Apache OpenWhisk installation hosted in an OpenStack-

based private cloud environment. Our OpenWhisk cluster

is operated on two Ubuntu 16.04 virtual machines (VM)

Fig. 7 Serverless elastic parallel system architecture

11 https://github.com/odinsbane/least-squares-in-java.
12 https://math.nist.gov/javanumerics/jama.

808 Cluster Computing (2021) 24:799–817

123

https://github.com/odinsbane/least-squares-in-java
https://math.nist.gov/javanumerics/jama

with 14 vCPUs clocked at 2.6 GHz, 20 GB RAM, and 40

GB disk each. MinIO and Redis are operated on a single

Ubuntu 16.04 VM with 2 vCPUs clocked at 2.6 GHz, 8 GB

RAM, and 40 GB disk. The hardware underlying the

OpenStack-based cloud environment consists of identical

servers, each equipped with two Intel Xeon E5-2650v2

CPUs and 128 GB RAM. The virtual network connecting

tenant VMs is operated on a 10 Gbit/s physical ethernet

network. Our experiments were performed during regular

multi-tenant operation.

7.1 Backend services

To compare the performance of the two backend services

supported by our prototypical implementation, namely

MinIO and Redis, we executed the aforementioned

instance of the numerical integration application

(Tseq ¼ 89:28 seconds) with different degrees of paral-

lelism. The application simply computes the numerical

value of a definite integral of a quadratic polynomial.

Figure 8 compares the measured execution times based on

MinIO and Redis and shows how the difference of both

execution times evolves for an increasing degree of par-

allelism. The execution based on Redis is faster because it

stores all data in memory. Note that, for an increasing

degree of parallelism, the time difference between both

setups becomes larger.

7.2 Parallel performance

We measured the parallel execution time for four instances

of the numerical integration application (with different

sequential execution times) with respect to different

degrees of parallelism. The sequential execution time has

been measured by deploying the serverless skeleton

instance as a single FaaS function as described in Sect. 4.3

and depicted in Fig. 6. We measured the parallel execution

time for four instances of the numerical integration appli-

cation with a sequential runtime Tseq of (1) 1.02, (2) 9.78,

(3) 89.28, and (4) 879.27 seconds with respect to different

degrees of parallelism. Figure 9 shows the achieved

speedups. For larger workloads, we achieved close to linear

speedups. For small workloads, the overhead outweighs the

utility of parallel execution. Speedups measured for the

hyperparameter optimization application are shown in

Fig. 10. The application instances depicted have a

sequential runtime Tseq of (1) 158.68, (2) 516.05, (3)

895.08, and (4) 2071.59 seconds. All parallel performance

measurements were executed with the Redis backend ser-

vice. To ensure parallel execution, we executed less worker

FaaS functions in parallel then vCPUs available.

7.3 Proactive elasticity control

Our proactive elasticity controller groups tasks generated

by the predecessor function according to the predicted

number of processing units p̂ (cf. Sect. 6.3 and Fig. 7).

Consequently, the success of this approach heavily relies

on the accuracy of the underlying prediction model. In the

following, the model described in Sect. 6.2 is evaluated

with respect to its accuracy. Therefore, the model param-

eters are estimated from monitoring data generated during

the performance measurements of the hyperparameter

optimization application (cf. Sect. 7.2). The prediction

model (cf. Eq. 11) is fitted to a set of data records, with

each record containing the input size and the measured

execution time. With respect to the hyperparameter opti-

mization application, the input size is defined as the

number of hyperparameter configurations that have to be

evaluated. The execution time is given in seconds.

Note that the number of model parameters is automati-

cally selected by the model generation function by defining

n and m (as discussed in Sects. 6.2 and 6.3). In this regard,

several instances of the prediction model Pi; i 2
f1; 2; :::; 7g with different sizes of the parameter vectors a

and b are discussed in the following:

Pi ¼

n ¼ 0 and m ¼ 0 for i ¼ 1

n ¼ 0 and m ¼ 1 for i ¼ 2

n ¼ 1 and m ¼ 0 for i ¼ 3

n ¼ 1 and m ¼ 1 for i ¼ 4

n ¼ 1 and m ¼ 2 for i ¼ 5

n ¼ 2 and m ¼ 1 for i ¼ 6

n ¼ 2 and m ¼ 2 for i ¼ 7

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12Þ

To evaluate the accuracy of a prediction model instance,

the measured number of processing units p is compared

with the predicted number of processing units p̂. Therefore,

the model generation function randomly splits the data

records to create a training data set, which contains 75% of

the data records used to fit the model instances, and a test

data set, which contains 25% of the data records used to

assess the prediction accuracy. For the hyperparameter

optimization application, 32 data records have been created

by means of performance measurements. Thus, 24 data

records are employed to train the model instances and 8

data records are employed to evaluate the accuracy. The

calculated out-of-sample metrics mean-squared-error MSE

and root-mean-squared-error RMSE are given in Table 1.

