Volltext-Downloads (blau) und Frontdoor-Views (grau)

UV hyperspectral imaging and chemometrics for honeydew detection: enhancing cotton fiber quality

  • Cotton, the most widely produced natural fiber, is integral to the textile industry and sustains the livelihoods of millions worldwide. However, its quality is frequently compromised by contamination, particularly from honeydew, a substance secreted by insects that leads to the formation of sticky fibers, thereby impeding textile processing. This study investigates ultraviolet (UV) hyperspectral imaging (230–380 nm) combined with multivariate data analysis to detect and quantify honeydew contaminations in real cotton samples. Reference cotton samples were sprayed multiple times with honey solutions to replicate the natural composition of honeydew. Comparisons were made with an alternative method where samples were soaked in sugar solutions of varying concentrations. Principal component analysis (PCA) and quadratic discriminant analysis (QDA) effectively differentiated and classified samples based on honey spraying times. Additionally, partial least squares regression (PLS-R) was utilized to predict the honeydew content for each pixel in hyperspectral images, achieving a cross-validation coefficient of determination R2 = 0.75 and root mean square error of RMSE = 0.8 for the honey model. By employing a realistic spraying method that closely mimics natural contamination, this study refines sample preparation techniques for improved evaluation of honeydew levels. In conclusion, the integration of hyperspectral imaging with multivariate analysis represents a robust, non-destructive, and rapid approach for real-time detection of honeydew contamination in cotton, offering significant potential for industrial applications.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenAl Ktash, Mohammad; Knoblich, Mona; Wackenhut, Frank; Brecht, Marc
URN:urn:nbn:de:bsz:rt2-opus4-55684
DOI:https://doi.org/10.3390/chemosensors13010021
ISSN:2227-9040
Erschienen in:Chemosensors
Publisher:MDPI
Place of publication:Basel
Document Type:Journal article
Language:English
Publication year:2025
Tag:UV spectroscopy; cotton; honeydew; hyperspectral imaging; partial least squares regression; principle component analysis; pushbroom; textile
Volume:13
Issue:1
Page Number:13
Article Number:21
DDC classes:540 Chemie
Open access?:Ja
Licence (German):License Logo  Creative Commons - CC BY - Namensnennung 4.0 International