Volltext-Downloads (blau) und Frontdoor-Views (grau)

Deep multimodality image-guided system for assisting neurosurgery

  • Intracranial brain tumors are one of the ten most common malignant cancers and account for substantial morbidity and mortality. The largest histological category of primary brain tumors is the gliomas which occur with an ultimate heterogeneous appearance and can be challenging to discern radiologically from other brain lesions. Neurosurgery is mostly the standard of care for newly diagnosed glioma patients and may be followed by radiation therapy and adjuvant temozolomide chemotherapy. However, brain tumor surgery faces fundamental challenges in achieving maximal tumor removal while avoiding postoperative neurologic deficits. Two of these neurosurgical challenges are presented as follows. First, manual glioma delineation, including its sub-regions, is considered difficult due to its infiltrative nature and the presence of heterogeneous contrast enhancement. Second, the brain deforms its shape, called “brain shift,” in response to surgical manipulation, swelling due to osmotic drugs, and anesthesia, which limits the utility of pre-operative imaging data for guiding the surgery. Image-guided systems provide physicians with invaluable insight into anatomical or pathological targets based on modern imaging modalities such as magnetic resonance imaging (MRI) and Ultrasound (US). The image-guided toolkits are mainly computer-based systems, employing computer vision methods to facilitate the performance of peri-operative surgical procedures. However, surgeons still need to mentally fuse the surgical plan from pre-operative images with real-time information while manipulating the surgical instruments inside the body and monitoring target delivery. Hence, the need for image guidance during neurosurgical procedures has always been a significant concern for physicians. This research aims to develop a novel peri-operative image-guided neurosurgery (IGN) system, namely DeepIGN, that can achieve the expected outcomes of brain tumor surgery, thus maximizing the overall survival rate and minimizing post-operative neurologic morbidity. In the scope of this thesis, novel methods are first proposed for the core parts of the DeepIGN system of brain tumor segmentation in MRI and multimodal pre-operative MRI to the intra-operative US (iUS) image registration using the recent developments in deep learning. Then, the output prediction of the employed deep learning networks is further interpreted and examined by providing human-understandable explainable maps. Finally, open-source packages have been developed and integrated into widely endorsed software, which is responsible for integrating information from tracking systems, image visualization, image fusion, and displaying real-time updates of the instruments relative to the patient domain. The components of DeepIGN have been validated in the laboratory and evaluated in the simulated operating room. For the segmentation module, DeepSeg, a generic decoupled deep learning framework for automatic glioma delineation in brain MRI, achieved an accuracy of 0.84 in terms of the dice coefficient for the gross tumor volume. Performance improvements were observed when employing advancements in deep learning approaches such as 3D convolutions over all slices, region-based training, on-the-fly data augmentation techniques, and ensemble methods. To compensate for brain shift, an automated, fast, and accurate deformable approach, iRegNet, is proposed for registering pre-operative MRI to iUS volumes as part of the multimodal registration module. Extensive experiments have been conducted on two multi-location databases: the BITE and the RESECT. Two expert neurosurgeons conducted additional qualitative validation of this study through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that the proposed iRegNet is fast and achieves state-of-the-art accuracies. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images, as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance. For the explainability module, the NeuroXAI framework is proposed to increase the trust of medical experts in applying AI techniques and deep neural networks. The NeuroXAI includes seven explanation methods providing visualization maps to help make deep learning models transparent. Experimental findings showed that the proposed XAI framework achieves good performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Furthermore, an interactive neurosurgical display has been developed for interventional guidance, which supports the available commercial hardware such as iUS navigation devices and instrument tracking systems. The clinical environment and technical requirements of the integrated multi-modality DeepIGN system were established with the ability to incorporate: (1) pre-operative MRI data and associated 3D volume reconstructions, (2) real-time iUS data, and (3) positional instrument tracking. This system's accuracy was tested using a custom agar phantom model, and its use in a pre-clinical operating room is simulated. The results of the clinical simulation confirmed that system assembly was straightforward, achievable in a clinically acceptable time of 15 min, and performed with a clinically acceptable level of accuracy. In this thesis, a multimodality IGN system has been developed using the recent advances in deep learning to accurately guide neurosurgeons, incorporating pre- and intra-operative patient image data and interventional devices into the surgical procedure. DeepIGN is developed as open-source research software to accelerate research in the field, enable ease of sharing between multiple research groups, and continuous developments by the community. The experimental results hold great promise for applying deep learning models to assist interventional procedures - a crucial step towards improving the surgical treatment of brain tumors and the corresponding long-term post-operative outcomes.

Download full text files

Export metadata

Additional Services

Search Google Scholar


Author of HS ReutlingenZeineldin, Ramy
Publisher:Karlsruher Institut für Technologie
Place of publication:Karlsruhe
Referee:Franziska Mathis-Ullrich, Oliver BurgertORCiD, Christian Rainer Wirtz
Referee of HS Reutlingen:Burgert, Oliver
Document Type:Doctoral Thesis
Publication year:2023
Date of final exam:2023/02/03
Tag:brain tumors; deep learning; image-guided system; neurosurgery
Page Number:xxix, 147
Dissertation note:Dissertation, Karlsruher Institut für Technologie, 2023
DDC classes:004 Informatik
Open access?:Ja
Licence (German):License Logo  Open Access