In particular, the prediction model instances P5, P6, and

P7 show a good accuracy with respect to the test data set.

Prediction model instance P5 is selected by the model

generation function because the accuracy of the model (in

terms of the RMSE) is better than the accuracy of P6 and

Cluster Computing (2021) 24:799–817 809

123

cannot be increased by adding another parameter (cf.

Table 1).

Table 2 compares the predicted number of processing

units p̂ and the measured number of processing units p with

respect to the test data set for model instances P1–P7. The

parameters of model instance P1 are simply averaged

across all data records leading to a poor accuracy. On the

other hand, the accuracy of predictions increases for an

increasing number of parameters. Model instance P5 shows

the best accuracy with respect to the test data set. The

accuracy of model instance P5 is also visualized in Fig. 11,

which compares the predicted number of processing units p̂

and the measured number of processing units p for the test

data set according to the corresponding parallel execution

time or execution time limit, respectively. Note that,

because the prediction model does not provide integer

values, the predicted number of processing units has to be

rounded by the controller function. For model instance P5,

the rounded predicted number of processing units is iden-

tical to the measured number of processing units for all

data records of the test data set (cf. Table 2), which con-

firms the utility of the presented approach.

To show that the model also enables predictions with a

sufficient level of accuracy even when trained with a few

data records, we fitted model instance P5 to only 8 data

records and evaluated the model instance with the

remaining 24 data records. Here, the prediction accuracy in

terms of the RMSE is 0.4359 and the rounded predicted

number of processing units is identical to the measured

number of processing units in 20/24 cases. In 2/20 cases,

the prediction model proposes one processing unit more

than actually required. Note that in such a case the user-

defined execution time limit can still be met. For the other

2/20 cases, the prediction model proposes one processing

unit less than actually required. The measured and pre-

dicted numbers of processing units are also visualized in

Fig. 12.

In order to show that the model enables predictions with

a sufficient level of accuracy even in case of an input size

that has not been considered in the training, we also fitted

model instance P5 to 24 data records and evaluated the

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8 10

Ti
m

e
Di

ffe
re

nc
e

[s
]]s[

e
m iT

noitu cex E

Worker FaaS Func�ons [#]

MinIO

Redis

Time Diff.

Fig. 8 Measured execution time of numerical integration application

instance based on MinIO/Redis backend service

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12 14

]#[
pudeepS

Worker FaaS Func�ons [#]

Instance 1

Instance 2

Instance 3

Instance 4

Fig. 9 Measured speedups of the numerical integration application

with Redis backend service

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12 14

]#[
pudeepS

Worker FaaS Func�ons [#]

Instance 1

Instance 2

Instance 3

Instance 4

Fig. 10 Measured speedups of the hyperparameter optimization

application with Redis backend service

Table 1 Out-of-sample metrics calculated for the generated predic-

tion model instances

Number of parameters MSE RMSE

P1 2 14.2667 3.7771

P2 3 5.3883 2.3213

P3 3 0.4281 0.6543

P4 4 0.2650 0.5148

P5 5 0.0258 0.1605

P6 5 0.0499 0.2235

P7 6 0.0415 0.2036

810 Cluster Computing (2021) 24:799–817

123

model instance with the 8 data records related to a previ-

ously unseen input size. Therefore, we split the data

records thus that all measurements of application instance 3

(cf. Fig. 10) are contained in the test data set and trained

the model based on the remaining data records. The

resulting prediction accuracy in terms of the RMSE is

Table 2 Comparison of the measured and predicted numbers of processing units for prediction model instances P1–P7, which have been fitted to

24 data records

Data record index Measured number of processing units p [#] Predicted number of processing units p̂ [#]

P1 P2 P3 P4 P5 P6 P7

1 2 8.8584 6.7740 1.8910 1.8341 1.8380 1.8612 1.8562

2 12 10.2918 9.4830 11.6340 11.7220 11.9082 11.9067 11.9062

3 2 6.1059 3.8573 2.0766 2.2030 2.1102 1.9516 1.9788

4 4 7.7733 6.1827 4.1892 4.3801 4.1722 3.9234 3.9657

5 12 9.5345 10.4397 13.4336 13.2111 12.3068 12.3925 12.3626

6 2 2.6898 1.2286 1.8970 2.0553 1.9822 2.1125 2.0888

7 6 7.2890 6.4044 5.8920 6.1268 5.8886 5.7331 5.7569

8 14 9.0132 12.3949 15.0781 14.5881 14.1530 14.3549 14.3009

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200

detciderP
/

derusae
M

]#[
stin

U
gnissecor Pforeb

m u
N

Parallel Execu�on Time / Execu�on Time Limit [s]

