Volltext-Downloads (blau) und Frontdoor-Views (grau)

HollerithEnergyML : a prototype of a machine learning energy consumption recommender system

  • Energy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenZanger, Michael; Schulz, Alexander; Grodmeier, Lukas; Agaj, Dion; Schindler, Rafael; Weiss, Lukas; Möhring, Michael
URN:urn:nbn:de:bsz:rt2-opus4-51439
DOI:https://doi.org/10.18420/inf2024_132
ISBN:978-3-88579-746-3
ISSN:1617-5468
Publisher:Gesellschaft für Informatik
Place of publication:Bonn
Editor:Maike Klein, Daniel Krupka, Cornelia Winter, Martin Gergeleit, Ludger Martin
Document Type:Conference proceeding
Language:English
Publication year:2024
Tag:AI; ML; energy consumption; recommender
Page Number:5
First Page:1519
Last Page:1523
DDC classes:004 Informatik
Open access?:Ja
Licence (German):License Logo  Creative Commons - CC BY-SA - Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International