Volltext-Downloads (blau) und Frontdoor-Views (grau)

Smart Innovation : Künstliche Intelligenz im Innovationsmanagement

  • Die vorliegende Studie zeigt, dass das Thema Smart Innovation (der Einsatz von KI-Systemen im Innovationsprozess) von hoher Relevanz ist und Zustimmung für den Einsatz von KI im Innovationsprozess besteht. Sowohl von den Unternehmen als auch von den Studierenden werden Effizienzsteigerung, schnellere Bearbeitung großer Datenmengen, die Steigerung der Wettbewerbsfähigkeit und Kosteneinsparungen als Gründe für den Einsatz von KI im Innovationsprozess gesehen. In Deutschland finden KI-Technologien bereits jetzt punktuell und branchenunabhängig Anwendung im Innovationsprozess. Einflussfaktoren, wie Hochschulkooperationen, Innovationsabteilungen und Open Innovation können den Einsatz fördern. Vor allem KMU aus den frühen Phasen der Industrialisierung sollten davon Gebrauch machen. In einem Zusammenspiel von menschlicher Expertise und der schnellen und präzisen Datenverarbeitung der KI liegt das Erfolgsgeheimnis eines möglichst effizienten Innovationsprozesses. Es wird deutlich, dass verschiedene Einflussfaktoren erforderlich sind, um die Anwendung von Smart Innovation praktikabel zu gestalten. So gilt es zunächst die technischen Voraussetzungen einer funktionierenden IT-Infrastruktur zu erfüllen. Gleichbedeutend sind offene Fragestellungen hinsichtlich der Datenverfügbarkeit, des Dateneigentums und der Datensicherheit. Ohne rechtlichen Rahmen sind kaum Akteure gewillt, ihre Daten zu teilen und zugänglich zu machen. Erschwert wird der Einsatz von KI durch den nationalen IT-Fachkräftemangel. So sehen sowohl Unternehmen als auch die Studierenden das größte Hindernis im Mangel von KI-relevantem Know-how. Dies hemmt einerseits die Forschung, andererseits fehlt es den Unternehmen an erforderlichen Fachkräften für eine Einführung von KI im Unternehmen. Es ist jedoch notwendig, den Unternehmen durch das Aufzeigen von Anwendungsbeispielen, die Potenziale und Chancen von Smart Innovation zu vermitteln. Es gilt, die anwendungsorientierte Forschung zu fördern und einen reibungslosen Transfer in die Wirtschaft sicherzustellen. Dieser Wissensaustausch erfordert zudem eine höhere unternehmerische Risikobereitschaft. Es wächst die Notwendigkeit, unternehmensspezifische KI-Strategien zu entwerfen. Die Technologien entwickeln sich schnell, es gilt daher auch für Unternehmen sich diesem Fortschritt anzupassen, um den Anschluss nicht zu verlieren und die Wettbewerbsfähigkeit zu sichern. So liegt die größte Herausforderung im grundlegenden Wandel der Geschäftsmodelle, denn die Wertschöpfung erfolgreicher Unternehmen basiert zunehmend auf "digitalen assets". Daten gelten generell als die neue Ressource, als Rohstoff, auch für Smarte Innovationen. Die Bedeutung von Smart Innovation wird in Zukunft weiterhin ansteigen. Kurz- und mittelfristig unterstützt die Schwache KI vor allem bei der Datensammlung und -analyse, bei der Prozessautomatisierung sowie bei der Bedürfnis- und Trendidentifikation. Weiter werden sich inkrementelle Veränderungen im Innovationsmanagement mithilfe von Simulationen und der zufälligen Kombination von Technologien erhofft. Langfristig wird eine stärkere KI den Einsatz der Menschen im Innovationsprozess in Teilen ersetzen können. Ob autonomes Innovieren zukünftig möglich sein wird, hängt zunächst von dem Ausmaß der Neuheit einer Innovation, aber vor allem auch von der Möglichkeit einer kreativen KI ab. Es ist davon auszugehen, dass die Fortschritte im Bereich der KI nicht nur radikale Innovationen ermöglichen werden, sondern auch zu einer strukturellen Veränderung unseres heutigen Verständnisses des Innovationsmanagements führen.

Download full text files

  • 3541.pdf
    deu

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Editor of HS ReutlingenOhlhausen, Peter; Braun, Anja
URN:urn:nbn:de:0011-n-6385288
DOI:https://doi.org/10.24406/publica-fhg-301139
Publisher:Fraunhofer-Institut für Arbeitswirtschaft und Organisation
Place of publication:Stuttgart
Editor:Rainer Nägele, Peter OhlhausenORCiD, Anja BraunORCiD
Document Type:Book
Language:German
Publication year:2021
Page Number:82
DDC classes:330 Wirtschaft
Open access?:Ja
Licence (German):License Logo  Open Access