Measured

Predicted

Fig. 11 Comparison of the measured and predicted numbers of processing units for prediction model instance P5, which has been fitted to 24

data records

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

detciderP
/

derusae
M

]#[
stin

U
gnissecorPforeb

mu
N

Parallel Execu�on Time / Execu�on Time Limit [s]

Measured

Predicted

Fig. 12 Comparison of the measured and predicted numbers of processing units for prediction model instance P5, which has been fitted to only 8

data records

Cluster Computing (2021) 24:799–817 811

123

0.1924, which shows that predictions with a sufficient level

of accuracy are also possible for a previously unseen input

size, which has not been considered to train the model. The

measured and predicted numbers of processing units are

also visualized in Fig. 13.

8 Findings and discussion

In this section, we discuss the assumptions underlying our

proactive elasticity control mechanism specifically

designed for serverless task farming as well as its appli-

cability to other classes of parallel applications.

We employ a black-box approach based on regression

techniques to automatically derive a model of the scaling

behavior of serverless task farming applications. This

model is used by the elasticity controller to predict the

required number of processing units (worker FaaS func-

tions) per application run according to a user-defined

execution time limit. Our regression model is based on

Amdahl’s law [6], which explains the non-linear scaling

behavior of parallel applications by modeling the execution

time of a sequential program part ts and the execution time

of a parallelizable program part tp. As discussed in

Sect. 6.2, Amdahl’s model is well-suited for serverless task

farming applications, for which the parallelizable program

part tp can be considered as the execution time of the

worker FaaS functions and the execution time of the

sequential program part ts can be considered as the exe-

cution time of all other functions, which are executed

sequentially. A major benefit of our simple regression

model is that it does not require knowledge about the

internals of the application or additional modeling by users

while providing predictions with a sufficient level of

accuracy even when trained only with a few data records.

However, note that this simple model does not explicitly

consider additional sources of overhead, which might, in

general, also increase when a higher number of processing

units is employed for parallel computations: For a very

high number of processing units, the parallel execution

time might be increased again due to this additional

overhead. Our regression model implicitly assumes that

parallel overhead stemming from communication is neg-

ligible for the application class considered. This is a rea-

sonable assumption for serverless task farming applications

because communication (for task distribution and result

aggregation) is implemented based on shared backend

services, which have been shown to scale almost linearly

with the number of FaaS functions [28]. Moreover, com-

munication across FaaS functions is infrequent and typi-

cally only small data volumes (such as task descriptions

and results) have to be transferred. Nevertheless, whereas

our experimental results show that this simple model

enables accurate predictions for task farming applications,

other models might be required for other classes of parallel

applications, e.g., to explicitly consider communication

overhead. We plan to extend our approach to consider

other classes of parallel applications in the future. In this

context, also additional skeleton types and corresponding

execution models are required to benefit from serverless

computing platforms.

Because proactive elasticity control mechanisms in

general heavily rely on prediction models, their applica-

bility is limited to applications that allow accurate pre-

dictions of the number of processing units based on input

data. This also means that not all parallel applications can

benefit from proactive elasticity control. Examples are

parallel applications based on branch-and-bound and

backtracking search that target combinatorial search

problems. Because these applications exhibit a high degree

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

detciderP
/

d erusa e
M

]#[
stin

U
gnissec orPforeb

mu
N

Parallel Execu�on Time / Execu�on Time Limit [s]

Measured

Predicted

Fig. 13 Comparison of the measured and predicted numbers of processing units for prediction model instance P5, which has been fitted to 24

data records and evaluated with 8 data records related to a previously unseen input size

812 Cluster Computing (2021) 24:799–817

123

of irregularity, their execution time and scaling behavior

are hard to predict, which consequently also limits the

applicability of proactive elasticity control mechanisms.

We addressed the challenges related to elasticity control for

these applications in our recent research by designing

reactive elasticity control mechanisms, which are presented

in [21, 36]. Whereas proactive elasticity control mecha-

nisms rely on prediction models to select the number of

processing units, reactive elasticity control mechanisms

dynamically adapt the number of processing units based on

measured runtime metrics. With such an approach pre-

dicting the required number of processing units is not

necessarily required. However, note that reactive mecha-

nisms typically lead to additional overhead and thus

proactive elasticity control should be preferred for appli-

cations for which prediction models provide a sufficient

level of accuracy.

