Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 2246
Back to Result List

A fully integrated three-level 11.6nC gate driver supporting GaN gate injection transistors

  • Due to their superior fast-switching performance, GaN transistors show enormous potential to enable compact power electronics in applications like renewable energy, electrical cars and home appliances by shrinking down the size of passives. However, fast switching poses challenges for the gate driver. Since GaN transistors have a low threshold voltage Vt of ~1V, an unintended driver turn-on can occur in case of a unipolar gate control as shown for a typical half-bridge in Fig. 24.2.1 (top left). This is due to coupling via the gate-drain capacitance (Miller coupling), when the low-side driver turns on, causing a peak current into the gate. This is usually tackled by applying a negative gate voltage to enhance the safety margin towards Vt, resulting in a bipolar gate-driving scheme. In many power-electronics applications GaN transistors operate in reverse conduction, carrying the inductor current during the dead time t, when the high-side and low-side switch are off (as illustrated at a high-side switch in Fig. 24.2.1, bottom left). As there is no real body diode as in silicon devices, the GaN transistor turns on in reverse operation with a voltage drop VF across the drain-source terminals (quasi-body diode behavior). As a negative gate voltage adds to VF, 63% higher reverse-conduction losses were measured for a typical GaN switch in bipolar gate-drive operation. This drawback is addressed by a three-level gate voltage (positive, 0V, negative), which at the same time provides robustness against unintended turn-on similar to the bipolar gate driver, proven in [1] for a discrete driver.

Download full text files

  • 2106.pdf
    eng

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenSeidel, Achim; Wicht, Bernhard
DOI:https://doi.org/10.1109/ISSCC.2018.8310345
Erschienen in:2018 IEEE International Solid-State Circuits Conference : digest of technical papers
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:Laura Fujino
Document Type:Conference proceeding
Language:English
Publication year:2018
Page Number:3
First Page:384
Last Page:386
DDC classes:620 Ingenieurwissenschaften und Maschinenbau
Open access?:Nein
Licence (German):License Logo  In Copyright - Urheberrechtlich geschützt