Thermomechanical and microhardness data of melamine-formaldehyde-based self-healing resin film able to undergo reversible crosslinking via Diels-Alder reaction
- The data presented in this article characterize the thermomechanical and microhardness properties of a novel melamine-formaldehyde resin (MF) intended for the use as a self-healing surface coating. The investigated MF resin is able to undergo reversible crosslinking via Diels Alder reactive groups. The microhardness data were obtained from nanoindentation measurements performed on solid resin film samples at different stages of the self-healing cycle. Thermomechanical analysis was performed under dynamic load conditions. The data provide supplemental material to the manuscript published by Urdl et al. 2020 (https://doi.org/10.1016/j.eurpolymj.2020.109601) on the self-healing performance of this resin, where a more thorough discussion on the preparation, the properties of this coating material and its application in impregnated paper-based decorative laminates can be found.
Author of HS Reutlingen | Kandelbauer, Andreas |
---|---|
URN: | urn:nbn:de:bsz:rt2-opus4-29049 |
DOI: | https://doi.org/10.1016/j.dib.2020.106559 |
ISSN: | 2352-3409 |
Erschienen in: | Data in Brief |
Publisher: | Elsevier |
Place of publication: | Amsterdam |
Document Type: | Journal article |
Language: | English |
Publication year: | 2020 |
Tag: | Diels-Alder; decorative laminates; dynamic-load thermomechanical analysis; melamine resin film; nanoindentation; self-healing |
Volume: | 33 |
Page Number: | 15 |
First Page: | 1 |
Last Page: | 15 |
Article Number: | 106559 |
DDC classes: | 570 Biowissenschaften, Biologie |
Open access?: | Ja |
Licence (German): | Creative Commons - CC BY - Namensnennung 4.0 International |