Moreover, the proactive elasticity control mechanism

has several programming and system level implications.

According to Amdahl’s law, the parallelizable program

part tp can benefit from each added processing unit.

However, in a realistic scenario, the physical parallelism

(i.e., the number of processing units) that can be employed

efficiently is limited by the logical parallelism (i.e., the

number of tasks) provided by the application. In our case,

the number of tasks generated by the predecessor function

(cf. Sect. 4.1) limits the maximum number of worker FaaS

functions that can be employed efficiently. We assume that

at least one task can be assigned to each worker FaaS

function and that all tasks have the same size. This is a

reasonable assumption for task farming applications

because most often a large number of similar tasks is

generated. Nevertheless, developers should consider this

aspect by making use of overdecomposition, i.e., generate

fine-grained tasks, whenever possible. These fine-grained

tasks are then automatically grouped by the controller

function (as discussed in Sect. 6.3). Additionally, if the

number of tasks cannot be distributed evenly across pro-

cessing units, this might lead to additional side effects on

the measured scaling behavior. Note that a higher number

of fine-grained tasks automatically ensures an (almost)

even distribution across worker FaaS functions.

9 Related work

We have identified different fields of related work: Existing

work considering (1) serverless computing for parallel

applications, (2) skeleton frameworks and management

approaches, and (3) mechanisms for application manage-

ment, performance modeling, and prediction.

Serverless computing Serverless computing platforms

promise integrated auto-scaling and transparent resource

management, but are mainly employed to operate interac-

tive and event-driven applications. More recently, server-

less computing platforms have become of interest for

parallel processing. The authors of [28] state that many

large-scale parallel applications are able to exploit server-

less cloud offerings with high bandwidth and high latency

object storage as a substitute for distributed memory.

Specifically, the authors show that the read / write band-

width of Amazon S3 scales linearly with the number of

FaaS functions getting on average 40 MB/s read operations

and 30 MB/s write operations per FaaS function. The

authors present a prototype called PyWren that enables

developers to make use of AWS Lambda for parallel

execution of locally developed code segments. The authors

of [50] adapted PyWren to be used with IBM Cloud

Functions. The resulting framework has been additionally

optimized for MapReduce jobs. The authors of [51]

describe how to execute linear algebra algorithms on AWS

Lambda. In [54], serverless computing platforms are

evaluated for big data processing use cases based on a

matrix multiplication application. None of the aforemen-

tioned approaches investigates on proactive elasticity

control mechanisms for task farming applications.

Skeleton frameworks and management Algorithmic

skeletons [14, 19] provide a method to structure parallel

programs as a set of higher order functions that abstract

over common patterns of parallel coordination. Because

parallel coordination is captured by the skeleton, devel-

opers are able to implement functional code without con-

sidering parallelism issues. Consequently, one can say that

each skeleton comprises a built-in parallel behavior [17].

Algorithmic skeletons can be classified as either task-par-

allel with examples such as pipeline, farm, divide & con-

quer, and branch & bound or data-parallel such as map and

fold [17, 39]. Over the years, many frameworks and

libraries have been developed for a variety of programming

languages and parallel execution environments

[2, 5, 8, 18]. Whereas functional code is implemented by

developers, provided compiling tools take care of auto-

matically generating code for parallel execution to ease

programming. Depending on the execution environment

considered, parallel execution is based on POSIX threads,

OpenMP, MPI, OpenCL, or CUDA. A well-known exam-

ple is Muesli [39], which is a C?? template library that

supports parallel execution on top of MPI, OpenMP, and

CUDA. Existing work also shows how to enhance the

concept of algorithmic skeletons with automated manage-

ment solutions. The authors of [4] discuss how to integrate

autonomic management of non-functional concerns into

algorithmic skeletons. An abstract control loop is described

that allows system programmers to compose a given set of

Cluster Computing (2021) 24:799–817 813

123

monitoring and actuation actions into management rules.

Moreover, the adaptation of a skeleton instance at runtime

is discussed. The behavioral skeleton concept [3] is utilized

to combine skeletons as higher-level programming

abstractions with autonomic managers technically based on

a rule engine. The authors of [16] employ the behavioral

skeleton concept in the context of the farm skeleton. Their

approach considers a WorkpoolService for which the ser-

vice time is optimized based on specified rules. All these

approaches also propose automated management solutions

for skeleton-based applications, but do not target serverless

computing platforms and also do not provide proactive

elasticity control mechanisms. They are rather based on

rule-based techniques.

