Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 17 of 63
Back to Result List

SDC interfaces for the intelligent OR: Example implementations for the patient monitor MX800 and the operating light marLED X

  • What might the attendee be able to do after being in your session? Our work shows how to connect intra-operative devices via IEEE 11073 Service-oriented Device Connectivity (SDC). Description of the Problem or Gap Standardized device communication is essential for interoperability, availability of device data, and therefore for the intelligent operating room (OR) and arising solutions. The SDC standard was developed to make information from medical devices available in a uniform manner and enable interoperability. Existing devices are rarely SDC-capable and need interfaces to be interoperable via SDC. Methods: What did you do to address the problem or gap? We conceived an SDC-based architecture consisting of a service provider and service consumer. In our concept, the service provider is connected to the medical device and capable to translate the proprietary protocol of the device into SDC and vice versa. The service consumer is used to request or send information via the SDC protocol to the service provider and can function as a uniform bidirectional interface (e.g. for displaying or controlling). This concept was exemplarily demonstrated with the patient monitor MX800 of Philips to retrieve the device data (e.g. vital parameters) via SDC and partly for the operating light marLED X of KLS Martin Group. Results: What was the outcome(s) of what you did to address the problem or gap? The patient monitor MX800 was connected to a Raspberry Pi (RPi) via LAN, on which the service provider is running. The python script on the RPi establishes a connection to the monitor and translates incoming and outgoing messages from the proprietary protocol to SDC and vice versa to/from the service consumer. The service consumer is running on a laptop and acts as a simulation for different kinds of systems that want to get vital parameters or other information from the patient monitor. The operating light marLED X was connected to an RPi via USB-to-RS232. A python script on the RPi establishes a connection to the light and makes it possible via proprietary commands to get information of the light (e.g. status) and to control it (e.g. toggle the light, increment the intensity). A translation to SDC is not integrated yet. Discussion of Results Our practical implementation shows that medical devices can be accessed via external connections to get device data and control the device via commands. The example SDC implementation of the patient monitor MX800 makes it possible to request its data via the standardized communication protocol SDC. This is also possible for the operating light marLED X if its proprietary protocol is analyzed to be translatable to/from SDC. This would allow to control the device from an external system, or automatically depending on the status of the ongoing procedure. The advantage is, that existing intra-operative devices can be extended by a service provider which is capable of translating the proprietary protocol of the device in SDC and vice versa. This enables interoperability and an intelligent OR that, for example, is aware of all devices, their status, and data and can use this information to optimally support the surgeons and their team (e.g. provision of information, automated documentation). This interoperability allows that future innovations merely need to understand the SDC protocol instead of all vendor-dependent communication protocols. Conclusion Standardized device communication is essential to reach interoperability, and therefore intelligent ORs. Our contribution addresses the possibility of subsequently making medical devices SDC-capable. This may eliminate the need of understanding all the different proprietary protocols when developing new innovative solutions for the OR.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenJunger, Denise; Burgert, Oliver
Erschienen in:AMIA 2022 Clinical informatics conference : 24-26 May 2022, Houston
Document Type:Conference proceeding
Language:English
Publication year:2022
Tag:health IT standards; interoperability
Page Number:1
DDC classes:004 Informatik
Open access?:Nein