Application management, performance modeling,

and prediction A comprehensive survey and classification

of workload forecasting methods is presented in [44].

Several approaches show how to consider a user-defined

execution time limit (or deadline) in the context of

managing workflows [30, 46, 52] and parallel applications

[49]. An elasticity controller for iterative parallel applica-

tions is presented in [15], which detects workload patterns

by comparing the last two average load values calculated

based on monitored time series data and simple exponential

smoothing. Related work considering performance pre-

diction in the context of parallel applications employs

different techniques such as linear regression, support

vector machines (SVMs), decision trees, and artificial

neural networks [45]. The authors of [41] use neural net-

works to predict the task execution time in the context of

operational cost minimization for hybrid clouds. The

authors of [10, 56] use prediction models to extrapolate the

performance of an application that solves a problem larger

than the problems used for the measurements (to generate

training data). The authors of [55] generate an application

model from log data, which is then used to predict an

application’s performance for different execution environ-

ments. In [25], performance and costs of parallel applica-

tions in cloud environments are predicted per application

run based on a given application specification. The pre-

sented approach automatically selects the optimal resource

configuration among a set of defined combinations. The

authors of [42] propose prediction models to find the best

resource configuration for a specific application, which can

be offered by cloud providers. Their approach is imple-

mented based on random forests, which automatically

select the predictors during model construction. Cloud

users can use the prediction model to choose a resource

configuration for their application. In contrast to this

approach, in this work, prediction models are employed to

construct a proactive elasticity control mechanism that

automatically selects the optimal number of processing

units according to user-defined goals. The authors of [27]

present a cluster scheduling policy that considers the

scaling behavior of applications to increase the efficiency.

Therefore, they model the scaling behavior based on

Amdahl’s law [6] with the goal to maximize the sum of the

speedups of all jobs. Whereas this approach enables opti-

mization from a cluster operator perspective considering all

jobs, we focus on application-specific optimization in cloud

environments from a cloud customer perspective. The

authors of [22] also model the scaling behavior based on

Amdahl’s law in the context of a novel cost model for

quantifying the monetary costs of executing parallel

applications with volatile cloud resources. In this work,

serverless computing platforms are targeted.

10 Conclusion

In this work, we discuss a novel approach that enables

elastic parallel processing without considering parallelism

or resource management issues. Based on the well-known

concept of algorithmic skeletons, parallel applications,

which require coordination, communication, and synchro-

nization, can benefit from serverless computing platforms.

The prototypical development and runtime framework

shows how to apply the presented concepts to implement

self-tuning serverless task farming. A proactive elasticity

controller handles the cost/efficiency-time trade-off in an

automated manner by predicting the required number of

processing units to meet a user-defined execution time limit

after which the result of the computation needs to be pre-

sent while minimizing the associated monetary costs. The

underlying prediction model is obtained and refined in an

automated manner by employing supervised learning to

infer the scaling behavior from labeled performance mea-

surement data of previous application runs.

Whereas the experimental evaluation shows very

promising results for task farming applications, also note

that many other parallel execution models (and corre-

sponding skeletons) heavily rely on the consideration of

data locality to efficiently exploit compute resources,

which is not supported by current serverless computing

platforms. This issue should be further investigated in

future work. For instance, to retain the strict separation of

stateless FaaS functions and backend services, locality-

aware backend services could be offered by cloud provi-

ders, which store data in close physical proximity to FaaS

functions (e.g., on the same rack). Moreover, explicitly

modeling the communication overhead might be required

for other classes of parallel applications to ensure accurate

predictions. Finally, current serverless computing plat-

forms do not support the use of specialized hardware

accelerators. However, it is expected that serverless com-

puting platforms will support these in the future. For

814 Cluster Computing (2021) 24:799–817

123

instance, hyperparameter optimization would substantially

benefit from GPU-enabled training of large artificial neural

networks.

Acknowledgements This research was partially funded by the Min-

istry of Science of Baden-Württemberg, Germany, for the Doctoral

Program Services Computing.

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, New

York (2015)

2. Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment

supporting structured parallel programming in java. Future

Gener. Comput. Syst. 19(5), 611–626 (2003)

3. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Kil-

patrick, P., Dazzi, P., Laforenza, D., Tonellotto, N.: Behavioural

skeletons in GCM: autonomic management of grid components.

In: 16th Euromicro Conference on Parallel, Distributed and

Network-Based Processing (PDP 2008). IEEE, pp 54–63 (2008)

4. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Co-design of dis-

tributed systems using skeleton and autonomic management

abstractions. In: César, E., Alexander, M., Streit, A., Träff, J.L.,

Cérin, C., Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.) Euro-Par

2008 Workshops—Parallel Processing, pp. 403–414. Springer,

Heidelberg (2009)

5. Alexandre, F., Marques, R., Paulino, H.: On the support of task-

parallel algorithmic skeletons for multi-GPU computing. In:

Proceedings of the 29th Annual ACM Symposium on Applied

Computing, ACM, New York, NY, USA, SAC ’14, pp. 880–885

(2014)

6. Amdahl, G.M.: Validity of the single processor approach to

achieving large scale computing capabilities. In: Proceedings of

the Spring Joint Computer Conference, ACM, New York, NY,

USA, AFIPS ’67 (Spring), pp. 483–485 (1967)

7. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn.

Wiley, New York (1989)

8. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi,

M.: P3 l: a structured high-level parallel language, and its

structured support. Concurrency 7(3), 225–255 (1995)

9. Barcelona-Pons, D., Sánchez-Artigas, M., Parı́s, G., Sutra, P.,

Garcı́a-López, P.: On the faas track: building stateful distributed

applications with serverless architectures. In: Proceedings of the

20th International Middleware Conference, ACM, New York,

NY, USA, Middleware ’19, pp. 41–54 (2019)

10. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J.,

de Supinski, B., Schulz, M.: A regression-based approach to

scalability prediction. In: Proceedings of the 22nd Annual Inter-

national Conference on Supercomputing, ACM, ICS ’08,

pp. 368–377 (2008)

11. Bergstra, J., Bengio, Y.: Random search for hyper-parameter

optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

12. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model

search: hyperparameter optimization in hundreds of dimensions

for vision architectures. In: Proceedings of the 30th International

Conference on International Conference on Machine Learning—

vol. 28, ICML’13, pp. I–115–I–123 (2013)

13. Berk, R.A.: Statistical Learning from a Regression Perspective,

2nd edn. Springer, New York (2016)

14. Cole, M.: Algorithmic Skeletons: Structured Management of

Parallel Computation. MIT Press, Cambridge (1991)

15. da Rosa, R.R., Rodrigues, V.F., Rostirolla, G., da Costa, C.A.,

Roloff, E., Navaux, P.O.A.: A lightweight plug-and-play

elasticity service for self-organizing resource provisioning on

parallel applications. Future Gener. Comput. Syst. 78, 176–190
(2018)

16. Danelutto, M., Zoppi, G.: Behavioural skeletons meeting ser-

vices. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot,

P.M.A. (eds.) Computational Science—ICCS 2008, pp. 146–153.

Springer (2008)

17. Darlington, J., Field, A.J., Harrison, P.G., Kelly, P.H.J., Sharp,

D.W.N., Wu, Q., While, R.L.: Parallel programming using

skeleton functions. In: Bode, A., Reeve, M., Wolf, G. (eds.)

PARLE ’93 Parallel Architectures and Languages Europe,

pp. 146–160. Springer, Heidelberg (1993)

18. González-Vélez, H., Leyton, M.: A survey of algorithmic skele-

ton frameworks: high-level structured parallel programming

enablers. Software 40(12), 1135–1160 (2010)

19. Gorlatch, S., Cole, M.: Parallel skeletons. In: Padua, D. (ed.)

Encyclopedia of Parallel Computing, pp. 1417–1422. Springe,

Boston (2011)

20. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to

Parallel Computing, 2nd edn. Pearson Education, London (2003)

21. Haussmann, J., Blochinger, W., Kuechlin, W.: Cost-efficient

parallel processing of irregularly structured problems in cloud

computing environments. Clust. Comput. 22(3), 887–909 (2019a)

22. Haussmann, J., Blochinger, W., Kuechlin, W.: Cost-optimized

parallel computations using volatile cloud resources. In: Dje-

mame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O.,

Naldi, M. (eds.) Economics of Grids, Clouds, Systems, and

Services, pp. 45–53. Springer, Cham (2019b)

23. Haussmann. J., Blochinger, W., Kuechlin, W.: An elasticity

description language for task-parallel cloud applications. In:

Proceedings of the 10th International Conference on Cloud

Computing and Services Science, SciTePress, pp. 473–481

(2020)

24. Hellerstein, J.M., Faleiro, J.M., Gonzalez, J., Schleier-Smith, J.,

Sreekanti, V., Tumanov, A., Wu, C.: Serverless computing: one

step forward, two steps back. In: CIDR 2019, 9th Biennial

Conference on Innovative Data Systems Research, Asilomar, CA,

USA, January 13–16, 2019, Online Proceedings (2019)

25. Huang, H., Wang, L., Tak, B.C., Wang, L, Tang C.: CAP3: a

cloud auto-provisioning framework for parallel processing using

on-demand and spot instances. In: 2013 IEEE Sixth International

Conference on Cloud Computing. IEEE, pp. 228–235 (2013)

26. Humble, J., Farley, D.: Continuous delivery: reliable software

releases through build, test, and deployment automation. Addi-

son-Wesley, Boston (2010)

27. Hungershöfer, J., Streit, A., Wierum, J.M.: Efficient resource

management for malleable applications. Tech. Rep. TR-003-01,

Paderborn Center for Parallel Computing (2001)

28. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy

the cloud: distributed computing for the 99%. In: Proceedings of

the 2017 Symposium on Cloud Computing, ACM, New York,

NY, USA, pp. 445–451 (2017)

29. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khan-

delwal, A., Pu, Q., Shankar, V., Carreira, J., Krauth, K., Yad-

wadkar, N., Gonzalez, J.E., Popa, R.A., Stoica, I., Patterson,

D.A.: (2019) Cloud programming simplified: a berkeley view on

serverless computing

30. Kalyan Chakravarthi, K., Shyamala, L., Vaidehi, V.: Budget

aware scheduling algorithm for workflow applications in IaaS

clouds. Clust. Comput. (2020)

31. Kehrer, S., Blochinger, W.: Elastic parallel systems for high

performance cloud computing: state-of-the-art and future direc-

tions. Parallel Process. Lett. 29(02), 1950006-1 (2019a)

32. Kehrer, S., Blochinger, W.: Migrating parallel applications to the

cloud: assessing cloud readiness based on parallel design

Cluster Computing (2021) 24:799–817 815

123

decisions. SICS Softw.-Intensive Cyber-Phys. Syst. 34(2), 73–84
(2019b)

33. Kehrer, S., Blochinger, W.: A survey on cloud migration strate-

gies for high performance computing. In: Proceedings of the 13th

Advanced Summer School on Service-Oriented Computing, IBM

Research Division, pp. 57–69 (2019c)

34. Kehrer, S., Blochinger, W.: Taskwork: a cloud-aware runtime

system for elastic task-parallel HPC applications. In: Proceedings

of the 9th International Conference on Cloud Computing and

Services Science, SciTePress, pp. 198–209 (2019d)

35. Kehrer, S., Blochinger, W.: Development and operation of elastic

parallel tree search applications using taskwork. In: Ferguson, D.,

Méndez Muñoz, V., Pahl, C., Helfert, M. (eds.) Cloud Comput.

Serv. Sci., pp. 42–65. Springer International Publishing, Cham

(2020a)

36. Kehrer, S., Blochinger, W.: Equilibrium: an elasticity controller

for parallel tree search in the cloud. J. Supercomput. (2020b)

37. Kehrer, S., Riebandt, F., Blochinger, W.: Container-based mod-

ule isolation for cloud services. In: 2019 IEEE International

Conference on Service-Oriented System Engineering (SOSE),

pp. 177–186 (2019a)

38. Kehrer, S., Scheffold, J., Blochinger, W.: Serverless skeletons for

elastic parallel processing. In: 2019 IEEE 5th International

Conference on Big Data Intelligence and Computing (DATA-

COM). IEEE, pp. 185–192 (2019b)

39. Kuchen, H.: Parallel programming with algorithmic skeletons. In:

Bergener, K., Räckers, M., Stein, A. (eds.) The Art of Structur-

ing: Bridging the Gap Between Information Systems Research

and Practice, pp. 527–536. Springer International Publishing,

Cham (2019)

40. Levenberg, K.: A method for the solution of certain non-linear

problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

41. Li, C., Tang, J., Luo, Y.: Towards operational cost minimization

for cloud bursting with deadline constraints in hybrid clouds.

Clust. Comput. 21(4), 2013–2029 (2018)

42. Mariani, G., Anghel, A., Jongerius, R., Dittmann, G.: Predicting

cloud performance for HPC applications before deployment.

Future Gener. Comput. Syst. 87, 618–628 (2018)

43. Marquardt, D.W.: An algorithm for least-squares estimation of

nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441

(1963)

44. Masdari, M., Khoshnevis, A.: A survey and classification of the

workload forecasting methods in cloud computing. Clust. Com-

put. (2019)

45. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to

predict the time and resources consumed by applications. In:

2010 10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, pp. 495–504 (2010)

46. Mortazavi-Dehkordi, M., Zamanifar, K.: Efficient deadline-aware

scheduling for the analysis of big data streams in public cloud.

Clust. Comput. 23(1), 241–263 (2020)

47. Poldner, M., Kuchen, H.: On implementing the farm skeleton.

Parallel Process. Lett. 18(01), 117–131 (2008)

48. Rajan, D., Thain, D.: Designing self-tuning split-map-merge

applications for high cost-efficiency in the cloud. IEEE Trans.

Cloud Comput. 5(2), 303–316 (2017)

49. Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic

execution of existing MPI programs. In: 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops

and Phd Forum, pp. 940–947 (2011)

50. Sampé, J., Vernik, G., Sánchez-Artigas, M., Garcı́a-López, P.:

Serverless data analytics in the ibm cloud. In: Proceedings of the

19th International Middleware Conference Industry, ACM,

Middleware ’18, pp. 1–8 (2018)

51. Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman, S.,

Stoica, I., Recht, B., Ragan-Kelley, J.: Numpywren: serverless

linear algebra. CoRR abs/1810.09679 (2018)

52. Sun, T., Xiao, C., Xu, X.: A scheduling algorithm using sub-

deadline for workflow applications under budget and deadline

constrained. Clust. Comput. 22(3), 5987–5996 (2019)

53. van Eyk, E., Toader, L., Talluri, S., Versluis, L., Utǎ, A., Iosup,

A.: Serverless is more: from paas to present cloud computing.

IEEE Internet Comput. 22(5), 8–17 (2018)

54. Werner, S., Kuhlenkamp, J., Klems, M., Müller, J., Tai, S.:

Serverless big data processing using matrix multiplication as

example. In: 2018 IEEE International Conference on Big Data,

pp. 358–365 (2018)

55. Wong, A., Rexachs, D., Luque, E.: Parallel application signature

for performance analysis and prediction. IEEE Trans. Parallel

Distrib. Syst. 26(7), 2009–2019 (2015)

56. Wu, X., Mueller, F.: Scalaextrap: trace-based communication

extrapolation for spmd programs. SIGPLAN Not. 46(8), 113–122
(2011)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Stefan Kehrer is a Ph.D. student

in the Parallel and Distributed

Computing Group at Reutlingen

University and does research in

the fields of Cloud Computing,

Parallel Computing, and Dis-

tributed Systems. He is a mem-

ber of the Doctoral Program

Services Computing and affili-

ated with the Institute of

Architecture of Application

Systems (IAAS) at the Uni-

versity of Stuttgart. He aims to

develop novel concepts and

methods for the design, devel-

opment, and management of cloud-aware parallel applications and

systems.

Dominik Zietlow is pursuing his

Ph.D. in the Autonomous

Learning Group at the Max-

Planck-Institute for Intelligent

Systems Tuebingen with a focus

on deep representation learning.

He is a scholar of the Interna-

tional Max Planck Research

School for Intelligent Systems

(IMPRS-IS).

816 Cluster Computing (2021) 24:799–817

123

Jochen Scheffold received his

M.Sc. degree in Business

Informatics from Reutlingen

University in 2019. He investi-

gates on how parallel applica-

tions can benefit from serverless

computing platforms and is

interested in novel approaches

to parallel cloud programming.

Wolfgang Blochinger is a pro-

fessor of Computer Science at

Reutlingen University, Ger-

many. He received his Ph.D. in

2002 and his Habilitation in

2008, both from the University

of Tuebingen, Germany. He

leads the Parallel and Dis-

tributed Computing Group at

Reutlingen University. His

research interests include high-

performance systems, parallel

and distributed application

design, as well as Grid and

Cloud Computing.

Cluster Computing (2021) 24:799–817 817

123

	Self-tuning serverless task farming using proactive elasticity control
	Abstract
	Introduction
	Parallel processing in the cloud
	Serverless skeletons for parallel cloud programming
	Serverless task farming framework
	User and framework functions
	Communication via backend services
	Delivery and deployment

	Implementing serverless parallel applications
	Numerical integration
	Hyperparameter optimization

	Proactive elasticity control
	Automating the cost/efficiency-time trade-off
	Constructing a prediction model
	Serverless elastic parallel system architecture

	Experimental evaluation
	Backend services
	Parallel performance
	Proactive elasticity control

	Findings and discussion
	Related work
	Conclusion
	Acknowledgements
	References

